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Fig. 1: Comparison of editing results and latency between point-drag-based methods
and our region-drag-based method. Our gradient-free, region-based framework reduces
editing time from approximately one minute to about 1.5 seconds for 512×512 resolu-
tion images, while producing results that better align with users’ intentions.

Abstract. Point-drag-based image editing methods, like DragDiffusion,
have attracted significant attention. However, point-drag-based approach-
es suffer from computational overhead and misinterpretation of user in-
tentions, due to the sparsity of point-based editing instructions. In this
paper, we propose a region-based copy-and-paste dragging method, Re-
gionDrag, to overcome these limitations. RegionDrag allows users to
express their editing instructions in the form of handle and target re-
gions, enabling more precise control and alleviating ambiguity. In addi-
tion, region-based operations complete editing in one iteration and are
much faster than point-drag-based methods. We also incorporate the
attention-swapping technique for enhanced stability during editing. To
validate our approach, we extend existing point-drag-based datasets with
region-based dragging instructions. Experimental results demonstrate
that RegionDrag outperforms existing point-drag-based approaches in
terms of speed, accuracy, and alignment with user intentions. Remark-
ably, RegionDrag completes the edit on an image with a resolution
of 512×512 in less than 2 seconds, which is more than 100× faster
than DragDiffusion, while achieving better performance. Project page:
https://visual-ai.github.io/regiondrag.
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1 Introduction

Stable Diffusion (SD) [23] is a widely adopted text-to-image generative model
known for its efficacy in producing high-fidelity images. As it is trained with mil-
lions of images, the vast amount of knowledge learned about images enables the
model to edit existing images in a zero-shot manner. A recent line of work that
has gained attention in the community is point-drag-based image editing using
SD [15, 18, 24]. Point-drag-based methods first allow users to designate several
points and drag them to desired positions. They then invert the latent represen-
tation of the input image to a particular timestep in the diffusion process and
edit the image by enforcing similarities between local latent representations at
the initial and final positions of the points. This is done either through optimiza-
tion [15–17,24] or direct copy-and-paste [18]. The edited latent representation is
finally denoised and decoded to the edited image.

Although point-drag-based methods demonstrate encouraging results, they
exhibit several limitations. First, as the editing solely relies on dragging sparse
points, they have to interpolate dozens of intermediate points along the dragging
directions and edit the image iteratively to avoid editing failures. This signifi-
cantly slows down the speed of editing. Second, dragging points cannot always
faithfully reflect the desired effect. This form of instruction is prone to being mis-
interpreted by the model, so the editing results may not fully align with users’
actual intentions. For example, moving an object to the left and expanding the
object to the left can equally be represented by dragging points to the left.

Therefore, we propose an alternative form of dragging to address the above
issues. Instead of relying on points, we propose a region-based copy-and-paste
dragging method, RegionDrag. Specifically, we first invert the latent represen-
tation of the unedited image to a specific time step using DDPM inversion [28],
an inverse process to the stochastic DDPM sampling [25] which benefits the
image editing [18]. Users then draw a handle region and a target region (see
Fig. 1), where the former is the part that users intend to drag and the latter
illustrates desired positions that users intend to achieve. After that, we establish
a dense mapping between the two regions using our proposed Region-to-Point
Mapping algorithm, and the latent representation covered by the handle region
is mapped to the target region according to the dense mapping. Finally, the
edited latent representation goes through the DDPM sampling process, and the
mapping operation is repeated at multiple time steps. In the meantime, we also
employ the attention-swapping technique proposed in [2] to stabilize the editing.
To evaluate RegionDrag, we expand two existing point-drag-based image editing
datasets [18,24] by adding equivalent region-based dragging instructions to each
image. Experiments demonstrate that RegionDrag is significantly faster than
point-drag-based methods as it completes editing in a single iteration. In addi-
tion, the paste region offers clearer constraints than point inputs and reduces
chances of misinterpretation, leading to more faithful editing results.

Our contributions can be summarized as follows: (1) We introduce a region-
based image editing method to overcome the limitations of point-drag-based
approaches, utilizing richer input context to better align the editing results with
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the users’ intentions. (2) By employing a gradient-free copy-paste operation, our
region-based image editing becomes significantly faster than existing methods
(see Fig. 1), completing the dragging in one single iteration. (3) We extend two
point-drag-based datasets with region-based dragging instructions to validate
RegionDrag’s effectiveness and benchmark region-based editing methods.

2 Related Work

Generative Models for Image Editing. Early advancements in image gen-
eration have been driven by generative adversarial networks (GANs) [6, 9–11].
However, their practical application in real-world image editing is limited by
the diversity of GAN training data and the effectiveness of GAN inversion tech-
niques [3, 4, 21, 27, 29]. The emergence of text-to-image diffusion models leads
to novel image editing techniques that utilize text prompts to modify high-level
characteristics such as style, motion, or object categories [1,2,5,12]. Nevertheless,
image editing methods based on user text prompts inherently struggle to manip-
ulate images at the pixel level. Dragging methods [4,14–17,19,24] aim to address
this limitation by controlling the overall posture and shape of objects through
iterative movement and tracking of one or multiple key points. RegionDrag in-
troduces a region-based approach as a superior alternative, offering increased
stability and efficiency for fine-grained image editing tasks.
Image Editing by Dragging Points. When employing drag-based methods
for image editing, users can manipulate images by designating pairs of handle
points and target points. The point-drag-based methods are expected to produce
an image that meets two criteria: (1) features at the handle points are relocated
to the target points, and (2) the original identity of the edited object is main-
tained. DragGAN [19] first enables editing on GAN-generated images involving
multiple dragging point pairs. Specifically, DragGAN decomposes the editing
process into several iterations, alternating between motion supervision and point
tracking. In the motion supervision phase, DragGAN optimizes the StyleGAN’s
latent code [10,11] using the distance loss between the initial and target positions
of the handle points. Following each motion supervision iteration, DragGAN up-
dates the positions of the handle points by employing a point-tracking technique.
FreeDrag [14] switches the dragging from pixel space to feature space, enabling
more stable and precise manipulation. DragDiffusion [24] extends the supervise-
and-track framework of DragGAN [19] to diffusion models. It inverts the latent
representation of the unedited image to a partially noisy status at a selected time
step, drags point features by optimizing the latent representation, and denoises
it. RotationDrag [15] further refines the DragDiffusion framework [24] for cases
of rotating objects. Another line of research, including DragonDiffusion [16] and
DiffEditor [17], draws inspiration from classifier-guided generation, extending
feature dragging throughout the entire denoising process rather than confining
it to a single timestep. A method similar to ours, named SDE-Drag [18], elim-
inates memory-intensive backpropagation found in [16, 17, 24] by copying and
pasting points within the diffusion latent space. Although SDE-Drag demon-
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strates promising results, it remains time-consuming due to its reliance on in-
terpolating intermediate points along the dragging path to stabilize the editing
process. In this paper, we introduce a simple yet effective region-based frame-
work that utilizes the rich context inherent in region pairs to complete all edits
in just one editing step.
Appearance Consistency for Drag Editing. SD-based image editing shifts
the image’s latent distribution to incorporate user-specified structural, layout,
and shape changes. However, this process can also introduce undesirable changes
and artifacts. Mitigating these side effects remains challenging. Existing meth-
ods [15,18,24] often require training the SD model with LoRA (Low-Rank Adap-
tation) [8] for each unedited image to maintain style and appearance consistency.
While LoRA is parameter-efficient through the use of low-rank matrix decom-
position, it requires extensive preparation time and may overly constrain the
image’s appearance, limiting further edits. Additionally, point-drag-based meth-
ods often necessitate masking the editing area to reduce input ambiguity and
enhance image consistency. In contrast, in this paper, we incorporate a training-
free approach called mutual self-attention control [2], which preserves the image’s
identity by leveraging keys and values in the self-attention blocks of the model.
This approach is seamlessly integrated into the editing pipeline, eliminating the
need for an additional module to maintain the image’s identity. Furthermore,
unlike point-drag-based methods that rely on a mask to confine the editing area,
RegionDrag eliminates this step to provide a more convenient editing experience.

3 RegionDrag

RegionDrag enables users to input handle and target region pairs, which are then
used for editing through two primary steps: (1) copying latent representations
covered by handle regions and storing self-attention features during inversion,
and (2) pasting copied latent representations to target positions and inserting
stored self-attention features during denoising.

This section begins by reviewing the diffusion-based image editing pipeline
and point-drag-based methods in Sec. 3.1. We then discuss the limitations of
point-drag-based methods and introduce how our region-based input addresses
these limitations in Sec. 3.2. Finally, Sec. 3.3 presents our editing pipeline used
to process region-based inputs.

3.1 Preliminary

Diffusion-based image editing involves two main stages: inversion and de-
noising. Unedited images are first gradually inverted to a specific timestep in the
diffusion process. The editing is then performed on the images at this timestep
and the images are finally denoised back to their original image space. The
transition between timesteps in the diffusion process is governed by a sampling
scheduler. A commonly used one is the DDIM scheduler [25]. When an image
latent zs at timestep s transitions to zt at timestep t, it goes through:
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zt = fs→t(zs)

=
√
αt

(
zs −

√
1− αsϵθ(zs, s, C)
√
αs

)
+

√
1− αt − σ2

sϵθ(zs, s, C) + σsws,
(1)

where ϵθ(zs, s, C) is the noise predicted by the diffusion model, αt is a mono-
tonically decreasing noise scheduling function dependent on t, ws is Gaussian
noise, and σs = η

√
(1− αt)/(1− αs)

√
1− αs/αt with η = 0. Since η is set to

0, the transition is a deterministic process and it is widely used in many meth-
ods [16, 17, 23, 24]. If η > 0, the sampling becomes a stochastic process known
as the DDPM sampling [7]. We choose DDPM over DDIM as [18] shows that
DDPM’s randomness reduces divergence between unedited and edited image
distributions.
Point-drag-based methods, such as DragDiffusion and SDE-Drag [18,24], edit
an image by relocating its latent representations at user-designated n handle
points h1:n to corresponding target positions t1:n. Due to the limited context
available in sparse points, point-drag-based methods divide drag editing into K
sub-steps. At sub-step k, the algorithm drags latent representations from handle
points hk,1:n to target positions tk,1:n, which are found by direct interpolation
or an extra point matching step. DragDiffusion optimizes zkt by minimizing the
ℓ1-distance between UNet upblock features F (zkt ) at handle hk,1:n and target
tk,1:n points, respectively denoted as F (zkt )[hk,1:n] and F (zkt )[tk,1:n]:

zk+1
t = zkt − η · ∇zk

t
∥F (zkt )[hk,1:n]− F (zkt )[tk,1:n]∥1. (2)

DragonDiffusion [16] and DiffEditor [17] are DragDiffusion variants with K = 1
and extend optimization across multiple diffusion timesteps. On the other hand,
SDE-Drag copies the latent representations from handle points to target points
using the copy-paste function CP (Eq. (3)), where z[h] and z[t] represent the
latent code at positions h and t. This is then followed by a denoising and inversion
cycle (Eq. (4)).

CP(z1, z2, h, t) = (z2[t]← z1[h]), (3)

zk+1
t = f0→t

(
ft→0

(
CP(zkt , z

k
t , hk,1:n, tk,1:n)

))
. (4)

3.2 From Point-Based to Region-Based Dragging

Although point-drag-based methods offer an intuitive means of user input, the
limited information derived from sparse points poses challenges for models dur-
ing the editing process. Specifically, point instructions can result in two primary
issues: input ambiguity and slow inference. First, point instructions are in-
herently ambiguous. One dragging action could correspond to multiple plau-
sible editing effects. Consider a user attempting to elongate a bird’s beak in an
image, as depicted in Fig. 2. The user selects a point on the beak and drags it
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Fig. 2: Overall comparison of point-based editing and region-based editing, exemplified
by manipulating a bird’s beak. The region-based approach is shown to provide a more
user-friendly and less ambiguous editing experience.

towards the upper-left corner. Point-drag-based methods, however, might misin-
terpret the user’s goal as enlarging the beak or moving the entire bird to the left,
rather than extending the beak as intended, leading to a misalignment between
the user’s intention and the model’s output.

Second, the complexity involved in point-drag-based editing re-
quires considerable computational overhead. Point-drag-based editing is
challenging because the model must deduce changes across the entire image from
the motion of a single or a few points. To carry out this complex drag operation
while preserving the object’s identity, point-drag-based methods heavily rely on
two computationally intensive steps: training a unique LoRA [8] for each image
and breaking down the dragging process into a series of sub-steps. Particularly,
LoRA helps the model maintain the original image’s identity and step-by-step
dragging boosts the chance of achieving desired editing effects. Otherwise, the
editing results may suffer from significant identity distortion or void editing,
as shown in Fig. 2. The root of this problem lies in that sparse points do not
impose sufficient constraints on editing, so the model has to rely on LoRA to
prevent distortion and iterative editing to provide some degree of additional su-
pervision along the path of the dragging. Consequently, most point-drag-based
methods require several minutes to edit one image, rendering them impractical
for real-world applications.

The simplest solution to these problems is to encourage users to provide a
sufficient number of points. However, such an approach would result in users
spending too much time on designating and dragging points. Therefore, we de-
sign a form of editing that is not only user-friendly but also provides more
informative context to the model, thus avoiding instruction ambiguity, slow in-
ference, and exhaustive efforts from users. Instead of relying on dragging points,
we propose to use region-based operations, where users assign a handle region
H to indicate the area they wish to drag and a target region T to illustrate
the desired position they would like to achieve. We then establish a dense map-
ping between the two regions using our Region-to-Point Mapping algorithm and
complete the editing by directly copying the latent representation covered by the
handle region to the target region in one inversion and denoising cycle. Despite
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Fig. 3: General pipeline of our method. Rich context provided by the region pairs en-
ables users to complete accurate edits in one inversion and denoising cycle. The latent
representation of the handle region is copied and pasted onto the target region through-
out multiple timesteps for drag editing. Keys and values within the self-attention blocks
are reused to ensure image consistency.

the simplicity of this operation, it addresses ambiguity and overhead from two
perspectives: (1) Region-based operation is more expressive and accurate than
dragging points and would significantly alleviate the ambiguity. As demonstrated
in Fig. 2, we express extending the bird’s beak by simply drawing a longer beak,
hence reducing ambiguity presented in point-drag-based inputs. (2) Each region
corresponds to a large number of points after dense mapping, so it provides
stronger constraints on editing results than sparse points. As a result, we do not
have to interpolate intermediate points along the dragging path and crave extra
supervision, and editing can be completed in one editing step. Moreover, the
handle and target regions can vary in size and take arbitrary shapes allowing
users to define them conveniently.

3.3 Editing Pipeline

We elaborate on our editing pipeline in this section. We first introduce the our
region-based user input, followed by our Region-to-Point Mapping algorithm,
and finally the main working pipeline.
User Input. The handle and target regions can be defined in two ways: (1)
by entering vertices to form a polygon (e.g., a triangle or quadrilateral), or (2)
by brushing out a flexible region using a brush tool. The choice of input form
largely depends on the user’s preferences. Vertices are ideal for editing well-
defined shapes, like moving a window on a building; a brush tool is better suited
for irregular shapes, like a curved road or human hair.
Region-to-Point Mapping. To preserve the original spatial information when
copying and pasting latent representation, we need to establish a dense mapping
between the handle and target region. If the regions are confined to triangular
or quadrilateral shapes, we can compute a transformation matrix using affine or
perspective mappings. However, finding a similar transformation for brush-out



8 Lu et al.

Algorithm 1 Region-to-Point Mapping

Input: Handle region H with NH handle points {(xH
i , yH

i )}NH
i=1 , target region T

with NT target points {(xT
i , y

T
i )}NT

i=1.
Output: List of mapped point pairs P .
Require: Initialize empty list P .

1: for (x, y) ∈ {(xT
i , y

T
i )}NT

i=1 do
2: Horizontal scaling:
3: x′ ← (x−min(xT

1:NT
))/(max(xT

1:NT
)−min(xT

1:NT
))

4: x′ ← ⌊x′ · (max(xH
1:NH

)−min(xH
1:NH

)) + min(xH
1:NH

)⌋
5: Column-by-column vertical scaling:
6: y′ ← (y −min(yT

i | xT
i = x))/(max(yT

i | xT
i = x)−min(yT

i | xT
i = x))

7: y′ ← ⌊y′ · (max(yH
i | xH

i = x′)−min(yH
i | xH

i = x′)) + min(yH
i | xH

i = x′)⌋
8: Add point pair ((x′, y′), (x, y)) to P
9: end for

10: return P

regions with arbitrary shapes is challenging. To address this issue, we propose
an algorithm to numerically find the mapping between two regions.

Let {(xH
i , yHi )}NH

i=1 and {(xT
j , yTj )}

NT
j=1 be the sets of pixels in handle and

target regions respectively. We begin by linearly scaling the target region’s width
to match the handle region’s width. For each pixel (x, y) ∈ {(xT

j , y
T
j )}

NT
j=1 in the

target region, x is adjusted by first subtracting the x-coordinate lower bound-
ary min(xT

1:NT
) and is normalized using the target region’s x-coordinate range

max(xT
1:NT

) −min(xT
1:NT

). It is then scaled to the handle region’s x-coordinate
range max(xH

1:NH
)−min(xH

1:NH
), resulting in x′.

This step ensures that both regions have the same number of columns of pix-
els. Next, we map each target region’s vertical pixel column to its corresponding
handle region’s column. Each point’s y in the target region is adjusted by sub-
tracting the lower boundary of its vertical column min(yTi | xT

i = x) and is
normalized by its column’s y-coordinate range max(yTi | xT

i = x) − min(yTi |
xT
i = x), followed by being scaled to the corresponding handle region’s column’s

y-coordinate range max(yHi | xH
i = x′)−min(yHi | xH

i = x′). The notation f(· | ·)
represents a function f (e.g., min or max) that takes a variable and a condition,
and returns the function’s value for the variable among points satisfying the
condition. The whole process is summarised in Algorithm 1.
Main Pipeline. As illustrated in Fig. 3, RegionDrag utilizes the image editing
pipeline mentioned in Sec. 3.1. Initially, the latent representation of the image
z0 is inverted to zt′ , where t′ is a selected timestep prior to maximum timestep
T . Each intermediate step z0, z1, ..., zt′ is cached during inversion for future use.
We then duplicate zt′ and denote the copy as z′t′ . The handle regions of z′t′
are blended with Gaussian noise ε according to the blending function rα(z,H)
defined in Eq. (5):

rα(z,H) = (1−H) · z +H · (
√

1− α2 · z + α · ε), ε ∼ N (0, I), (5)
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where H is a binary mask, with the handle region assigned a value of 1 and
α is a blending coefficient that ranges from 0 to 1, which governs the strength
of the blending effect. The noise ε is drawn from a Gaussian distribution with
mean 0 and identity covariance matrix, denoted by N (0, I). If α is set to a lower
value, less noise is added, which preserves more of the original image’s features
and details in the handle regions. After blending with Gaussian noise, z′t′ goes
through the denoising process using the DDPM sampler, and the dragging is
conducted in a copy-paste manner. At a denoising timestep t, we extract latent
representation within the handle region of zt and map it to the target region of
z′t according to the dense mapping computed by either geometric transformation
or Algorithm 1. In the meantime, we employ mutual self-attention control [2] to
help maintain the identity of images. In brief, when passing through the self-
attention module of the UNet, the key and value (k′t, v′t) used when denoising z′t
are replaced with those (kt, vt) from zt. This allows the edited image to keep the
layout and identity of the original image, thereby stabilizing the editing process.
After z′t is gradually denoised to z′0 (see Fig. 3), it is decoded to the edited im-
age x′

0. Although RegionDrag is introduced with a single handle-target region
pair, it supports multiple pairs of input {(Hi, Ti)}ni=1, allowing users to specify
several modifications in a single editing session. Dense mapping is individually
constructed for each region pair but collectively used in latent copy-paste oper-
ations. The entire pipeline is summarised in Algorithm 2.

Algorithm 2 Editing Pipeline
Input: Image x0, handle and target region pairs {(Hi, Ti)}ni=1.
Output: Edited image x′

0.
Require: Diffusion function fs→t Eq. (1), VAE encoder E, VAE decoder D, region-
to-point mapping function m, copy-paste function CP Eq. (3), handle resampling
function rα Eq. (5), copy-paste time interval (t′, t′′).

1: Preparation:
2: {(hi, ti)}Ni=1 ← m({(Hi, Ti)}ni=1)
3: z0 ← E(x0)
4: Inversion stage:
5: for t = 0 to t′ − 1 do
6: zt+1, kt+1, vt+1 ← ft→t+1(zt)
7: end for
8: z′t′ ← rα(zt′ ,∪n

i=1Hi)
9: Denoising stage:

10: for t = t′ down to 1 do
11: if t ≥ t′′ then
12: z′t ← CP(zt, h1:N , z′t, t1:N )
13: end if
14: z′t−1 ← ft→t−1(z

′
t, k

′
t ← kt, v

′
t ← vt)

15: end for
16: x′

0 ← D(z′0)
17: return x′

0
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4 Experimental Results

4.1 Datasets

SDE-Drag [18] and DragDiffusion [24] have each introduced a dataset named
DragBench to evaluate the performance of point-drag-based methods. For clarity,
we refer to the one by SDE-Drag as DragBench-S, which contains 100 samples,
and to the one by DragDiffusion as DragBench-D, which includes 205 samples.
Each sample comprises an image, a descriptive prompt, an optional mask delin-
eating the editing region, and at least one pair of points that reflects the user’s
intention. Empirically, DragBench-S offers relatively more detailed prompts and
includes a mask in 56 of its samples, while DragBench-D is characterized by more
complex intentions and features carefully crafted masks in each of its samples.

To evaluate region-based editing, we introduce two new benchmarks: DragB-
ench-SR and DragBench-DR (R is short for ‘Region’), which are modified ver-
sions of DragBench-S and DragBench-D, respectively. These benchmarks are
consistent with their point-drag-based counterparts in terms of images, prompts,
and masks but differ by reflecting the user’s intention through regions instead of
points. DragBench-SR and DragBench-DR consist of 8 and 23 polygon-annotated
samples, respectively, with the remainders of each dataset using brushes. For a
handle-target region pair, the median number of equivalent point pairs is 267 in
DragBench-SR and 201 in DragBench-DR. We visualize the distribution of the
number of transformed point pairs in Fig. 4.

During the annotation process, we ensure that the region pairs are aligned
with the point pairs to achieve the same editing effect. To simulate how real
users would typically draw handle-target region pairs, we do not meticulously
draw each region. According to our observations, each region-based sample is
annotated in approximately 10 seconds. This approach allows for a more realistic
evaluation of the region-based editing methods while maintaining consistency
with the point-based datasets.

4.2 Evaluation Metrics

LPIPS: We follow [24] and use Learned Perceptual Image Patch Similarity
(LPIPS) v0.1 [30] to measure the identity similarity between the edited image
and the original image. LPIPS computes the AlexNet [13] feature distances be-
tween the image pairs. A high LPIPS score indicates that unexpected identity
changes or artifacts occur due to editing. A lower LPIPS score suggests that
the object’s identity has been well-preserved during editing; however, it does
not necessarily imply a better drag edit, as two identical images would yield an
LPIPS score of 0.
Mean Distance (MD): DragDiffusion [24] introduces the MD metric to assess
how well an approach moves the handle points’ content to the target points. To
identify where the handle points have been moved to by the method, DragDif-
fusion employs DIFT [26] to find the most similar points to the handle points
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h1:n in the entire edited image and denotes them as h′
1:n. It then uses the nor-

malized Euclidean distance between DIFT-matched points and the true target
positions t1:n as the metric. However, we believe that we only have to search
the area around the handle points and their corresponding true target points for
h′
1:n instead of the entire image, to avoid DIFT mistakenly identifying irrelevant

points in the images as h′ and excessively penalizing certain methods. Formally,
given a dragging point pair {h, t}, we define its searching mask as

M(x) =

{
1 if min(d(x, h), d(x, t)) < d(h,t)√

2

0 otherwise
, (6)

where d(·, ·) calculates the normalized Euclidean distance between two points
(x1, y1) and (x2, y2) by

d((x1, y1), (x2, y2)) =

√(
x2 − x1

W

)2

+

(
y2 − y1

H

)2

, (7)

where W and H are width and height of the image. We provide examples of
searching masks in Fig. 5. MD is then defined as the average of the normalized
distances d̄ between the target points and the DIFT-matched points across all
n points:

d̄ =
1

n

n∑
i=1

d(ti, h
′
i). (8)

4.3 Implementation Details

Our method is implemented in Python using the HuggingFace [22] and Py-
Torch [20] libraries. We employ Stable Diffusion v1-5 as our diffusion model
with an image size of 512 × 512, being consistent with previous diffusion-based
dragging methods. A DDPM sampler is utilized for both the inversion and de-
noising sampling processes, configured to use a total of 20 steps. The latent
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Method DragBench-S(R) DragBench-D(R)
Time (↓) MD (↓) LPIPS (↓) MD (↓) LPIPS (↓)

SDE-Drag [18] 126.1 7.5 12.4 8.1 14.9
DragDiffusion [24] 177.7 7.0 18.0 6.7 11.5
DiffEditor [17] 43.1 23.6 17.6 22.1 10.9
Ours 1.5 6.4 9.9 6.6 9.2

Table 1: Comparisons of our method with baseline methods using MD(×100) and
LPIPS(×100) metrics on DragBench-S(R) and DragBench-D(R) datasets. The time
is measured in seconds and averaged across both datasets. The image size is 512×512.

representation is inverted to timestep t′ = 500 out of the total 1000 steps in
SD1-5. Consequently, we perform 10 inversion steps and 10 denoising steps. Mu-
tual self-attention control is enabled throughout all timesteps, and the latent
copy-paste operation is terminated at t′′ = 200. The noise weight α is set to 1.
All experimental results are obtained on an NVIDIA Tesla V100 GPU.

4.4 Baselines

We compare RegionDrag with point-drag-based diffusion methods, including
DragDiffusion [24], SDE-Drag [18], and DiffEditor [17]. GAN-based methods are
excluded due to their limitations in editing the diverse images in the DragBench-
S and DragBench-D datasets, as they require domain-specific StyleGAN check-
points. Diffusion-based methods, which outperform GAN-based methods in edit-
ing tasks, are better suited for our evaluation. Execution times are averaged
across both datasets, and all methods are tested on the same device using pub-
licly released code.

4.5 Quantitative Evaluation

To quantitatively evaluate the editing performance of the methods, we employ
LPIPS and Mean Distance as metrics, multiplying both by 100 for illustration
purposes. As demonstrated in Table 1, RegionDrag significantly outperforms
those computationally expensive point-based methods on both DragBench-S(R)
and DragBench-D(R) datasets. These results highlight RegionDrag’s superior
performance in maintaining image consistency while achieving competitive edit-
ing results across different datasets. In addition to its effectiveness, RegionDrag
also excels in terms of efficiency. RegionDrag achieves fast inference speed, requir-
ing approximately 1.5 seconds to edit a 512×512 image, which is 20 times faster
than the second-fastest method and 100 times faster than DragDiffusion [24].
The inference time for RegionDrag is comparable to generating an image with
20 steps using SD1-5, given that the copy-paste operations introduce negligible
computational overhead.
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Point Input DragDiff. SDE-Drag DiffEditor Region Input Our results

Fig. 6: Qualitative comparisons with baseline methods. Handle regions and target
regions are respectively denoted by red and blue masks.

4.6 Qualitative Results

Figure 6 compares examples of point-drag-based and region-based editing in-
puts and their corresponding results, demonstrating the effectiveness of Region-
Drag. Our region-based method utilizes the comprehensive context provided by
annotated regions to target desired modifications while preserving the overall
coherence of the image, outperforming point-drag-based editing methods.

4.7 Ablation Study

We argue that the sparsity of point inputs leads to inferior editing results.
To quantitatively demonstrate this, we conducted tests on the DragBench-DR
dataset by randomly selecting subsets of the equivalent transformed points within
each sample and performing inference using these subsets. We gradually reduced
the percentage of selected points to observe the impact on the MD metric. As il-
lustrated in Fig. 7, the results exhibit a clear upward trend in MD as the percent-
age of utilized points decreases. This suggests that sparse point inputs provide
weaker constraints on the output compared to region-based inputs, leading to
unsatisfactory editing results. It confirms the benefits of employing region-based
inputs in RegionDrag.
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Fig. 7: Ablation study on the
impact of the percentage of in-
putted transformed points.

Region Input Single-step Multi-step

Fig. 8: Qualitative examples illustrating the im-
pact of multi-step copy-paste.

We copy and paste image’s latent representation over a time interval during
denoising. To validate this design, we compare it to copy-paste only at the initial
denoising timestep. Figure 8 shows that editing just at the initial step can yield
unpredictable results because the edits may be lost in subsequent denoising
phases. Multi-step copy-paste solves this by providing extra guidance at smaller
timesteps while preserving image fidelity.

5 Conclusion

In this paper, we have introduced an efficient and effective region-based edit-
ing framework, RegionDrag, for high-fidelity image editing. Unlike existing ap-
proaches that utilize point-drag-based editing, RegionDrag reconsiders the edit-
ing problem from the region perspective. RegionDrag allows for editing in a
single step through copying and pasting the latent representation and self-
attention features of the image, which not only provides excellent efficiency but
also achieves superior editing performance. Furthermore, we have introduced two
new benchmarks, DragBench-SR and DragBench-DR based on existing datasets,
for the evaluation of region-based editing. Experimental results have consistently
demonstrated the superior efficiency and editing performance of our method.
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