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A Details of Error Analysis

Unit Vector Simplification We have proved that the composition of the
transformation ϖ, projecting onto the unit sphere, and the transformation φ,
projecting onto the tangent plane, is equivalent to the single transformation φ
directly projecting onto the tangent plane:
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Therefore, we can simplify the derivation of the error function ϵ by projecting
all relevant points onto the unit sphere as unit vectors (Equation 8 in the main
paper).

Closed-Form Expression for the Error Function This section provides
a comprehensive derivation of the integral expression for the error function as
presented in the main paper. Upon expressing x

′
, x0 and µ

′
as unit vectors and

substituting them into Equation 6 in the main paper, the Jacobian matrix is
derived:
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Substituting this Jacobian matrix into Equation 5 in the main paper yields the
derivation of the Taylor expansion remainder term:
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And substituting this expression into Equation 7 in the main paper results in
the integral expression (Equation 9 in the main paper). The main paper provides
the integral expression (Equation 9 in the main paper) and the function graph
(Figure 2 in the main paper) for the error function, without presenting the
closed-form expression after integration. We provide the closed-form expression
as follows:
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B Details of Adaptation for Various Camera Models

In the main paper, it is highlighted that our projection, independent of per-
spective image plane, allows for the adaptation to various camera models by
modifying the transformation from image space to camera space in the rasteri-
zation based on the unit sphere (Equation 16 in the main paper) . This section
provides a detailed explanation of our method’s adaptation to various camera
models.

Fisheye The design models for fisheye cameras can generally be categorized
into four types: equidistant projection model, equisolid angle projection model,
orthographic projection model, and stereographic projection model. We explane
our projection’s adaptation to fisheye camera models, taking the equidistant
projection model as an example.

For a pixel (u, v) on the image, we cast a ray. According to the transformation
between the image space and camera space for the equidistant projection model,
we obtain:
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where cx, cy, fx, fy denote the intrinsic parameters of the camera model.

Panorama For a pixel (u, v) on the image, we cast a ray. According to the
transformation between the image space and camera space for panoramic images,
we obtain:

x2D = φp
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where H,W represent the height and width of the image, respectively.

Then, similar to Equation 17 in the main paper, the 2D Gaussian function
values can be obtained for alpha blending to generate the image. The alpha
blending process after obtaining the 2D Gaussian is the same as in the original
3D-GS [5].
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Truck
Ground Truth × 13D-GS × 0.2

Ours × 0.2

3D-GS × 0.3

Ours × 0.3

3D-GS × 0.1

Ours × 0.1

3D-GS × 0.3 3D-GS × 0.2 3D-GS × 0.1

Ours × 0.3 Ours × 0.2 Ours × 0.1

3D-GS × 0.3 3D-GS × 0.2 3D-GS × 0.1

Ours × 0.3 Ours × 0.2 Ours × 0.1

Ours Fisheye Ours Panorama

Playroom
Ground Truth × 1

Bicycle
Ground Truth × 1

Ours Fisheye Ours Panorama

Ours Fisheye Ours Panorama

Ours Fisheye Ours Panorama

3D-GS × 0.3 3D-GS × 0.2 3D-GS × 0.1

Ours × 0.3 Ours × 0.2 Ours × 0.1

Train
Ground Truth × 1

3D-GS × 0.3 3D-GS × 0.2 3D-GS × 0.1

Ours × 0.3 Ours × 0.2 Ours × 0.1 Ours PanoramaOurs Fisheye

Dr Johnson
Ground Truth × 1

3D-GS not support
Fisheye&Panorama  

3D-GS not support
Fisheye&Panorama  

3D-GS not support
Fisheye&Panorama  

3D-GS not support
Fisheye&Panorama  

3D-GS not support
Fisheye&Panorama  

Fig. 1: We show comparisons of our method to the original 3D-GS [5] under various
camera models and different focal lengths.
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C Details of Experiments

Additional Results Table 1-2 list PSNR for our evaluation over all considered
techniques and real-world scenes, corresponding to Table 1 in the main paper.
Figure 2 illustrates additional qualitative comparisons between our method and
other approaches.

Ground Truth Ours 3D-GS Mip-NeRF360

Fig. 2: We show comparisons of our method to previous methods and the corresponding
ground truth images from held-out test views. The scenes are, from the top down:
Train from Tanks&Temples [6]; Drjohnson from the Deep Blending dataset [4] and
Room, Stump from Mip-NeRF360 dataset [1]. Differences in quality highlighted by
arrows/insets.

Impacts of Decreasing Focal Length In the quantitative comparison experi-
ments about the impact of reducing focal length, we utilized a focal length mask
methodology due to the absence of ground truth for wide-angle images. The
detailed procedures are illustrated in Figure 3. The focal mask selects central
parts of the rendering with corresponding ground truth based on the focal length
scaling factor for metric calculation. For rendering, we crop the corresponding
part with available ground truth, then resize the ground truth to match the size
of this patch. Finally, we compute the metrics for these two images.

For qualitative experiments, we show additional results in Figure 1. In addi-
tion to the original focal length reduction factors of 0.3 and 0.2, we introduce
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Ground Truth × 1 Rendering × 0.3

Caculate Metrics 

Resize Crop

Fig. 3: Illustration of details of metrics caculation in the quantitative comparisons on
the impact of decreasing focal length.

0.1 times the focal length. Additionally, we generate images with corresponding
perspectives using other camera models, while 3D-GS [5] is not presented as it
lacks support for these camera models.

Comparison with the Other 3D-GS Methods We choose Mip-Splatting [9]
and Scaffold-GS [7] to compare in the same setting as in Figure 6 of the main
paper. For Mip-Splatting [9] and Scaffold-GS [7] still employ conventional pro-
jection of 3D-GS, the approximation error remains larger compared to ours, as
shown in Figure 4. Additionally, our method can be be seamlessly integrated
with theirs to reduce the projection error of these methods.

3D-GS 

× 0.2

Ours 

× 0.2

Scaffold-GS 

× 0.2

Ours(+Scaffold-GS) 

× 0.2

Mip-Splatting 

× 0.2

Ours(+Mip-Splatting) 

× 0.2

Fig. 4: We show comparisons of our method to the original 3D-GS [5], Mip-Splatting [9]
and Scaffold-GS [7] with a large FOV camera. In the figure, Ours(+X) indicates the
combination of our method with the X method.

Adaptability to Various Camera Models Since our method is based on
differentiable rasterizer, it can also be used to train on the non-pinhole camera
dataset. We illustrate the results obtained from training on the non-pinhole cam-
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era dataset Matterport [2] directly, where 3D-GS fails entirely to reconstruct
the scene, as shown in Figure 5.

Ground-truth 3D-GS

Ours(Panorama) Ours(Pinhole) Ours(Fisheye)

Fig. 5: We show the results of our method trained on the non-pinhole camera dataset
Matterport [2].

Table 1: PSNR scores for Mip-NeRF360 scenes.

MipNeRF360 Indoor MipNeRF360 Outdoor Avg.Room Counter Kitchen Bonsai Avg. Bicycle Flowers Garden Stump Treehill Avg.
Plenoxels [3] 27.59 23.62 23.42 24.67 24.83 21.91 20.10 23.49 20.66 22.25 21.68 23.08
INGP-Base [8] 29.27 26.44 28.55 30.34 28.65 22.19 20.35 24.60 23.63 22.36 22.63 25.30
INGP-Big [8] 29.69 26.69 29.48 30.69 29.14 22.17 20.65 25.07 23.47 22.37 22.75 25.59
M-NeRF360 [1] 31.63 29.55 32.23 33.46 31.72 24.37 21.73 26.98 26.40 22.87 24.47 27.69
3D-GS [5] 30.63 28.70 30.32 31.98 30.41 25.25 21.52 27.41 26.55 22.49 24.64 27.21
Ours 31.58 29.05 31.23 32.31 31.04 25.07 21.54 27.15 26.57 22.77 24.62 27.48
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Table 2: PSNR scores for Tanks&Temples and Deep Blending scenes.
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