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Abstract. 3D Gaussian Splatting has garnered extensive attention and
application in real-time neural rendering. Concurrently, concerns have
been raised about the limitations of this technology in aspects such as
point cloud storage, performance, and robustness in sparse viewpoints,
leading to various improvements. However, there has been a notable lack
of attention to the fundamental problem of projection errors introduced
by the local affine approximation inherent in the splatting itself, and
the consequential impact of these errors on the quality of photo-realistic
rendering. This paper addresses the projection error function of 3D Gaus-
sian Splatting, commencing with the residual error from the first-order
Taylor expansion of the projection function. The analysis establishes a
correlation between the error and the Gaussian mean position. Subse-
quently, leveraging function optimization theory, this paper analyzes the
function’s minima to provide an optimal projection strategy for Gaussian
Splatting referred to Optimal Gaussian Splatting, which can accommo-
date a variety of camera models. Experimental validation further con-
firms that this projection methodology reduces artifacts, resulting in a
more convincingly realistic rendering.

Keywords: 3D deep learning · view synthesis · radiance fields · 3D
gaussians · real-time rendering · error analysis

1 Introduction

Reconstructing 3D scenes from 2D images and synthesizing novel views has
been a critical task in computer vision and graphics. Recently, the trend of
novel view synthesis is spearheaded by Neural Radiance Fields (NeRFs) [25]
and its variants [1, 2], which achieves photo-realistic rendering quality. NeRF
represents scenes with Multi-Layer Perceptron (MLP) and renders novel views
using volumetric ray-marching. However, these MLP-based methods contain a
relatively large number of layers, leading to lengthy training and rendering times,
which still fall significantly short of real-time rendering. To accelerate rendering,
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Ground Truth Ours 3D-GS

Fig. 1: By minimizing the projection error through error analysis, we have achieved
an improvement in the rendering image quality compared to the original 3D-GS [16].
These images are cropped from the complete images of the Train scene, in order to
be highlighted.

many methods resort to auxiliary data structures, such as hash grids [26], points
or voxel [8, 36, 37, 39]. However, due to the dense sampling of points along rays,
they still face challenges in achieving real-time performance.

With a substantial demand for high-speed and photo-realistic rendering ef-
fects, 3D Gaussian Splatting (3D-GS) [16] has emerged as an efficient represen-
tation that can be rendered at high speed on the GPU. It has departed from the
implicit scene representation using MLPs and instead opted for an explicit rep-
resentation using Gaussian functions. As a result, 3D-GS avoids the expensive
cost of densely sampling points in volume rendering, thus achieving real-time
performance. Given a set of images with the camera parameters calibrated by
SfM [31], 3D-GS aims to optimize a set of 3D Gaussians as graphical primitives
to explicitly represent the scene. To render 2D images, these 3D Gaussians are
projected onto the image plane (z = 1 plane) via a projection function denoted
as ϕ for differentiable rasterization.

Unfortunately, Gaussian functions are closed under affine transformations
but not under projective transformations. Therefore, 3D-GS adopts a local affine
approximation [44], specifically approximating the projection function with the
first two terms of its Taylor expansion. Nevertheless, approximations introduce
errors, and the local affine approximation similarly contributes to these errors
which may lead to artifacts in the rendered images. This paper exploits the rela-
tionship between the error of 3D-GS and the Gaussian mean through the analysis
of the Taylor remainder term. Additionally, it identifies the circumstances under
which the error is minimized by determining the extremum of the error function.

Finally, based on the extremum analysis of the error function, we propose
a novel optimal projection method to minimize the projection error in 3D-GS.
This method requires only minor code modifications, does not affect real-time
rendering performance, and yet achieves a significant improvement in rendering
quality. Specifically, we project along the direction from the Gaussian mean to
the camera center, where the projection plane is tangent to the line connecting
the Gaussian mean and the camera center. Compared with the straightforward
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approach of projecting 3D Gaussians onto the image plane of the camera, the
proposed projection reduces expected error while maintaining real-time and re-
alistic rendering performance. Furthermore, we find that the projection errors in
3D-GS tend to escalate with the continuous expansion of the field of view and
the corresponding reduction in focal length. This increasing error leads to more
and larger elongated Gaussians, as well as cloud-like Gaussian artifacts, conse-
quently degrading the overall image quality. In contrast, our method exhibits
greater realism and robustness. As illustrated in Figure 1, our method signifi-
cantly reduces blurriness and artifacts caused by the projection error. Through
experiments on various datasets and scenes, our method consistently outper-
forms the original projection method, particularly in settings with short focal
lengths. And the method is easily implemented and adaptable to various camera
models. To summarize, we provide the following contributions:

– We provide thorough error analysis for 3D-GS that may lead to artifacts and
consequently degrade rendering quality. We have identified the correlation
between this error and the Gaussian position.

– We derive the mathematical expectation of this error function and analyze
when this function takes extrema through methods of function optimization.

– We propose a novel optimal projection capable of adapting to diverse cam-
era models that adopts different tangent plane projections based on the
directions from each Gaussian mean to the camera center instead of naively
projecting all Gaussians onto the same plane

2 Related Work

Novel view synthesis is a longstanding challenge in computer vision and graphics.
From traditional techniques [3,5,10,11,19,31,33], to neural network-based scene
representations [9, 15, 18, 24, 28, 29, 32], various approaches have struggled to
address the problem of synthesizing a new view from captured images.

2.1 Neural Radiance Fields

The Neural Radiance Field (NeRF) [25] stands out as a successful neural render-
ing method based on MLPs, primarily owing to its encoding of position and direc-
tion. This encoding allows for effective reconstruction of high-frequency informa-
tion in scenes. Notable improvements on this encoding have been made by Mip-
NeRF [1], NeRF-W [22], FreeNeRF [41], and Instant NGP [26]. These enhance-
ments enable the handling of multi-resolution image inputs, multi-illumination
with occlusion image inputs, sparse-view inputs, and achieve nearly real-time
rendering capabilities, respectively. Barron et al. introduced MipNeRF360 [2] as
an extension of MipNeRF [1] to address the issue of generating low-quality ren-
derings for unbounded scenes in NeRF. Importantly, these methods thoroughly
exploit the intrinsic capabilities of NeRF as an implicit scene representation
without introducing additional model priors.

However, due to the implicit representation of scenes and the dense sampling
of points along rays, they still face challenges in achieving real-time performance.
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2.2 3D Gaussian Splatting

3D Gaussian Splatting (3D-GS) [16] has demonstrated notable advancements
in rendering performance by departing from MLPs and ray sampling, opting
instead for Gaussian functions and Gaussian Splatting. This paradigm shift has
attracted considerable attention within the industry, leading to various studies
building upon this methodology [6].

3D-GS finds application in SLAM systems [23], scene editing [7] and seg-
mentation [4]. Efforts [20] have also been made to integrate 3D-GS with popular
diffusion models [14, 34, 35] and dynamic scenes [21]. Recent endeavors aim to
enhance the robustness in sparse-view scenarios [38, 40], performance, storage
efficiency [27] and mesh reconstruction [12] of 3D-GS. However, these improve-
ments do not specifically address errors associated with Gaussian projection. Po-
tential methods for enhancing Gaussian functions include [30,42]. Nevertheless,
they introduce a Gaussian filter and a novel Gaussian depth sorting algorithm,
respectively, without investigating the projection function and associated errors.
These approaches still rely on projecting onto the z = 1 plane.

This paper aims to explore the potential of 3D Gaussian Splatting by analyz-
ing errors that may arise during the projection process. The analysis will delve
into the factors contributing to these errors and propose methods to mitigate
and reduce them.

3 Preliminaries

Similar to NeRF [25], the input to 3D-GS consists of a set of images, together
with the corresponding cameras calibrated by SFM [31]. However, in contrast
to NeRF, 3D-GS takes the sparse point cloud generated during the SFM cali-
bration process as input. From these points, it constructs a set of 3D Gaussians
as graphical primitives explicitly representing the scene. Each 3D Gaussian is
characterized by its position (mean) µ, covariance matrix Σ, and opacity α, and
carries anisotropic spherical harmonics (SH) representing directional appearance
component (color) of the radiance field, following standard practice [8,26]. Sub-
sequently, these 3D Gaussians are projected onto the image plane (z = 1 plane)
via a projection function for differentiable rasterization. Next, we will provide a
detailed explanation of the Gaussian projection process in 3D-GS.

In the world space, we define a 3D Gaussian function by G, characterized by
its mean µ and covariance matrix Σ. To project the Gaussian onto the image
plane, the initial step in 3D-GS involves an affine transformation of this Gaussian
function from the world space to the camera space via a viewing transformation
matrix W, yielding a transformed Gaussian function:

G (x) = exp
{
−1/2 (Wx−Wµ)

⊤ (
WΣW⊤)−1

(Wx−Wµ)
}

. (1)

We denote G
′
as the 3D Gaussian in the camera space, with x

′
= Wx, µ

′
= Wµ

and Σ
′
= WΣW⊤ as the point, mean and covariance matrix in the camera

space, respectively.
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Subsequently, traditional 3D-GS requires projecting the Gaussian function
in the camera space onto the z = 1 plane, with the projection function φ defined
as:

φ
(
x

′
)
= x

′
(
x0

⊤x
′
)−1 (

x0
⊤x0

)
= x

′
(
x0

⊤x
′
)−1

(2)

where x0 =
[
0, 0, 1

]⊤ represents the projection of the camera space’s origin onto
this plane. Expanding this projection function to the first order using Taylor
series yields:

φ
(
x

′
)
= φ

(
µ

′
)
+

∂φ

∂x′

(
µ

′
)(

x
′
− µ

′
)
+R1

(
x

′
)

≈ φ
(
µ

′
)
+

∂φ

∂x′

(
µ

′
)(

x
′
− µ

′
) (3)

where ∂φ

∂x′

(
µ

′
)

is the Jacobian of the affine approximation of the projective
transformation, denoted as J. Applying this local affine approximation by ne-
glecting the Taylor remainder term allows to derive the 2D Gaussian function
G2D projected onto the z = 1 plane as:

G2D

(
x

′
)
= exp

{
−1/2

(
Jx

′
− Jµ

′
)⊤ (

JΣ
′
J⊤

)−1 (
Jx

′
− Jµ

′
)}

≈ exp

{
−1/2

(
φ
(
x

′
)
− φ

(
µ

′
))⊤ (

JΣ
′
J⊤

)−1 (
φ
(
x

′
)
− φ

(
µ

′
))}

.

(4)

Since the rank of the matrix J is 2, the inverse of JΣ
′
J⊤ is, in fact, the inverse

of the covariance matrix of the 2D Gaussian obtained by skipping the third row
and column [44]. We denote x2D = φ

(
x

′
)
, µ2D = φ

(
µ

′
)

and Σ2D = JΣ
′
J⊤

as the point, mean and 2 × 2 covariance matrix of G2D in the image space,
respectively. For a pixel (u, v), we obtain the value of the 2D Gaussian function
by querying x2D =

[
u, v

]⊤, and then perform alpha blending to derive the color
of the pixel. The blue box in Figure 3 illustrates the projection process.

4 Local Affine Approximation Error

From Equation 3 and Equation 4 we observe that 3D Gaussian Splatting intro-
duces an approximation during the projection transformation, i.e. the local affine
approximation. Consequently, 3D-GS actually adopts a 2D Gaussian function
that is not the true projection of the initial 3D Gaussian. The error introduced
by this approximation can be characterized by the Taylor remainder term in
Equation 3:

R1

(
x

′
)
= φ

(
x

′
)
− φ

(
µ

′
)
− ∂φ

∂x′

(
µ

′
)(

x
′
− µ

′
)

(5)
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where

∂φ

∂x′

(
µ

′
)
= I⊗

(
x0

⊤µ
′
)−1

− µ
′
(
x0

⊤µ
′
)−1 (

µ
′⊤
x0

)−1

x0
⊤. (6)

I represents the identity matrix and ⊗ denotes the multiplication of a matrix and
a scalar. Clearly, this Taylor remainder term is a three-dimensional vector related
to the random variable x

′
and the mean µ

′
of the Gaussian function. Therefore,

by computing the square of the Frobenius norm of this vector ∥R1

(
x

′
)
∥2F and

taking the mathematical expectation of this norm function with respect to the
random variable x

′
, we obtain an error function that depends solely on the

Gaussian mean µ
′
:

ϵ
(
µ

′
)
=

∫
x′∈X ′

∥R1

(
x

′
)
∥2Fdx

′
. (7)

The simplified error function ϵ involves three unit vectors: x
′
, x0 and µ

′
.

Their spherical coordinates are given as follows:

x0 =

sin (ϕ0) cos (θ0)
− sin (θ0)

cos (ϕ0) cos (θ0)

 ,x
′
=

sin (ϕ) cos (θ)− sin (θ)
cos (ϕ) cos (θ)

 ,µ
′
=

sin (ϕµ) cos (θµ)
− sin (θµ)

cos (ϕµ) cos (θµ)

 (8)

where ϕ0 = 0 and θ0 = 0. Please refer to the detailed proofs in the supplementary
materials.

The size of the integration region is related to the covariance of the Gaussian
function. Since the current discussion specifically focuses on the impact of the
mean on the error rather than the variance, let’s assume the integration region to
be

{
x

′ | θ ∈ [−π/4 + θµ, π/4 + θµ] ∧ ϕ ∈ [−π/4 + ϕµ, π/4 + ϕµ]
}

. Then, based
on Equation 5-8, we obtain:

ϵ (θµ, ϕµ) =

∫ π/4+θµ

−π/4+θµ

∫ π/4+ϕµ

−π/4+ϕµ

(
− sin (ϕ− ϕµ) cos (θ)

cos2 (ϕµ) cos (θµ)
+ tan (ϕ)− tan (ϕµ)

)2

+(
sin (θ)

cos (ϕµ) cos (θµ)
− sin (θµ) cos (ϕ) cos (θ)

cos2 (ϕµ) cos2 (θµ)
+

tan (θµ)

cos (ϕµ)
− tan (θ)

cos (ϕ)

)2

dθdϕ.

(9)

Fortunately, this integral has a close-form expression, but its form is very com-
plicated. We report the close-form expression in the supplemental materials and
visually depict it in Figure 2.

The error function is partially differentiated with respect to θµ and ϕµ. It is
easy to check that at θµ = θ0 = 0 and ϕµ = ϕ0 = 0, the following holds:

∂ϵ

∂θµ
(0, 0) = 0,

∂ϵ

∂ϕµ
(0, 0) = 0. (10)
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(a) λ = 0.095 (b) λ = 0.95

Fig. 2: Visualization of the 3D Gaussian Splatting error function
ϵ (θµ, ϕµ) under two distinct domains. The domain of the function is
{(θµ, ϕµ) | θµ ∈ [−λπ/4, λπ/4] ∧ ϕµ ∈ [−λπ/4, λπ/4]} where (θµ, ϕµ) represents
the polar coordinate of the 3D Gaussian mean and λ represents the scaling factor of
the domain.

Therefore, this point is actually an extremum point of the function. We also
confirm that this point is the minimum of the function. Indeed, from Figure
2a, it is also apparent that the function is concave, with its minimum value
occurring at (0, 0). Additionally, it can be observed that the minimum value of
the error function is greater than zero, due to the fact that Gaussian functions
are not closed under projection transformations. Figure 2b shows that in the
majority of the region close to the origin, the function values vary very gently.
However, as the independent variable of the function approaches the boundaries,
the function values increase rapidly, resulting in a substantial difference between
the maximum and minimum values.

The above analysis indicates that the error is small and does not significantly
affect the quality of rendered images. Therefore, traditional 3D-GS [16] utilizes
local affine approximation but still successfully reconstructs the scene to obtain a
high-quality novel view image. Nevertheless, the naive projection of all Gaussians
onto the same plane z = 1 in 3D-GS may lead to larger projection errors for
Gaussians farther from the plane center (the projection point of the camera
center to the plane), causing artifacts. These artifacts are severe when using
wide-angle lenses, significantly degrading the quality of the renderings.

5 Optimal Gaussian Splatting

Based on the analysis of the error function, we introduce Optimal Gaussian
Splatting shown in Figure 3. This helps us to achieve smaller projection errors,
resulting in higher-quality rendering. The first step, similar to the original 3D-
GS [16], involves transforming world coordinates into the camera coordinate
system. Instead of projecting Gaussians onto the z = 1 plane, each Gaussian is
radially projected based on its mean along the line connecting it to the camera



8 L. Huang et al.

Unit Sphere Based 
Rasterizer

Alpha Blending

Rays

Image

Unit Sphere

Tangent Plane

Unit Sphere

Image Plane(z=1)

Optimal Projection3D-GS Projection

3D-GS Ours

Fig. 3: Illustration of the rendering pipeline for our Optimal Gaussian Splatting
and the projection of 3D-GS [16]. The blue box depicts the projection process of the
original 3D-GS, which straightforwardly projects all Gaussians onto the same projec-
tion plane. In contrast, the red box illustrates our approach, where we project individual
Gaussians onto corresponding tangent planes.

center, projecting onto a plane tangent to the unit sphere and perpendicular to
this line. After projection, colors of points on the unit sphere are computed by
alpha blending the 2D Gaussians on the tangent plane. Finally, for each pixel in
the image, rays are cast onto the unit sphere to retrieve the color of that pixel,
resulting in the rendered image.

5.1 Optimal Projection

We discover that the error function attains its minimum value when the pro-
jection of the Gaussian mean on the plane coincides with the projection from
the camera center to the plane. Therefore, in Optimal Gaussian Splatting, we
employ an optimal projection method. Specifically, instead of naively project-
ing different Gaussians onto the same plane z = 1, we adopt distinct projection
planes for each Gaussian. These projection planes are determined by the tangent
planes formed by the Gaussian mean and the line connecting it to the camera
center. The specific projection plane is formulated as:

xp
⊤ ·

(
x

′
− xp

)
= 0 (11)

where

xp = ϖ
(
µ

′
)
= µ

′
(
µ

′⊤
µ

′
)−1/2

(12)

represents the projection of the camera space’s origin onto this plane and ϖ
function represents the transformation that projects points onto the unit sphere.
According to Equation 11, the optimal projection function φp is obtained as:

φp

(
x

′
)
= x

′
(
xp

⊤x
′
)−1 (

xp
⊤xp

)
= x

′
(
xp

⊤x
′
)−1

. (13)

The corresponding local affine approximation Jacobian matrix Jp is:

Jp =
∂φp

∂x′

(
µ

′
)
= I⊗

(
xp

⊤µ
′
)−1

− µ
′
(
xp

⊤µ
′
)−1 (

µ
′⊤
xp

)−1

xp
⊤. (14)
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When µ
′
=

[
µx, µy, µz

]⊤, the specific form of this Jacobian matrix is:

Jp =


µ2
y+µ2

z

(µ2
x+µ2

y+µ2
z)

3
2

− µxµy

(µ2
x+µ2

y+µ2
z)

3
2
− µxµz

(µ2
x+µ2

y+µ2
z)

3
2

− µxµy

(µ2
x+µ2

y+µ2
z)

3
2

µ2
x+µ2

z

(µ2
x+µ2

y+µ2
z)

3
2

− µyµz

(µ2
x+µ2

y+µ2
z)

3
2

− µxµz

(µ2
x+µ2

y+µ2
z)

3
2
− µyµz

(µ2
x+µ2

y+µ2
z)

3
2

µ2
x+µ2

y

(µ2
x+µ2

y+µ2
z)

3
2

 . (15)

It’s very easy to implement modifications to the Jacobian matrix in the forward
process.

5.2 Unit Sphere Based Rasterizer

For the proposed Optimal Projection, we have proposed a Unit Sphere Based
Rasterizer to generate images. Through Optimal Projection, we obtain the pro-
jection of the three-dimensional Gaussians on the tangent plane of the unit
sphere instead of obtaining the Gaussians in the image space. Therefore, we
need to rasterize based on this unit sphere.

Specifically, for a pixel (u, v) on the image, similar to NeRF, we cast a ray.
However, unlike NeRF, we do not involve the extensive sampling of points along
the ray, which would significantly degrade performance. Instead, our focus is
solely on determining which tangent-plane Gaussians the ray intersects on the
unit sphere:

x2D = φp

(u− cx) /fx
(v − cy) /fy

1

 (16)

where cx, cy, fx, fy denote the intrinsic parameters of the pinhole camera. We
then query the function values of these Gaussians for alpha blending to obtain
the color

G2D (x2D) = exp

{
−1/2

(
x2D − φp

(
µ

′
))⊤ (

JpΣ
′
Jp

⊤
)−1 (

x2D − φp

(
µ

′
))}

.

(17)
Note that both Jp in Equation 14 and J in Equation 6 are matrices with a

rank of 2. Consequently, the inverse of the covariance matrix of the 2D Gaussian
is also obtained by skipping the third row and column. However, the third row
and third column of JpΣ

′
Jp

⊤ are not entirely zeros, as opposed to JΣ
′
J⊤. To

ensure the equation still holds, an invertible matrix Q needs to be used for left
multiplication with x2D, φp

(
µ

′
)

and Jp:

Q =


µz√

µ2
x+µ2

z

0 − µx√
µ2
x+µ2

z

− µxµy√
µ2
x+µ2

z

√
µ2
x+µ2

y+µ2
z

√
µ2
x+µ2

z√
µ2
x+µ2

y+µ2
z

− µyµz√
µ2
x+µ2

z

√
µ2
x+µ2

y+µ2
z

µx√
µ2
x+µ2

y+µ2
z

µy√
µ2
x+µ2

y+µ2
z

µz√
µ2
x+µ2

y+µ2
z

 . (18)
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Since our projection does not rely on the perspective image plane z = 1 as in
the original 3D-GS [16], we can adapt to different camera models such as fisheye
cameras and panoramic images by simply modifying the transformation from
image space to camera space, as described in Equation 16.

6 Experiments

To validate the effectiveness of the Optimal Gaussian Splatting derived from
theoretical error analysis, we conduct a series of experiments, comparing it with
the original 3D-GS [16] and some current state-of-the-art methods.

6.1 Implementation

We implemented Optimal Gaussian Splatting based on the PyTorch framework
in 3D-GS [16] and wrote custom CUDA kernels for rasterization. We used the
default parameters of 3D-GS to maintain consistency with the original 3D-GS
and prevent other factors from introducing interference into the results.

6.2 Datasets

We test our algorithm on a total of 13 real scenes which are the same as those
used in the original 3D-GS [16]. In particular, we evaluate our approach on the
complete set of scenes featured in Mip-NeRF360 [2], which currently represents
the state-of-the-art in NeRF rendering quality. Additionally, we test our method
on two scenes from the Tanks & Temples dataset [17] and two scenes provided
by Hedman et al. [13]. The selected scenes exhibit diverse capture styles, encom-
passing both confined indoor environments and expansive, unbounded outdoor
settings.

6.3 Results

We compare our algorithm with 3D-GS [16] and three state-of-the-art NeRF-
based approaches: Mip-NeRF360 [2], InstantNGP [26] and Plenoxels [8]. All
methods are configured using the same settings as outlined in the 3D-GS [16] to
control variables, preventing the introduction of variables other than our Optimal
Splatting method.

Quantitative comparisons We adopt a train/test split for datasets following
the methodology proposed by Mip-NeRF360 [2]. Specifically, every 8th photo is
reserved for testing, ensuring a consistent and meaningful basis for comparisons
to generate error metrics. Standard metrics such as PSNR, LPIPS [43], and SSIM
are employed for evaluation. We report quantiative results in Table 1. While
the 3D-GS significantly outperforms MipNeRF360 in rendering performance, its
rendering quality slightly falls behind MipNeRF360, with a lower average PSNR
across the 13 scenes. This might be attributed to MipNeRF360 not employing
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Table 1: Quantitative evaluation of our method compared to previous work across
three datasets. The Mip-NeRF360 [2] dataset includes both indoor and outdoor sce-
narios. Tanks. and Deep. indicates the average results over the Tanks&Templates [17]
and Deep Blending [13] datasets. Average represents the mean value across all scenarios
in these datasets.

Dataset Average Mip-NeRF360 Tanks. and Deep.
Method|Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Plenoxels [8] 22.77 0.666 0.457 23.08 0.625 0.463 22.07 0.757 0.444
INGP-Base [26] 24.49 0.699 0.373 25.30 0.671 0.371 22.67 0.760 0.377
INGP-Big [26] 24.93 0.724 0.336 25.59 0.699 0.331 23.44 0.781 0.347
M-NeRF360 [2] 27.11 0.803 0.241 27.69 0.792 0.237 25.81 0.830 0.251
3D-GS [16] 26.92 0.832 0.214 27.21 0.815 0.214 26.27 0.872 0.213
Ours 27.17 0.836 0.210 27.48 0.821 0.209 26.44 0.872 0.214

Ground Truth Ours 3D-GS Mip-NeRF360

Fig. 4: We show comparisons of our method to previous methods and the corresponding
ground truth images from held-out test views. The scenes are, from the top down:
Truck from Tanks&Temples [17]; Playroom from the Deep Blending dataset [13] and
Bonsai, Counter from Mip-NeRF360 dataset [2]. Differences in quality highlighted
by arrows/insets.

significant approximations throughout its entire pipeline. However, by replacing
the original projection method of 3D-GS with our optimal projection, which
incurs smaller errors, we not only maintain rendering performance far surpassing
MipNeRF360 but also achieve a quality improvement.

Qualitative comparisons For our qualitative experiments, we select only two
methods, 3D-GS and MipNeRF360, as our baselines. It can be observed that
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3D-GS Rendering
telephoto focal length

3D-GS Rendering
wide-angle focal length

Error Chart
telephoto focal length

Error Chart
wide-angle focal length

≥

Fig. 5: We derive the projection error function with respect to image coordinates (u, v)
and focal length through the transformation between image and polar coordinates
(θµ, ϕµ). We visualize this function, showing 3D-GS rendered images with long and
short focal lengths, followed by the corresponding error functions.

our method is capable of generating more realistic details, with fewer artifacts
compared to 3D-GS [16]. And this is precisely the superiority brought about
by our projection method, which results in smaller errors. Furthermore, We see
that in some cases Mip-NeRF360 has remaining artifacts that our method avoids
(e.g., black lines - in Playroom).

6.4 Discussions

Impacts of Decreasing Focal Length Based on Equation 9, we further derive
the projection error function with respect to image coordinates (u, v) and focal
length fx, fy through the coordinate transformation between image coordinates
and polar coordinates (θµ, ϕµ). As illustrated in Figure 5, the peak of projection
error mainly occurs at the image edges under a long focal length, resulting in
artifacts at the image edges. As the focal length decreases, the field of view ex-
pands, leading to more Gaussians deviating from the projection center and an
overall increase in projection error. In such cases, 3D-GS exhibit more artifacts,
such as needle-like structures or cloud-like large Gaussians, which obscure parts
that perform well under long focal length, thereby significantly degrading the
overall image quality. Since our method employs a central radial projection for
the projection plane, theoretically, we should not encounter such defects. To val-
idate this perspective, we conduct experiments at various focal length reduction
ratios (reduction ratios of ×0.2 and ×0.3).

For quantitative experiments, considering that there is no ground truth for
large field-of-view in the 13 scenes from the 3D-GS [16], we apply a focal length
mask. This mask selects central parts of the rendered images with corresponding
ground truth based on the focal length scaling factor for metric calculation. The
results are presented in the Table 2. Whether it is at ×0.2 or ×0.3 reduction
ratios, our method outperforms the original 3D-GS significantly across various
scenes in terms of all metrics. As the focal length decreases from ×0.3 to ×0.2,
3D-GS [16] experiences a significant degradation due to increased projection
errors, while our method demonstrates greater robustness.

For quantitative experiments, we randomly select three scenes, each with
two different focal lengths for demonstration. Additional experimental results
can be found in the supplementary materials. It is evident from the Figure 6
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Table 2: We quantitatively compare our method with the original 3D-GS [16] using
focal lengths of 0.2 and 0.3 times the original. Six scenes were selected from three
datasets: Mip-NeRF360 [2], Tank & Templates [17], and Deep Blending [13]. The scenes
include Train and Truck from Tanks & Templates, DrJohnson and Playroom from
Deep Blending, and Room and Treehill from Mip-NeRF360.

Metric Focal Method Train Truck Dr Johnson Playroom Room Treehill Average

PSNR↑
×0.2 3D-GS [16] 10.12 12.39 19.24 16.38 20.02 15.36 15.58

Ours 16.60 16.70 23.54 23.29 23.67 18.98 20.46

×0.3 3D-GS [16] 12.85 14.89 23.36 22.51 25.00 18.35 19.49
Ours 17.52 18.07 24.89 26.40 25.87 19.87 22.10

SSIM↑
×0.2 3D-GS [16] 0.325 0.380 0.616 0.619 0.680 0.371 0.499

Ours 0.565 0.537 0.701 0.752 0.777 0.435 0.628

×0.3 3D-GS [16] 0.471 0.529 0.740 0.791 0.812 0.437 0.630
Ours 0.588 0.605 0.762 0.844 0.834 0.472 0.684

LPIPS↓
×0.2 3D-GS [16] 0.569 0.479 0.296 0.355 0.207 0.474 0.397

Ours 0.277 0.250 0.216 0.203 0.178 0.385 0.251

×0.3 3D-GS [16] 0.331 0.276 0.207 0.213 0.154 0.397 0.263
Ours 0.243 0.217 0.201 0.182 0.158 0.385 0.231

Train
Ground Truth × 1

Dr Johnson
Ground Truth × 1

3D-GS × 0.2 Ours × 0.2 3D-GS × 0.3 Ours × 0.3

3D-GS × 0.2 Ours × 0.2 3D-GS × 0.3 Ours × 0.3

3D-GS × 0.2 Ours × 0.2 3D-GS × 0.3 Ours × 0.3
Treehill

Ground Truth × 1

Fig. 6: We compare our method to the original 3D-GS [16] with different focal length
reductions. Two focal lengths, 0.2 and 0.3 times the original, are tested. Ground truth
×1 in the left images indicates no focal length reduction. The red-boxed areas in the
right images correspond to the same regions in the left images.

that our method exhibits greater robustness across various focal length settings,
mitigating the artifacts introduced by projection in the original 3D-GS.

Adaptability to Various Camera Models By straightforwardly modifying
the transformation from image space to camera space, we have achieved adap-
tation to various camera models, with the caveat that the original 3D-GS’s pro-
jection struggles to support these camera models. Figure 7 illustrates that our
projection, in addition to conforming to the original pinhole camera according
to Equation 16, can also accommodate fisheye cameras and generate panoramas.
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Fig. 7: Renderings of three scenes using our projection under three camera models.
From left to right: the ground truth of the original perspective, wide-angle rendering
with a pinhole camera, fisheye camera rendering, and the panorama.

Limitation Due to our method’s independence from the image plane, it ex-
hibits adaptability to various camera models. However, the slight increase in
training time is a consequence of the subsequent transformation to the image
plane after projection onto the tangent plane, rather than a direct projection
onto the image plane. Fortunately, this method avoids the need for dense points
sampling, ensuring the algorithm’s time complexity remains unchanged and ren-
dering performance stays unaffected. Moreover, it may be possible to mitigate
the impact on training time, particularly concerning the corresponding backward
propagation, through the implementation of optimized CUDA code.

7 Conclusion

Through theoretical analysis, we establish the correlation between the projection
error and the Gaussian mean in 3D-GS. By optimizing the error function, we
discover that the projection error is minimized when projecting on the plane
perpendicular to the line connecting the Gaussian mean and the camera center.
Leveraging this insight, we propose a novel projection that yields high-quality
images without compromising rendering performance and can be easily adapted
to various camera models through simple modifications.

In this work, our primary focus is on analyzing the relationship between
the projection error and the mean of the 3D Gaussian under the assumption
of a constant covariance. The influence of Gaussian covariance on projection
requires further discussion in future work. It may be possible to further explore
the potential of Gaussian Splatting as an explicit representation technique for
scenes.
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