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Abstract. Power-law scaling indicates that large-scale training with
uniform sampling is prohibitively slow. Active learning methods aim
to increase data efficiency by prioritizing learning on the most relevant
examples. Despite their appeal, these methods have yet to be widely
adopted since no one algorithm has been shown to a) generalize across
models and tasks b) scale to large datasets and c) yield overall FLOP
savings when accounting for the overhead of data selection. In this work
we propose a method which satisfies these three properties, leveraging
small, cheap proxy models to estimate “learnability” scores for data-
points, which are used to prioritize data for training much larger models.
As a result, models trained using our methods – ClassAct and Active-
CLIP – require 46% and 51% fewer training updates and up to 25% less
total computation to reach the same performance as uniformly-trained
visual classifiers on JFT and multimodal models on ALIGN, respectively.
Finally, we find our data-prioritization scheme to be complementary with
recent data-curation and learning objectives, yielding a new state-of-the-
art in several multimodal transfer tasks.

1 Introduction

Power-law scaling for vision and language models [19,43] indicates that incremen-
tal improvements in model performance require orders of magnitude increases in
computation. One of the key features of these empirical power-laws is that train-
ing data is sampled uniformly. In contrast, active data selection prioritizes com-
putation on the data that maximally contributes to task performance [21,24,34],
with the ultimate goals of improving data efficiency and reducing the cost of
training. However, active data selection has yet to become a mainstay of large
model training, since no existing algorithm satisfies the three properties of being
a) robust to the choice of model and training task, b) scalable to large datasets
and architectures, and c) more compute efficient end-to-end than training with
uniform samples.
*Equal technical contribution. Email correspondence to <talfan@deepmind.com> and
<henaff@deepmind.com>. †Current affiliation: Harvard University, work done while
at Google DeepMind.
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Fig. 1: Active learning accelerates large-scale visual understanding. For large-
scale classification and multimodal learning tasks, prioritised training on data selected
using our active selection methods ClassAct (left) and ActiveCLIP (right) requires
significantly fewer updates to reach the final performance of uniform training.

In the first instance, data selection based on hand-engineered filters (e.g. re-
moving incorrectly shaped images or that only contain a single colour [2]) can
trivially improve training efficiency at minimal computational overhead. How-
ever, such heuristics are limited in their effectiveness by the expertise of the
human designer, and are not guaranteed to transfer to training of different mod-
els, data modalities, or tasks and incur significant effort to develop and tune.

In contrast, model-based curation methods, which use the loss of the model
itself to score examples, have shown promise by focusing training on ‘hard’ and
omitting ‘easy’ data [35], but also the opposite (to exclude noise or other low-
quality data) in both language modeling [13] and multimodal learning [15]. How-
ever, these methods often spend as much computation on the curation of datasets
as is gained from subsequent pretraining, making them less compute-efficient
than training on uniformly-sampled data. Finally, while several compute-efficient
methods have been successfully deployed at small scale [8], they generally do not
scale to even medium-sized datasets such as ImageNet.

In this work, we propose an algorithm that satisfies the three properties
of generality, scalability, and compute-positivity. The proposed framework uses
small proxy models to compute learnability scores for candidate training data,
resulting in significant training efficiency gains at an almost negligible overhead
over standard uniform-training. We test two instantiations of this framework,
ClassAct and ActiveCLIP / ActiveSigLIP, for large scale classification and mul-
timodal pretraining, respectively. Our findings are summarized below:

Benchmarking heuristics for large-scale pretraining: We investigate loss-
and learnability-based prioritization [15, 27, 35] for large-scale classification and
find that pretrained reference models are an essential component for accelerating
learning, producing efficiency gains of up to 46%.

Generalizing selection policies across model scale: Secondly, we show that
smaller models act as effective proxies for much larger (⇠1000⇥) models in the
context of learnability but not loss-based scoring, resulting in compute-positive
gains of up to 25% over uniform training, a first in the context of large-scale
pretraining.

Accelerating multimodal pretraining: Using reference models pretrained
on small, clean datasets, we substantially accelerate pretraining on much larger,
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noisier datasets. Moreover, we find ActiveCLIP to be complementary to recent
data-curation techniques [12] and learning objectives [44], yielding a new state-
of-the-art in several multimodal understanding tasks.

Amortizing data selection policies: Data-selection policies trained on one
task can also accelerate the training of subsequent models on different but related
tasks, suggesting that such policies can be easily derived from pre-trained models.

Simplifying active-learning with online reference models: Lastly, we
demonstrate that pre-trained reference models may not be necessary at all, where
these models are small and can be trained in parallel on larger batches than the
learner model, while remaining compute-positive.

2 Related Work

Data pruning. One approach to data-selection is to identify and sub-select
data ahead of training. For example, [28] and [35] show that the training loss
and gradients can be used to discard large portions of small-to-medium sized
datasets (e.g . CIFAR10 and ImageNet) with little loss in performance. These
methods have since been deployed for the curation of web-scale datasets in both
language modeling [26] and multimodal learning [1, 12, 25], demonstrating large
reductions in the amount of data required together with performance improve-
ments. However, in the single-epoch regime that is becoming typical of large
model training [16, 19], pre-filtering can be as expensive as learning from it,
a shortcoming which we address in this work. Nevertheless, we show that our
method for dynamic data selection is complementary to and benefits from such
data curation techniques.

Online active learning. Unlike data-pruning, online active learning continu-
ously filters data throughout training and applies naturally to the semi-infinite,
single-epoch regime. Online Batch Selection [22] scores and filters using the
learner model, which has the theoretical advantage that the importance of data
can be determined relative to the current state of the learner. In terms of met-
rics, the Reducible Holdout Loss (RHO) [27] also uses the concept of a reference
model to identify learnable data points not yet well represented. Other proposed
heuristics include memorization for long-tailed data [11] and assigning “com-
plexity” scores based on the number of times the example is forgotten during
training [38]. None of these approaches however have demonstrated that the cost
of scoring can be reduced to the point of justifying learner efficiency gains.

Compute-efficient data selection. Several works have demonstrated the ben-
efits of selecting data based on simple heuristics, such as low-level image prop-
erties [2] or proximity to high-quality text corpora [3, 7, 29, 40]. While cheap to
compute, these statistics often require domain-specific knowledge which limits
their applicability across tasks. Domain-agnostic methods such as core-sets al-
leviate this by selecting data based on the geometry of their embeddings [4, 14]
which can be efficiently computed, however these algorithms generally do not
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scale to large-scale datasets [8]. Most related to our work is DoReMi [39] which
uses domain-general, scalable, and compute-efficient proxy models for the sim-
pler problem of determining optimal data-mixtures for the subsequent training
of a larger language model.

3 Methods

3.1 Data selection as prioritized replay

We use online batch selection [22] to apply our scoring heuristics to standard
visual learning tasks: firstly, we sample uniformly from the training set xi

U⇠
D and compute a score si = s(xi|✓) 2 R to each data point xi using model
parameters ✓. Given a large enough collection of scored examples stored in a
memory bank M = {xi}i2(0,...,M�1), we then sample non-uniformly according
to their scores xi

⇡⇠ M [31], where ⇡(xi) = Softmax({si}i2(0,...,M�1)). A batch
of such examples is used to update the learner model. Following convention in
reinforcement learning, we refer to the scoring and target models as actors and
learners respectively.

3.2 Statistics for data selection

We explore a few statistics for model-based prioritization, grouped into two
categories.

Example difficulty: given the current state of the learner, an intuitive priori-
tization scheme might favour ‘difficult’ examples (as measured by their training
loss), while removing ‘easy’ examples that are trivially classified and which yield
small gradients. This loss-based prioritization:

shard(xi|✓) = `(xi|✓) (1)

can use the current parameters of the learner ✓t or those of a fixed model ✓⇤. The
opposite argument can been made for favoring examples that are easily solved
by a well-trained model, as such a prioritization removes the noisy examples
present in large-scale datasets:

seasy(xi|✓) = �`(xi|✓) (2)

This scheme is commonly used in multimodal learning for identifying high-
quality examples with pre-trained models [15,32,33].

Example learnability : Given that favoring easy and hard examples target
different and potentially orthogonal properties of the data, a natural question is
whether these policies can be combined. Learnability criteria straightforwardly
combine the two as

slearn(xi|✓t, ✓⇤) = shard(xi|✓t) + seasy(xi|✓⇤) (3)
= `(xi|✓t)� `(xi|✓⇤), (4)
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favoring examples that are easily solved by a well-trained model ✓⇤ but challeng-
ing to the learner in its current state ✓t, such that more computation dedicated
to this example could lower its loss. Conversely, examples that are trivially clas-
sified by the learner (or mislabeled) will yield low (or high) losses for both the
current learner and the well-trained one, leading to low learnability scores.

A special case of learnability scores (the RHO loss, [27]) uses a model ✓ho

specifically trained on a held-out dataset to ensure the independence of its pre-
dictions from those of the current learner slearn(xi|✓t, ✓ho). We assess in Section
4.2 whether this is necessary when training on large-scale image datasets.

Fig. 2: Amortizing the cost of data selection. Drawn to scale: length of bars
indicates number of FLOPs required to reach the accuracy of a ViT-L trained with
uniform sampling (“ViT-L Uniform Sampling”, see Figure 4). Expensive model policies
(e.g. a ViT-B scores data for the ViT-L learner, or ‘B ! L’) produce large learner
speedups, at the expense of the additional FLOPs associate with data selection. This
overhead can be reduced by deriving the data-selection policies from smaller models
(e.g. ViT-S, ViT-Ti or ViT-Mu score data for the ViT-L learner), at the expense of
marginal decreases in the learner speedup. Costs could be additionally amortized by
using off-the-shelf reference models, removing the need to train from scratch (yellow).
Since the reference model is fixed throughout training, scores can be assigned once to
a ‘foundation dataset’ and amortized across many training runs (lime green; [27, 35]).
Since the online model is independent of the learner model and generalizes across
scale, data selection policies can also be distilled as a fixed ordering of a given dataset
(a ‘foundation curriculum’).

3.3 Unlocking compute-positive training

Scoring requires inference passes over the actor and learner models. We assume
that gradient updates to cost 3x inference passes. The cost of scoring data F thus
scales with the proportion of data which is being rejected (e.g . retaining only
20% of the data requires 5 inference passes per trained batch). The requirements
for compute-positivity can therefore be expressed as:

⇣
3Flearn + ⇢Fact

⌘
� + 3Fref

| {z }
Active Learning

< 3Flearn
| {z }

Uniform Sampling

(5)

where Fact is the cost of scoring an example, ⇢ is the number of examples scored
per training example, and � is the efficiency gain (in terms of the learner update)
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relative to training with uniform sampling (see Appendix Section A.1 for more
details). The RHS term is the cost per update of uniform sampling. The first
LHS term inside the brackets is the cost of the learner training during AL, the
second term is the scoring cost and the last term outside the brackets the cost
of training the reference model. We illustrate in Figure 2 the different contexts
in which parts of this computation may be effectively amortized.

In the large-scale training regime where data is neither repeated nor seen be-
fore, compute-positivity requires that either or all of the reference model training,
actor scoring and learner efficiency � terms must be made smaller to produce net
savings relative to uniform sampling. Typical prioritization schemes can produce
saving on the order of 50% (ie � = 0.5), suggesting that savings must also be
made by down-scaling the other terms Fact and Fref.

Cost of easy-reference scoring. While both the cost of the reference model
and example scoring can be scaled down in the case of easy-reference scoring with
small models (Fact = Fref, see Equation 2), it is unclear whether the efficiency
gains � are robust to this down-scaling (see section 4.2).

Cost of RHO learnability scoring. The original definition of learnability
scores [27] requires inference passes through both the learner and a reference
model (Fact = Fref + Flearn, see Equation 3), meaning that although the cost of
the reference model can be reduce by using a smaller model, the cost of example
scoring cannot.

Cost of ClassAct / ActiveCLIP. For this reason, we explore whether replac-
ing the learner model in term 1 of Equation 3 with a much smaller model can
still produce comparable learner efficiency gains to those already observed (see
Appendix Algorithm 1). Specifically, we introduce a third “online” model, which
has the same architecture and size as the reference model, but is trained in
parallel with the learner. In this case, the cost of scoring examples reduces to:

Fact = Fref + Fonline = 2Fref (6)

and can be scaled down along with the reference model. We instantiate our
method for two canonical pre-training tasks: visual classification and multimodal
learning, which we call ClassAct, ActiveCLIP and ActiveSigLIP respectively. In
Appendix Section A.6, we describe an asynchronous active learning framework
where scoring and learning is performed in parallel on separate devices. This
setup does not affect the FLOP calculations but can mitigate the overhead in
time even when using non-approximate scoring.

3.4 Losses for canonical visual pre-training tasks

For visual classification with ClassACT, we use the standard cross-entropy loss
for both actors and learners. For multimodal learning with ActiveCLIP, learners
optimize the contrastive loss `learn = `im,txt

learn + `txt,im
learn , whereas the actor loss `act
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Algorithm 1 ClassAct / ActiveCLIP
1: Input: Randomly initialized learner model ✓l and small online model ✓o, small

pre-trained reference model ✓r. Models use loss `act for scoring data and `learn for
computing updates. Dataset D, batch size B, sub-batch size b < B.

2: while training do
3: X ⇠ D, where |X| = B . Sample uniformly
4: S = `act(X|✓o)� `act(X|✓r) . Get scores
5: I ⇠ SoftMax(S), where |I| = b . Sample indices
6: Y = X[I] . Collect sub-batch
7: ✓l  Adam[r✓l`learn(Y |✓l)] . Update learner model
8: ✓o  Adam[r✓o`learn(Y |✓o)] . Update online model
9: end while

is simply the dot-product similarity between image and text embeddings:

`act(xi|✓) = �zim
i ·ztxt

i (7)

`im,txt
learn (xi|✓) = � log

exp(zim
i ·ztxt

i )P
j exp(z

im
i ·ztxt

j )
(8)

where zim
i = f im(xi; ✓) and ztxt

i = f txt(xi; ✓) are image and text embeddings
respectively, and `txt,im

learn (xi; ✓) is defined analogously to `im,txt
learn (xi; ✓). Similarly,

ActiveSigLIP instead uses the sigmoid loss [44] for the learner’s objective and
`act for scoring.

4 Experiments

All our experiments were conducted with Vision Transformers [9] for which
strong baselines are available across model sizes [43]. Unless specified, we adopt
models with patch-size 16 throughout (ViT-S refers to ViT-S/16 and similar).
We consider two canonical tasks for large-scale pretraining: classification on JFT-
300M [36] and multimodal contrastive learning [30] on large image-text datasets.
When pre-training with JFT classification we use held-out classification perfor-
mance as the evaluation metric. When pre-training on image-text data we eval-
uate with standard multimodal transfer tasks: ImageNet zero-shot classification
and image-to-text / text-to-image retrieval on COCO.

Throughout, we will refer to the large batch of size B sampled uniformly
from the training data as the ‘super-batch’, and the prioritised smaller batch of
size b < B as the ‘sub-batch’. In all our experiment, we filter 50% of uniformly
sampled data such that ⇢ = B/b = 2, although more aggressive filtering regimes
warrant investigation [35].

4.1 Evaluating loss-based scoring heuristics in the large-data regime

We begin by evaluating loss- and learnability-based heuristics on their ability to
accelerate supervised classification on JFT (Fig. 3). Arguably the most intuitive



8 T. Evans et al.

Fig. 3: Evaluation of loss-based data-selection criteria for large-scale classi-
fication. We train a ViT-B on JFT-300M with different data-selection policies. Pri-
oritising hard data under the learner (green curve) produced marginal gains over the
uniform sampling baseline. Prioritizing data using both learnability (blue curve, [27])
and easy reference prioritization (red curve, [15]) produced significant speedups and
performance gains.

Fig. 4: Generalization of data-selection policies across models scales. Left:
We train a ViT-L for 3 epochs on JFT using uniform sampling (grey) or prioritized
data sampling using example learnability (blue) or low-loss under the reference model
(red). Example scores are computed using ViT-B actors (dark), or cheaper ViT-S or
ViT-Tiny models (light). While both example learnability and “easy reference” yield
good speedups with expensive actors, learnability criteria are much more robust to ap-
proximate scoring. Top right: Learner (ViT-L) speedup is computed as the fraction of
learner iterations saved in order to attain the baseline’s top performance. Actor over-
head is computed as the additional computation in FLOPs required to score examples
with a particular actor architecture (varying from ViT-Mu to ViT-L, see Appendix
Table 4). Example learnability yields robust learner speedups across actor scales, “easy
reference” scoring does not. Lower right: total compute efficiency is calculated as a
product of learner efficiency and actor overhead, indicating the amount of computa-
tion required to reach baseline performance. Approximate actors (i.e. ViT-S or smaller)
computing example learnability enable total compute speedups, other schemes do not.
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method to score data is to prioritise training on data with high loss under the
learner (hard learner). In our experiments, this strategy (Eq. 1) only marginally
improved performance over the uniform sampling baseline, despite requiring an
additional inference pass over the super-batch. This is perhaps not surprising -
data points with high loss may also be unlearnable due to e.g . label noise, such
that training on those data points does not result in the model performing any
better on the held-out test set. Large scale datasets are more likely to be noisy.

Scoring methods based on pre-trained reference models performed much
better—both easy reference (equation 2) and learnability (equation 3) -based
prioritization produced significant gains over uniform sampling. Here, we pre-
trained an identical ViT-B for the same 3 epochs to use as a reference model for
a second training run displayed above. producing speed-ups of 33% (Fig. 3).

Fig. 5: Scaling laws for active learning. We trained a baseline ViT-L over a range
of compute budgets (for which ViT-L is compute optimal, see Zhai et al., 2021). We
also trained the same ViT-L with both ViT-Ti and ViT-S reference policies, pre-trained
for the same number of epochs. Left: Small model policies produce robust savings in
learner compute. Right: When accounting for total compute (learner + actor training
and data scoring), small model policies in all compute budgets produce FLOP savings
over training with uniform samples. These scaling laws generalize those measured em-
pirically in the uniform sampling setting [43] to the case of non-uniform data selection.

4.2 Generalising data-selection policies across scale

The speed-ups afforded by learnability prioritization (Fig. 3) come at the cost of
the additional inference passes required to score the data during learner train-
ing, plus the cost of training the reference model. This makes the overall gains
strongly compute-negative relative to training with uniform samples. Even if the
size of the reference model is scaled down [27], these methods still incur the cost
of additional learner inference passes to score the data during training.

Unlocking compute-positive active learning. To address this issue, we
introduce a set of down-scaled models with the same ViT architecture that we
use to score data for training a larger ViT-L model (see Methods Section 3.3. We
use ViT-B, ViT-S or ViT-Ti variants (which are 4⇥, 13⇥ and 47⇥ cheaper than
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ViT model capacity Speed-up

Method Reference Online Learner Reference Type Learner
speedup

Compute
speedup

Uniform Sampling (ViT-B) B 0% 0%
RHO Tiny B B Held-out, fixed 0% - 79%

ClassAct-HO Tiny Tiny B Held-out, fixed 18% 3%
ClassAct Tiny Tiny B In-domain, fixed 18% 3%

ClassAct-Online Tiny Tiny B Trained online 17% 2%
Table 1: Simplifying and accelerating the computation of learnability scores.
Relative to RHO [27], ClassAct makes two changes: replacing the reference model with
one trained in-domain (removing the need for bespoke held-out sets), and dramatically
reducing capacity of the online actor models used for scoring examples. All experiments
were conducted on 3 epochs of one-half of JFT to enable the held-out ablations. RHO
with a small reference model did not produce a learner speedup in our experiments.

the learner) for both the online and reference model (see Appendix Algorithm 1).
In Figure 4 (left) we assess the impact of these cheaper scoring models on learner
efficiency. First, we find that easy reference prioritization to be very sensitive to
the capacity of the scoring model: while ViT-B scoring models yield reasonable
gains over uniform sampling, prioritizing with ViT-S and ViT-Ti scoring models
underperforms significantly (Fig. 4, red curves).

In contrast, we find that learnability based prioritization yields robust gains,
even when the scoring models are significantly scaled down (ClassAct; Fig. 4, blue
curves). For example, while ViT-B scoring models yield a 31% learner speedup,
the 50⇥ smaller ViT-Ti scoring models still provide a 26% speedup. We pushed
this logic by using even smaller scoring models (the ViT-Mu family which we
introduce, see Appendix ) which are up to 1000⇥ smaller than the learner. De-
spite this, prioritizing data based on their scores yields non-negligible speedups
(e.g . 16% for the smallest actors we consider; Figure 4, top right).

These experiments demonstrate that, with the appropriate scoring criterion,
online and reference models can be significantly downscaled and still produce
comparable gains to larger models, with learner efficiency degrading gracefully
with the actor overhead (i.e. the cost of the reference model and data scoring).
As a result, our method ClassAct quickly becomes FLOP positive as the online
+ reference models are downscaled (Figure 4, bottom right), while at the same
time producing speed-ups in wall-clock time for a given learner batch size.

Together, our results expose a pareto front across which to determine an
optimal context-specific data selection strategy (Figure 2). Where pre-trained
models are available, some of the cost of larger data selection policies can be
discounted. If savings in wall-clock time supersede the associated cost of scor-
ing, large models can be tolerated for data selection. Reference model costs can
also be amortized across many training runs by appending scores to ‘founda-
tion datasets’. However, in the case where no component of the framework can
amortized (as in the case of large-scale pretraining), prioritizing data with small
ClassAct models can deliver large savings in total computation.
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4.3 Generalising neural scaling laws to the active-learning setting

We next investigated the scaling behaviour of ClassAct by experimenting over
large learner compute budgets (Fig. 5), using both ViT-Ti and ViT-S models as
actors for training a ViT-L. Predictably, the ViT-S produced larger, although
marginal gains over the ViT-Ti actors when not accounting for scoring FLOPs
(Figure 5, left). However, when accounting for total FLOPs, the difference was
less pronounced (Figure 5, right). Our results generalize large scale uniform
sampling scaling laws such as uncovered by [19] for LLMs and reproduced for
large vision transformers by [43] to the case of non-uniform sampling. For the
first time, we demonstrate that these scaling laws can be shifted in our favour
by selecting data using general model-based scoring heuristics.

4.4 Training the reference model in parallel

The reference model needs to be trained if none is already available. This two-
step process adds complexity to active model training, especially if using large
scale infrastructure. However, an interesting consequence of down-scaling the
reference model is that both inference passes and gradients can be computed
over a much larger batch than can be computed on the learner. In theory, this
would mean that the small reference model could instead be trained online, in
parallel with the large learner and small online model.

We confirmed our hypothesis by running an experiment in which we trained
our reference model on a super-batch of size B = 10b and trained the online
and learner model in sequence with the sub-batch of size b. To make sure the
reference model quickly converges, we additionally set the learning rate to double
that of the online and learner models (this would cause instability for the learner
and online models because of the additional variance from the smaller batch).
We also verified that training the reference model on a held-out set of data
performed equally in our experiments to reference models trained on the same
data as the learner model [27]. Our ‘one-pass’ setup, Online-ClassAct, produces
the same performance as the pre-trained ClassAct pipeline in our Ti-trains-B
experiments (Table 1). Pseudocode is shown in appendix Algorithm 1.

We have shown that by decoupling the scoring models from the learner model
entirely, it is possible to significantly downscale the scoring models with minor
degradation to performance (see Table 1). Unlike RHO, which can train a large
‘learner’ model with a small ‘reference’ model, we introduce a third ‘online’
model, with the same architecture and parameter count as the reference model,
enabling the reduction of actor computation (see Table 1).

4.5 ActiveCLIP: active multimodal learning

We have so far demonstrated that large scale image classifiers can be trained with
lower total compute by actively selecting the data used for training. However,
classification has largely been superseded as a large scale pre-training method
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ImageNet 0-Shot COCO (im2txtR1) COCO (txt2imR1) (Learner)
Speed-up %

(vs. Uniform)
23.0 48.1 28.6 48.0 26.8 27.0 ALIGN
0.0 16.3 18.8 22.1 28.2 17.5 LTIP

Performance
(vs. Uniform)

47.8 (2.2) 53.2 (7.4) 40.9 (2.4) 44.8 (6.3) 27.3 (1.8) 30.5 (5.0) ALIGN
46.5 (-0.1) 47.2 (0.6) 45.6 (1.2) 45.4 (1.0) 31.8 (1.7) 31.0 (0.9) LTIP

(Reference) ALIGN LTIP ALIGN LTIP ALIGN LTIP

Table 2: Generalizing data-selection policies across datasets and tasks. We
pretrain reference models on the large but noisy ALIGN dataset, or the smaller and
more curated LTIP dataset [2]. Consistent with [2], we find training with uniform sam-
pling on LTIP to yield stronger transfer learning results than pre-training on ALIGN.
These reference models can be used very effectively for data-selection on both LTIP
and ALIGN, whereas ALIGN-pretrained reference models yield more modest speedups.
All models are provided with 800M training images at resolution 128⇥128, speedups
are shown relative to the time at which the uniform sampling baseline was reached for
that evaluation metric. Colour indicates performance relative to uniform (brackets).

Fig. 6: Reference policies generalize across tasks. We train a ViT-B reference
model on either ALIGN or LTIP, then use it to train a second ViT-B learner on ALIGN
with ActiveCLIP. The biggest gains were found with an LTIP reference model, despite it
needing to perform out-of-domain generalization. In 50k iterations, ActiveCLIP selects
the 800M “cleanest” examples from the ALIGN dataset, whose size is 1.6B in total.

by CLIP-style multimodal training [30]. Figure 6 demonstrates that our CLIP-
adapted active learning method ActiveCLIP (see Methods) produces similar
speedups in terms of learner computation as observed in JFT classification.
Specifically, we find that prioritized sampling with learnability scores acceler-
ates multimodal pre-training by 18-48%, depending on the evaluation metric
(ImageNet zero-shot accuracy or COCO retrieval) and reference model configu-
ration, which we explore below.

4.6 Policy generalization across tasks

To fully leverage off-the-shelf pre-trained image models for training (Figure 2),
our results up to now suggest that the reference model should be trained on the
same task that the learner model is being trained for. In Figure 6 (see Table 2 for
full results), we show that we can in fact pre-train our reference models on related
but distinct datasets. Moreover results suggest that there may even be a benefit
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Fig. 7: Reference models trained on curated datasets are powerful data se-
lectors. Active data selection using ActiveSigLIP with reference models trained on
increasingly curated subsets of Webli. Webli-350M reference models are consistently
more effective than those trained on raw or 1B subsets.

to cross-training in some-cases; an ALIGN!ALIGN reference!learner model
combination (‘in-domain’ ActiveCLIP) produced similar speedups to ClassAct
on JFT. However, these gains were greatly surpassed by an LTIP!ALIGN com-
bination. One possibility is that LTIP is less noisily labeled such that the scoring
policies it produces are ‘cleaner’ - i.e. more able to filter for ‘clean’ data. The
corollary may also be true; active data selection appears to greatly improve the
utility of ALIGN, suggesting that it contains a large proportion of data that is
of low quality for training.

We observed the same effect when training with ActiveSigLIP on the large
scale Webli dataset [6] (results summarised in Table 3). We trained reference
models on both the raw 4B set as well as two extensively curated 1B / 350M
subsets, which were then used to train subsequent learner models (Fig. 7). In all-
but-one cases, filtering data with the 350M-trained referenced model produced
the best results when transferring to 350M, 1B and 4B learner datasets. Notably,
the significant gains observed over training with uniform sampling on the 350M
subset suggest that our method can still improve over methods that pre-filter
datasets once but then train with uniform samples [12].

4.7 Comparison to prior multimodal art

We leverage the insight that pre-training a reference model on clean data can fa-
cilitate learning on larger, noisy data for training our final model. Here, we train
a reference model on LTIP, then use it to train a new model on the much larger
mixture of LTIP and ALIGN, following [2], for a total of 3 and 8 billion train-
ing examples. Table 3 shows that in this training regime, ActiveCLIP surpasses
models trained with significantly more data on ImageNet 0-Shot classification
and COCO retrieval. Finally, we find that our active learning method is comple-
mentary to recent advances in multimodal learning: ActiveSigLIP significantly
improves uniformly-trained SigLIP [44] in both COCO retrieval metrics.
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IN-1K COCO

Method Train ex. ZS Top-1 im2txt txt2im
CLIP 13B 68.3 52.4 33.1
EVA-CLIP 3B+2B 69.7†

ActiveCLIP 3B 71.3 57.7 43.0

OpenCLIP 34B 70.2 59.4 42.3
EVA-CLIP 8B+2B 74.7† 58.7 42.2
ActiveCLIP 8B 72.2 60.7 44.9

SigLIP 3B 72.1 60.7 42.7
ActiveSigLIP 3B 72.0 63.5 45.3

Table 3: Comparison of ActiveCLIP to public multimodal pre-taining meth-
ods. ActiveCLIP outperforms models trained with the same or more data (CLIP, [30];
EVA-CLIP, [37]; and OpenCLIP, [17]). ActiveSigLIP produced significant gains over
the baseline SOTA performance of SigLIP [44]. †benefits from additional ImageNet21K
pretraining (+2B training examples). All ActiveCLIP/SigLIP models use a reference
model trained on LTIP to guide learning on a mixture of ALIGN and LTIP.

5 Discussion

In this work, we have presented a new method for active data selection that builds
upon and simplifies the concept of ‘learnability’. Our experiments demonstrate
that this approach can significantly reduce the computation required for large-
scale pretraining, compared to training with uniform samples. To our knowl-
edge, this is the first active learning method that is more efficient than training
with uniform samples when accounting for total FLOPs, and that does not rely
on hand-designed features, allowing broad application across training setups.
We have validated this by showing results on classification and contrastive pre-
training, and found that our data selection policies continue to produce efficiency
gains in the large-scale regime and can generalize effectively across task modal-
ities. Collectively, our experiments also illustrate a Pareto frontier that allows
trading off actor/data-selection computation against savings in training itera-
tions, suggesting an alternative path to improved performance beyond scaling
training batch sizes.

This work focused on supervised pre-training for images, but further work
could involve extending our method to other modalities and training schemes
such as language, video, and generative modeling. An important note is that all
our experiments present results from filtering only 50% of the data; further gains
may be possible by filtering more aggressively, at the cost of further overheads. In
particular, aggressive data-selection coupled with efficient scoring schemes such
as the ones proposed here could test the hypothesis that large-scale pretraining
can benefit from exponential, rather than power-law, scaling behavior.
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