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A Data Sources

Data Source Composition for ShareGPT4V. To maximize the comprehen-
siveness of our captions, we compiled a total of 100K images from diverse sources.
This includes 50K images from COCO [2], 30K images from ’LCS’ (which ab-
breviates LAION [6], CC-3M [7], and SBU [4]), 20K images from SAM [1],
500 images from TextCaps [8], 500 images from WikiArt [5], and 1K images
from web-crawled data (split evenly between images of landmarks and images of
celebrities).
Data Source Composition for ShareGPT4V-PT. We utilized our pre-
trained Share-Captioner to generate the pre-training dataset. This dataset is
comprised of a subset of 1.2M images selected from existing public datasets.
These include 118K images from COCO [2],570K images from SAM [1], and
558K images from LLaVA-1.5 pre-training data [3].

B Extra experiments

How about using the full ShareGPT4V dataset in SFT? We experi-
mented with replacing the original 23K captions with the entire 100K detailed
captions in SFT, resulting in 100K/742K detail-caption/training data. As shown
in Table 1, more high-quality data can further improve the model performance
on all the tasks. The experiments conducted in the main paper primarily aimed
at ensuring a fair comparison with baseline methods. Therefore we decided to
use an equivalent amount of 23K high-quality captions for substitution. Future
researchers could utilize the full 100K ShareGPT4V dataset to further enhance
the performance of their LMMs.
Is it the more detailed captions or fewer hallucinations that lead to
better modality alignment? To align with LLaVA-1.5’s detail level roughly,
we truncated 23K ShareGPT4V captions by LLaVA-1.5’s average caption length.
We posited that such truncation holds a fixed hallucination rate. As shown in
Table 2, both factors aid modality alignment and the detailness slightly bringing
more gain.

∗ Equal contribution † Corresponding authors.
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Table 1: Comparison of replacing with 23K and 100K captions.

Method detailed caption in SFT data MMEP MMB SEED MM-Vet LLaVAW

LLaVA-1.5-7B Original 23K 1510.7 64.3 66.2 30.5 63.4
LLaVA-1.5-7B ShareGPT4V 23K 1516.9 65.3 66.8 34.0 71.6
LLaVA-1.5-7B ShareGPT4V 100K 1540.3 65.9 68.8 36.7 72.3

Table 2: Compare detailness and hallucination. ‘tr’ for truncated.

Method detailed caption in SFT data MMEP MMB SEED MM-Vet LLaVAW

LLaVA-1.5-7B Original 23K 1510.7 64.3 66.2 30.5 63.4
LLaVA-1.5-7B ShareGPT4V-tr 23K 1513.1 64.6 66.4 32.3 67.5
LLaVA-1.5-7B ShareGPT4V 23K 1516.9 65.3 66.8 34.0 71.6

C Caption Analysis

Figure 1 provides a visualization of the root noun-verb pairs for the captions
generated by both GPT4-Vision and Share-Captioner. It’s clear to see that the
diversity and linguistic expression of the captions produced by Share-Captioner
are comparable to those of GPT4-Vision.

(a) GPT4-Vision Generated Caption (b) Share-Captioner Generated Caption
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Loading [MathJax]/extensions/MathMenu.jsFig. 1: Analysis of captions generated by GPT4-Vision and Share-Captioner.
Visualization of the root noun-verb pairs (occurring over 1%) of the captions.
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Instead of describing the imaginary content, only describing the content one can determine confidently from the image. Do not describe the contents by itemizing
them in list form. Minimize aesthetic descriptions as much as possible.

You are a powerful image captioner.

Create detailed captions describing
the contents of the given image.
Include the object types and colors,
counting the objects, object
actions, precise object locations,
texts, doublechecking relative
positions between objects, etc.

Create a detailed caption describing
the contents of the given image.
This image is about actor/actress
<actor_name> or maybe his/her
character. Include the colors,
person actions, expressions, precise
person and object locations,
person/character names, etc.

Create detailed captions describing
the contents of the given worldwide
landmark image. There is some
information that may be used to
identify the landmark: <landmark>.
Include the objects, colors,
perspectives, etc.

Create detailed captions describing
the contents of the given art image.
Include the objects, colors, art style,
art genre, etc.

Create detailed captions describing
the contents of the given image. Pay
more attention to the text contents
and the information they convey.

Data Source Specific Prompt

Web-Celebrity Web-Landmark

Wikiart

TextCOCO, LCS, SAM

Fig. 2: Prompts for instructing GPT4-Vision to generate detailed descrip-
tions. The Prompts are designed with base prompts at the beginning and end, with a
data-specific prompt placed in between.

D Prompts

Given the diversity of our image sources, we expect a highly content-related
description for each image. As shown in Figure 2, we designed a base prompt for
a general description and added a specialized prompt for each data source.

E Details about Share-Captioner

Our captioner is built on the open-source LMM, InternLM-XComposer [9]. It
contains an LLM InternLM-7B, a ViT EVG-g 1B, and a small Perceive Sampler.
Specifically, we increased its resolution from 224×224 to 448×448 by fine-tuning
the vision encoder to match the detail required for high-quality captions. It
was trained on the 100K ShareGPT4V dataset with a learning rate of 2e-5,
a batch size of 1024, over 2 epochs using 16 A100 GPUs for 3 hours. Dur-
ing training, we set a unified prompt for all captions, “Analyze the image in
a comprehensive and detailed manner", to minimize the need for the data-
specific prompt design.

F Examples
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Share-Captioner: In the tranquil setting of a lush green lawn, three vintage suitcases, each a different size, are neatly
arranged in a row. The smallest suitcase is positioned on the left, followed by the medium-sized one in the middle, and the
largest suitcase on the right. Each suitcase is crafted from brown leather and features a sturdy brass handle on top,
adding a touch of vintage charm to their appearance.

The suitcases are not alone in this scene. Behind them, a brick wall stands tall, providing a rustic backdrop to the scene.
Nestled against this wall is a small tree, its branches reaching out as if to touch the suitcases. Adding a splash of color to
the scene is a blue tarp, spread out on the ground in front of the wall.

The image captures a moment of stillness, with the suitcases waiting patiently for their next journey. The precise
arrangement of the suitcases and their relative positions to each other and their surroundings create a harmonious
composition that is pleasing to the eye.

Share-Captioner: The image captures a serene scene at a waterfront. Dominating the left side of the
frame is a tall, brown clock tower with a pointed roof. The tower is adorned with a clock face on each of
its four sides, allowing time to be read from any direction.

Adjacent to the clock tower, on the right side of the image, is a green building with a curved roof. The
building's green color contrasts with the brown of the clock tower, adding a splash of color to the scene.

In the foreground, a body of water stretches out, reflecting the sky above and the buildings below. The
water's surface is calm, mirroring the tranquility of the scene.In the background, beyond the clock
tower and green building, construction cranes can be seen, hinting at ongoing development in the area.
Despite this, the overall atmosphere of the image remains peaceful and serene.

Share-Captioner: The image captures a vibrant scene of a train journey. Dominating the frame
is a train, painted in a striking combination of yellow and blue. The train, composed of three
carriages, is in motion, as suggested by the blurred background. The number 2 is prominently
displayed on the side of the train, indicating its carriage number.

The train is traveling on a railway track that cuts through a serene landscape. The track is
nestled amidst lush greenery, adding a touch of nature to the industrial scene. Above, the sky is
a clear blue, dotted with fluffy white clouds, suggesting a bright and sunny day.
The perspective of the image is particularly interesting. It appears to be taken from the
window of another train, as indicated by the blurred background. This gives the viewer the
impression of being part of the journey, looking out at the world passing by.

Overall, the image beautifully encapsulates a moment in a train journey, with its vivid colors and
dynamic composition.

Fig. 3: Examples of captions generated by Share-Captioner. Detailed and ac-
curate parts within the captions are emphasized in blue.
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ShareGPT4V: The image is a captivating oil painting titled "The Sower", created by the renowned artist
Vincent Van Gogh. It's a beautiful representation of post-impressionism art. The painting vividly
portrays a farmer in the act of sowing seeds in a field. The field, awash with hues of yellow and blue,
forms a striking contrast against the farmer's figure. In the distance, a quaint village landscape unfolds,
complete with houses and trees. The colors used are vibrant, bringing the scene to life with their
intensity. The brushstrokes are clearly visible, adding texture and depth to the painting.

This artwork is a testament to Van Gogh's fascination with the countryside and the simple, yet profound,
peasant life.

ShareGPT4V: The image captures a delightful scene of a meal, likely at a Chinese restaurant.
The main focus is a white plate with a blue rim, presenting a dish of beef and broccoli. The beef,
brown in color, and the broccoli, a vibrant green, are generously coated in a brown sauce, adding
a glossy finish to the dish.

To the left of the plate, a spoon rests, ready to serve the delicious food. The plate itself is
placed on a white tablecloth, providing a clean and simple backdrop that allows the colors of the
food to stand out.

In the background, there are hints of other dishes, one of which appears to have a red sauce.
These dishes add depth to the scene, suggesting a variety of flavors waiting to be explored.
The image as a whole paints a picture of a hearty and appetizing meal, inviting the viewer to
partake in the culinary experience.

ShareGPT4V: The image captures a charming Halloween scene. Dominating the frame is a large,
glowing orange pumpkin. It's been skillfully carved to display a classic jack-o'-lantern face, with
triangular eyes and a toothy grin. The word "FERGUSON" is also carved into the pumpkin, perhaps
indicating the name of the family who owns this decoration. The pumpkin's interior is illuminated,
casting a warm light that accentuates the carved features.

Beside the orange pumpkin, there's a smaller white pumpkin. It's uncarved, providing a simple yet
effective contrast to its larger, more elaborate neighbor. Adding a touch of whimsy to the scene
is a silver owl figurine. Its metallic sheen stands out against the natural textures of the pumpkins.

All three objects are arranged on a wooden surface, which provides a rustic backdrop to the scene.
Behind them, a gray wall further emphasizes the vibrant orange of the carved pumpkin. The
relative positions of the objects suggest a thoughtful arrangement, with the glowing orange
pumpkin as the centerpiece, flanked by the white pumpkin and the silver owl.

Despite the simplicity of the scene, it's clear that each object has been chosen and positioned
with care, creating a Halloween decoration that's both festive and welcoming.

Fig. 4: Examples of captions generated by ShareGPT4V. Detailed and accurate
parts within the captions are emphasized in blue.
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ShareGPT4V-7B: The most common catchphrase of the character on the right is "I am the one who knocks." This phrase
is associated with the character Walter White from the TV show Breaking Bad, played by Bryan Cranston. Walter
White is a methamphetamine manufacturer and distributor who is known for his intelligence, wit, and unpredictable
behavior. The catchphrase is often used by Walter White to express his confidence and assertiveness, and it has
become iconic in the series.

User: What is the most common catchphrase of the character on the right?

User:

User: What kind of life would he have lived if he and Jesse Pinkman hadn't met?

ShareGPT4V-7B: If Walter White and Jesse Pinkman had never met, Walter White's life would have likely been very
different. In the original timeline of the show, Walter White was a high school chemistry teacher who was diagnosed
with cancer and decided to produce and sell methamphetamine to provide for his family after his death. He chose Jesse
Pinkman, a former student and small-time criminal, as his partner in this venture.

Without Jesse, Walter would have had to find another partner or work alone to produce and distribute the
methamphetamine. He might have had to rely on his own skills and knowledge to create the product and find customers.
However, without Jesse's skills, connections, and resourcefulness, Walter's operation would likely have been smaller and
less successful.

Additionally, without Jesse, Walter's character development would have been significantly altered. Jesse's presence
and influence on Walter's life helped him to grow and change into the complex and morally ambiguous character that we
see in the show. The relationship between Walter and Jesse is a central theme of Breaking Bad, and their dynamic
drives much of the plot and character development.

ShareGPT4V-7B: The two characters in the picture are Steve Jobs and Isaac Newton.

User: Who are the 2 characters in the picture?

User:

User: What different ideas did they get from the apple?

ShareGPT4V-7B: Steve Jobs and Isaac Newton got the idea of the Apple
computer and the concept of gravity, respectively, from an apple.

Fig. 5: Example of Multi-Round Dialog of ShareGPT4V-7B. Detailed and
accurate parts within the captions are emphasized in blue.
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