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In this supplementary material, we provide additional details about our ap-
proach, which include the network architecture, experiment settings and results.
Sec. A details the training and implementation details for our approach as well
as baselines. Additional results are presented in Sec. B.

A Training and Implementation Details

A.1 Our approach

Architecture detail of Invertible Neural Network (INN) We illustrate
the design of our invertible network hΘW in Fig. 1, see [2] for an in-depth ex-
planation about the INN. The network is composed of three main blocks, each
containing a multilayer perceptron (MLP). These blocks are different in their
pattern of partitioning input coordinates along different axes. Within each block,
a randomly chosen axis is used to split the input coordinates (for e.g., [x, y, z]T ).
The first subset of these coordinates (for e.g., z), along with a frame-specific
latent code Φt, is fed into the MLP. The MLP computes a 2D rotation and
translation. This transformation is then applied to the second subset of the in-
put coordinates (for e.g., [x, y]T ). This procedure is repeated for each of the
other coordinates in the subsequent blocks. For all our experiments, we use the
same network architecture. We use three blocks, with each block consisting of
two layers of 128-dim hidden units. Following [2,11], we also apply positional en-
coding [8] to the MLP’s input coordinates, and we set the number of frequencies
used in this positioning encoding as 6. For the frame-specific latent code, we use
a 16-dimensional code for 2D experiments in Sec. 4.2 of the main paper, and a
128-dimensional code for 3D experiments covered in Secs. 4.3 to 4.6 of the main
paper.

INN (Ours) on LLFF Following BARF [6], we resize the images to 480×640.
At each optimization steps, we randomly sample 2048 pixel rays. We use the
same NeRF architecture as in BARF and L2G, see Sec. A.1 for details of the
INN architecture. We used the learning rate for Θrgb at 1× 10−3, which decays
to 1 × 10−4. For the INN field ΘW , the learning rate starts at 5 × 10−4 and
decays to 1× 10−8. For the frequencies used for positional encoding γ(.) defined

https://sfchng.github.io/ineurowarping-github.io/
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Fig. 1: Network architecture for the warp field hΘW . This diagram displays only the
first block of the architecture, noting that subsequent blocks follow the same structure
but differ in their splitting patterns. We denote PE as positional encoding. As men-
tioned in the paper, this architecture is fully invertible by design.

Table 1: Weighting term λ for the rigidity prior Lrigid in Eq. (8) of the main paper
used to obtain the results on the LLFF dataset (Sec. 4.4 of the main paper).

Scenes Weighting term for Lrigid

fern 104

flower 104

fortress 105

horns 104

leaves 103

orchids 103

trex 104

room 103

in Sec. 3.1 of the main paper, we use L = 10 for 3D points and L = 4 for the
viewing direction. The coarse-to-fine scheduler for BARF is linearly adjusted
from iteration 20K to 100K. Additionally, we provide the weighting term λ for
Lrigid in Eq. (8) of the main paper used for each scene in Tab. 1.

Table 2: Weighting term λ for the rigidity prior Lrigid in Eq. (8) of the main paper
used to obtain the results on the DTU dataset (Sec. 4.5 of the main paper).

Scans 24 37 40 55 63 65 69 83 97 105 106 110 114 118

Weighting term for Lrigid 104 104 102 102 103 103 102 103 103 102 103 103 102 103

INN (Ours) on DTU Following [9], we resize the images to 300 × 400. At
each optimization steps, we randomly sample 1024 pixel rays. We use the same
NeRF architecture as in BARF and L2G, see Sec. A.1 for details of the INN
architecture. We used the learning rate for Θrgb at 1 × 10−3, which decays to
3× 10−4. For the INN field ΘW , the learning rate starts at 5× 10−4 and decays
to 1 × 10−6. For the frequencies used for positional encoding γ(.) defined in
Sec. 3.1 of the main paper, we use L = 10 for 3D points and L = 4 for the
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viewing direction. The coarse-to-fine scheduler for BARF is linearly adjusted
from iteration 20K to 100K. Additionally, we provide the weighting term λ for
Lrigid in Eq. (8) of the main paper used for each scene in Tab. 2.

A.2 Baselines

BARF [6] on LLFF We use the original code implementation provided by the
authors [6]. For completeness, we include some details about the hyperparame-
ters here, see [6] for full details. We used the learning rate for Θrgb at 1× 10−3,
which decays to 1 × 10−4. For the pose P , the learning rate starts at 3 × 10−3

and decays to 1 × 10−5. For the frequencies used for positional encoding γ(.)
defined in Sec. 3.1 of the main paper, we use L = 10 for 3D points and L = 4 for
the viewing direction. The coarse-to-fine scheduler for BARF is linearly adjusted
from iteration 20K to 100K.

L2G [3] on LLFF We use the original code implementation including their
proposed settings for architecture, coarse-to-fine scheduling, weighting term λ
and hyperparameters [3]. For completeness, we include some details about the
settings here, see [3] for full details. The learning rate for Θrgb is set at 1×10−3,
which decays to 1 × 10−4. For the warp field ΘW , the learning rate starts at
3× 10−3 and decays to 1× 10−8. For the weighting term λ, we use their default
settings, as outlined in their supplementary materials. For the frequencies used
for positional encoding γ(.) defined in Sec. 3.1 of the main paper, we use L = 10
for 3D points and L = 4 for the viewing direction. The coarse-to-fine scheduler
for BARF is linearly adjusted from iteration 20K to 100K.

BARF [6] on DTU As BARF [6] has not been tested on DTU datasets, we
used the settings proposed by the author for training BARF on the Blender
dataset as both Blender and DTU are comprised of 360◦ scenes. We used the
learning rate for Θrgb at 5 × 10−4, which decays to 1 × 10−4. For the pose P ,
the learning rate starts at 1× 10−3 and decays to 1× 10−5. For the frequencies
used for positional encoding γ(.) defined in Sec. 3.1 of the main paper, we use
L = 10 for 3D points and L = 4 for the viewing direction. The coarse-to-fine
scheduler for BARF is linearly adjusted from iteration 20K to 100K.

L2G [3] on DTU As L2G [3] has not been tested on DTU datasets, we used the
settings proposed by the author for training L2G on the Blender dataset as both
Blender and DTU are comprised of 360◦ scenes. We used the learning rate for
Θrgb at 5×10−4, which decays to 1×10−4. For the warp field ΘW , the learning
rate starts at 1× 10−3 and decays to 1× 10−8. We set the weighting term λ to
1× 102 for all the scans. Following Bian et al . [1], we multiply the output of the
local warp field ΘW by a constant small factor of 0.01. For the frequencies used
for positional encoding γ(.) defined in Sec. 3.1 of the main paper, we use L = 10
for 3D points and L = 4 for the viewing direction. The coarse-to-fine scheduler
for BARF is linearly adjusted from iteration 20K to 100K.
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A.3 Additional details on Metrics

Pose alignment As mentioned in Sec. 4.3 of the main paper, we evaluate the
pose accuracy by globally aligned the optimized poses to the groundtruth. This is
because when optimizing camera poses and a neural radiance field, the optimized
solutions of the scene geometry and the camera poses are up to a 3D similarity
transformation. Following [9], we align both optimized and groundtruth poses
globally using Umeyama algorithm [10,14] 1. Using the mathematical notations
established in Sec. 3.1 of the main paper, we define the pose accuracy evaluation
as below. The rotation error θt between the groundtruth poses of camera R∗

and the aligned poses R̃ for each camera t is computed as

θt = cos−1 trace(R∗
t R̃

T
t )− 1

2
. (1)

The translation error δt is computed as the Euclidean distance between the
estimate t̃t and the groundtruth position t∗t .

Novel view synthesis To assess the performance of view-synthesis, we report
the mean Peak Signal-to-Noise Ratio (PSNR) [8], the Structural Similarity Index
(SSIM) [12] and the Learned Perceptual Image Patch similarity (LPIPS) met-
ric [13]. Following BARF [6], we use the AlexNet network version for calculating
the LPIPS metric.

For the evaluation of depth, given that the optimized scene is subject to a 3D
similarity, we align the scale of the predicted depth with the scale determined
from the alignment procedure. We compute the mean absolute difference between
the scaled predicted depth and ground-truth depth. We consider only those areas
where valid ground-truth depth data is available in our evaluation.

B Additional Results

B.1 Single-INN versus Multi-INNs

In this section, we compare two different setups on the 2D planar neural im-
age alignment problem, as detailed in Sec. 4.2 in the main paper. The first
method, which we call “single-INN” involves using a global network coupled
with a frame-specific code. Specifically, this global network is an INN consisting
of three blocks, where each block contains two layers of 128-dim hidden units.
We use a 16-dimensional code in this setup. The second method, termed “multi-
INNs” employs a separate network for each individual patch. Each network is also
an INN consisting of 3 blocks, with each block containing two layers of 32-dim
hidden units. Tab. 3 indicates that a single global neural network (single-INN +

1 We use Umeyama implementation from https://github.com/uzh- rpg/rpg_
trajectory_evaluation/blob/master/src/rpg_trajectory_evaluation/align_
trajectory.py

https://github.com/uzh-rpg/rpg_trajectory_evaluation/blob/master/src/rpg_trajectory_evaluation/align_trajectory.py
https://github.com/uzh-rpg/rpg_trajectory_evaluation/blob/master/src/rpg_trajectory_evaluation/align_trajectory.py
https://github.com/uzh-rpg/rpg_trajectory_evaluation/blob/master/src/rpg_trajectory_evaluation/align_trajectory.py
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per-patch latent code) is adequate for converging to a good pose solutions. While
the multi-INNs approach outperforms BARF by 25%, its overall accuracy is not
as high as that of the single-INN approach. We postulate that the difference may
be attributed to the benefits of gradient sharing in the shared neural network
setup.

Table 3: Comparison of Single-INN versus Multi-INNs across 20 homography runs,
with scale noise of 0.1 for homography and 0.2 for translation. The warp error is
quantified in terms of corner error, and the patch reconstruction error in measured in
PSNR. We provide mean and standard deviation (std. dev.) for the evaluation. We
used 5-pixel threshold to determine success convergence.

Corner error (px) ↓ Patch PSNR ↑ Success rate ↑
Mean Std. dev. Mean Std. dev. (Upper bound:1.00)

BARF [6] 29.63 28.18 28.94 4.38 0.30

Multi-INNs 8.81 11.41 33.08 3.83 0.55
Single-INN + per-patch latent code 4.70 6.47 34.71 2.37 0.75

B.2 Ablations on INN (Sec. 4.4 of the main paper)

Tab. 4 ablates the key components of INN on the LLFF dataset using poses
initialized at identity. When the weights of the INN are kept constant and made
non-optimizable, the training fails completely. This outcome indicates that the
INN weights play important role in accurately representing the transformation
between the camera coordinate space and the world coordinate space. On the
other hand, when the frame-specific code is fixed (with optimizable INN weights),
there is a significant improvement in performance. This result emphasized the
role of the frame-specific code in aiding the INN to distinguish different frames,
rather than in representing the geometric transformation. As we observe that
allowing the frame-specific code to be optimizable generally leads to better per-
formance in general, we adopt this approach throughout our experiments.
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Table 4: Ablations on the LLFF dataset (leaves), using poses initialized at identity.
We use ✗ and ✓ symbols to represent the optimization status of weights during train-
ing: ✗ indicates that the parameters were non-optimizable, while ✓ indicates they were
optimizable throughout training. The “-” notation is used to indicate unsuccessful train-
ing. The training process fails when the weights of the INN are not optimized.

Pose accuracy Novel view synthesis
Rotation Translation Before test-time After test-time

( ◦) (×100) PSNR SSIM LPIPS PSNR SSIM LPIPS

BARF [6] 1.03 0.23 12.22 0.15 0.43 18.78 0.54 0.35

INN weights ΘW frame-specific code Φt

✗ ✗ - - - - - - - -
✗ ✓ - - - - - - - -
✓ ✗ 0.35 0.20 16.30 0.39 0.35 18.76 0.54 0.34
✓ ✓ 0.29 0.17 16.00 0.36 0.35 19.01 0.56 0.33



Invertible Neural Warp for NeRF 7

B.3 Additional results on Blender

Table 5: Absolute pose accuracy evaluation for each scene of the Blender dataset [8],
using initial noisy poses that corresponds to an average rotation and translation error
of 15◦ and 26 respectively. The upper section presents rotation errors in degrees, while
the lower section displays translation errors which are multiplied by 100. red box
denotes the best result.

Scenes
Methods Metric chair drums ficus hotdog materials mic ship lego mean

L2G rotation 0.11 0.07 0.21 0.27 2.41 2.40 0.20 0.08 0.72
INN(Ours) 0.12 0.06 0.15 0.24 0.81 0.08 1.26 0.09 0.35

L2G translation 0.60 0.31 1.33 1.40 6.40 5.01 0.58 0.37 2.00
INN(Ours) 0.50 0.28 0.88 1.36 2.62 0.30 0.99 0.36 0.91

Table 6: Evaluation of novel view synthesis of the Blender dataset [7] before test-time
optimization, using initial identity poses. red box denotes the best result.

Scenes
Methods Metric chair drums ficus hotdog materials mic ship lego mean

L2G PSNR ↑ 31.34 25.60 26.12 24.54 14.24 21.00 26.77 27.64 24.66
INN(Ours) 31.69 24.89 26.23 25.19 15.98 30.03 25.11 26.95 25.76

L2G SSIM ↑ 0.97 0.90 0.93 0.89 0.67 0.90 0.77 0.92 0.87
INN(Ours) 0.97 0.89 0.93 0.90 0.72 0.96 0.74 0.92 0.88

L2G LPIPS ↓ 0.03 0.09 0.05 0.05 0.15 0.06 0.17 0.05 0.08
INN(Ours) 0.03 0.11 0.06 0.06 0.13 0.05 0.21 0.05 0.09
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B.4 Additional results on LLFF (Sec. 4.4 of the main paper)

We present a detailed per-scene comparison of pose accuracy in Tab. 7. We also
include novel view synthesis results, both before and after test-time optimiza-
tion in Tab. 8 and Tab. 9, respectively. We present the qualitative results in
Fig. 2. Overall, the significant improvement in camera pose accuracy directly
enhances the performance of novel view rendering across all evaluated metrics
(PSNR/SSIM/LPIPS), as can be seen in Tab. 8. As discussed in Sec. 4.3 of the
main paper, test-time optimization [3,4,6,9] is a pose refinement step. This step
factors out the pose inaccuracies to minimize their impact on the quality of novel
view synthesis. As a result of this optimization, the substantial improvement in
camera pose accuracy become less pronounced in the novel view synthesis eval-
uation. The performance gap between BARF and our method, initially around
20% is significantly narrowed to approximately 2% after test-time optimization,
as can be seen in Tab. 9.

Table 7: Absolute pose accuracy evaluation for each scene of the LLFF dataset [7],
using initial identity poses. The upper section presents rotation errors in degrees, while
the lower section displays translation errors which are multiplied by 100. red box
denotes the best result.

Scenes
Methods Metric fern flower fortress horns leaves orchids trex room mean

BARF 0.21 0.27 0.44 3.26 1.03 0.63 1.07 0.27 0.90
L2G rotation 0.23 0.27 0.21 0.27 1.11 0.63 0.85 0.30 0.48
INN(Ours) 0.19 0.18 0.26 0.31 0.29 0.61 0.43 0.23 0.31

BARF 0.20 0.23 0.36 1.42 0.23 0.40 0.17 0.22 0.40
L2G translation 0.19 0.24 0.23 0.22 0.37 0.40 0.58 0.22 0.30
INN(Ours) 0.19 0.22 0.26 0.18 0.17 0.35 0.36 0.18 0.24
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Table 8: Evaluation of novel view synthesis of the LLFF dataset [7] before test-time
optimization, using initial identity poses. red box denotes the best result.

Scenes
Methods Metric fern flower fortress horns leaves orchids trex room mean

BARF 20.80 19.60 22.15 11.16 12.22 12.92 14.75 22.41 17.00
L2G PSNR ↑ 19.54 19.35 25.20 18.13 12.05 13.05 15.30 21.27 17.99
INN(Ours) 22.04 21.24 25.11 17.19 16.00 12.89 17.19 22.84 19.31

BARF 0.61 0.49 0.42 0.30 0.15 0.16 0.33 0.80 0.41
L2G SSIM ↑ 0.56 0.47 0.70 0.50 0.14 0.17 0.36 0.78 0.46
INN(Ours) 0.66 0.58 0.63 0.46 0.36 0.16 0.46 0.81 0.52

BARF 0.32 0.24 0.16 0.60 0.43 0.36 0.32 0.14 0.32
L2G LPIPS ↓ 0.28 0.22 0.11 0.30 0.43 0.31 0.27 0.13 0.26
INN(Ours) 0.30 0.20 0.11 0.31 0.35 0.34 0.21 0.17 0.25

Table 9: Evaluation of novel view synthesis of the LLFF dataset [7] after test-time
optimization, using initial identity poses. red box denotes the best result.

Scenes
Methods Metric fern flower fortress horns leaves orchids trex room mean

BARF 23.79 23.58 29.19 21.06 18.78 19.35 23.15 31.66 23.82
L2G PSNR ↑ 24.32 24.25 29.56 22.77 18.98 19.45 23.24 32.22 24.35
INN(Ours) 24.22 24.72 29.67 23.35 19.01 19.62 23.63 30.01 24.28

BARF 0.71 0.70 0.82 0.70 0.54 0.57 0.78 0.94 0.72
L2G SSIM ↑ 0.74 0.73 0.85 0.73 0.56 0.60 0.80 0.95 0.75
INN(Ours) 0.73 0.73 0.85 0.74 0.56 0.59 0.81 0.92 0.74

BARF 0.31 0.21 0.13 0.30 0.35 0.29 0.20 0.10 0.24
L2G LPIPS ↓ 0.26 0.18 0.10 0.28 0.33 0.24 0.17 0.08 0.21
INN(Ours) 0.29 0.18 0.10 0.27 0.33 0.26 0.16 0.14 0.22
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(a) leaves

(b) trex

(c) fern

(d) flower

Fig. 2: Qualitative comparison of the results of various methods on a test image before
pose-refinement. The comparison is arranged in columns: BARF (1st column), L2G
(2nd column), our method (3nd column) and groundtruth (4th column). Each image
includes an inset displaying its respective PSNR/SSIM/LPIPS values (zoom in for
better view). We also add a solid red line to highlight any misalignment of each image
compared to the groundtruth.
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B.5 Additional Results on DTU with Colmap Initialization
(Sec. 4.6 of the main paper)

We report our quantitative results using poses obtained from Colmap: the accu-
racy of pose estimation in Tab. 10, the performance of view synthesis in Tab. 11
and the depth evaluation in Tab. 12 as well as reconstruction accuracy in Tab. 13.
Overall, our approach effectively refines these initial poses during the joint op-
timization, leading to a reduction in pose errors by approximately 30% for both
rotation and translation. Additionally, attaining more accurate poses also con-
tributes to improvement in novel view rendering quality (Tab. 11) and depth
evaluation (Tab. 12) as well as reconstruction accuracy (Tab. 13).

Table 10: Absolute pose accuracy evaluation of the DTU dataset [7] before test-time
optimization, using Colmap initialization that corresponds to an average rotation
and translation error of 0.5◦ and 0.9 respectively. orange row denotes the result with
Colmap initialization.

Scan IDs
Methods Metric 24 37 40 55 63 65 69 83 97 105 106 110 114 118 mean

COLMAP (Initial) 0.31 0.54 0.26 0.27 0.96 0.32 0.34 0.46 0.60 0.36 0.28 0.45 0.31 0.24 0.41
BARF 0.16 0.75 0.51 0.99 0.30 0.78 0.17 0.45 0.53 0.28 0.38 0.20 0.26 0.28 0.43
L2G rotation 0.20 0.48 0.19 0.43 0.45 0.61 0.27 0.29 0.49 0.23 1.66 0.25 0.33 0.35 0.44
INN(Ours) 0.20 0.43 0.19 0.31 0.45 0.30 0.27 0.19 0.37 0.15 0.18 0.25 0.24 0.19 0.27

COLMAP (Initial) 0.80 1.20 0.70 0.40 1.70 0.50 0.60 1.00 2.00 0.80 0.70 1.20 0.50 0.60 0.91
BARF translation 0.50 2.37 1.88 3.70 0.69 2.82 0.49 1.80 1.81 1.07 1.37 0.42 0.94 0.87 1.48
L2G (×100) 0.60 1.70 0.62 1.17 1.10 1.93 0.85 0.90 1.69 0.77 7.92 0.31 1.04 1.00 1.54
INN(Ours) 0.42 0.93 0.62 0.70 0.87 0.84 0.63 0.57 1.15 0.52 0.42 0.56 0.62 0.59 0.67

Table 11: Evaluation of novel view synthesis of the DTU dataset [7] before test-time
optimization, using Colmap initialization.

Scan IDs
Methods Metric 24 37 40 55 63 65 69 83 97 105 106 110 114 118 mean

BARF 23.37 16.07 23.60 19.43 24.54 17.97 26.29 20.95 19.65 23.28 23.44 28.27 24.14 26.60 22.69
L2G PSNR ↑ 23.29 18.99 24.58 23.19 22.43 19.47 23.58 24.14 19.22 25.04 18.92 29.46 24.52 26.13 23.07
INN(Ours) 21.63 18.90 24.37 25.15 22.23 22.52 23.46 25.00 20.19 27.87 26.50 29.81 25.87 31.57 24.65

BARF 0.79 0.66 0.66 0.60 0.91 0.72 0.82 0.79 0.67 0.80 0.76 0.91 0.79 0.82 0.76
L2G SSIM ↑ 0.78 0.71 0.77 0.70 0.87 0.75 0.74 0.85 0.64 0.83 0.65 0.92 0.78 0.81 0.77
INN(Ours) 0.73 0.70 0.77 0.75 0.86 0.81 0.72 0.87 0.67 0.89 0.83 0.92 0.82 0.90 0.80

BARF 0.14 0.18 0.25 0.31 0.08 0.26 0.19 0.16 0.24 0.13 0.19 0.12 0.19 0.17 0.19
L2G LPIPS ↓ 0.15 0.16 0.21 0.26 0.09 0.25 0.22 0.14 0.23 0.12 0.33 0.12 0.20 0.18 0.19
INN(Ours) 0.17 0.18 0.24 0.28 0.10 0.23 0.25 0.14 0.24 0.12 0.19 0.13 0.19 0.18 0.19
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Table 12: Depth evaluation (DE) in absolute error of the DTU dataset [5] before
test-time optimization, using Colmap initialization.

Scan IDs
Methods Metric 24 37 40 55 63 65 69 83 97 105 106 110 114 118 mean

BARF 0.15 0.33 0.30 0.33 0.24 0.23 0.12 0.31 0.15 0.23 0.11 0.12 0.06 0.12 0.20
L2G DE ↓ 0.17 0.26 0.16 0.18 0.28 0.21 0.17 0.25 0.16 0.22 0.37 0.10 0.07 0.15 0.20
INN(Ours) 0.16 0.28 0.15 0.13 0.28 0.10 0.17 0.20 0.16 0.13 0.07 0.07 0.04 0.11 0.15

Table 13: Reconstruction accuracy evaluation of the DTU dataset [5] measured in
Chamfer distance before test-time optimization, using Colmap initialization.

Scan IDs
Methods Metric 24 37 40 55 63 65 69 83 97 105 106 110 114 118 mean

BARF 1.86 7.14 4.09 7.06 1.82 5.34 1.12 5.15 5.48 3.65 2.32 1.90 2.54 1.08 3.61
L2G ↓ 2.29 4.21 1.08 2.10 2.66 4.17 1.32 3.24 4.00 2.59 8.03 1.48 2.93 1.28 2.96
INN(Ours) 1.97 3.21 0.73 0.72 2.27 1.76 1.64 1.94 2.13 0.94 1.04 1.04 1.37 0.83 1.54

(a) scan83

(b) scan97

Fig. 3: Qualitative comparison of the rendered rgb along with its depth of various
methods on test images using Colmap initialization. The comparison is arranged in
columns: BARF (1st column), L2G (2nd column), our method (3nd column) and
groundtruth (4th column). Each image includes an inset displaying its respective
PSNR/SSIM/LPIPS values. We also add a solid red line to highlight any misalign-
ment of each image compared to the groundtruth.
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(a) BARF [6] (b) L2G [3] (c) Ours (d) Groundtruth

Fig. 4: We showcase the qualitative results for scan83 and scan97 in Tab. 13. All
meshes are generated using a neural surface reconstruction algorithm called Voxurf
using the poses estimated by different approaches.
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B.6 Additional Results on DTU with Noisy Initialization
(Sec. 4.6 of the main paper)

In the main paper (Sec. 4.6), we present the evaluation covering the pose accu-
racy, depth as well as reconstruction accuracy using initial noisy camera poses.
For completeness, we additionally include here an evaluation of novel view syn-
thesis (Tab. 14) as well as qualitative comparisons ( Fig. 5 and Fig. 6).

Table 14: Evaluation of novel view synthesis of the DTU dataset [7] before test-time
optimization, using initial noisy poses that corresponds to an average rotation and
translation error of 15◦ and 70 respectively.

Scan IDs | Initial rotation err: 15◦, translation err (×100) : 70
Methods Metric 24 37 40 55 63 65 69 83 97 105 106 110 114 118 mean

BARF 15.73 14.50 19.63 16.10 21.18 17.94 16.52 20.93 14.93 12.24 16.40 18.95 18.59 22.56 17.59
L2G PSNR ↑ 16.71 12.41 19.80 13.81 17.57 16.94 17.73 20.23 18.36 15.64 16.11 17.13 14.00 17.52 16.71
INN(Ours) 21.54 16.95 18.65 18.59 22.35 19.25 16.87 20.11 19.85 22.36 17.22 17.58 17.87 29.90 19.94

BARF 0.57 0.62 0.65 0.54 0.86 0.72 0.47 0.78 0.55 0.51 0.54 0.73 0.63 0.70 0.63
L2G SSIM ↑ 0.58 0.56 0.65 0.44 0.80 0.70 0.51 0.77 0.64 0.60 0.55 0.65 0.51 0.49 0.60
INN(Ours) 0.72 0.66 0.63 0.58 0.87 0.73 0.48 0.77 0.67 0.78 0.62 0.68 0.60 0.88 0.69

BARF 0.27 0.26 0.25 0.43 0.10 0.26 0.50 0.18 0.36 0.50 0.56 0.24 0.25 0.27 0.32
L2G LPIPS ↓ 0.24 0.34 0.25 0.66 0.15 0.28 0.35 0.18 0.25 0.29 0.59 0.38 0.40 0.62 0.36
INN(Ours) 0.17 0.20 0.30 0.38 0.10 0.27 0.47 0.19 0.25 0.14 0.42 0.33 0.28 0.17 0.26
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(a) scan24

(b) scan37

(c) scan55

(d) scan118
Fig. 5: Qualitative comparison of the rendered rgb along with its depth using noisy
pose initialization. The comparison is arranged in columns: BARF (1st column), L2G
(2nd column), our method (3nd column) and groundtruth (4th column). Each image
includes an inset displaying its respective PSNR/SSIM/LPIPS values. We also add a
solid red line to highlight any misalignments when compared to the groundtruth.
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(a) Initial (Mean rotation error: 14.16◦, transla-
tion error: 30.20

(b) BARF (Mean rotation error: 1.04◦, transla-
tion error: 3.00)

(c) L2G (Mean rotation error: 0.90◦, translation
error: 2.40)

(d) Our method (Mean rotation error: 0.21◦,
translation error: 0.50)

Fig. 6: Visual comparison of the initial noisy poses (Fig. 6a) and estimated post-aligned
camera poses using different approaches (Fig. 6b, Fig. 6c, Fig. 6d), for the DTU scene
‘scan24’. In this comparison, the color blue denotes the perturbed/optimized camera
pose, magenta represents ground truth camera poses.
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