
Invertible Neural Warp for NeRF

Shin-Fang Chng, Ravi Garg, Hemanth Saratchandran, and Simon Lucey

Adelaide University
Australian Institute for Machine Learning

shinfang.chng@adelaide.edu.au
https://sfchng.github.io/ineurowarping-github.io/

Abstract. This paper tackles the simultaneous optimization of pose
and Neural Radiance Fields (NeRF). Departing from the conventional
practice of using explicit global representations for camera pose, we pro-
pose a novel overparameterized representation that models camera poses
as learnable rigid warp functions. We establish that modeling the rigid
warps must be tightly coupled with constraints and regularization im-
posed. Specifically, we highlight the critical importance of enforcing in-
vertibility when learning rigid warp functions via neural network and
propose the use of an Invertible Neural Network (INN) coupled with
a geometry-informed constraint for this purpose. We present results on
synthetic and real-world datasets, and demonstrate that our approach
outperforms existing baselines in terms of pose estimation and high-
fidelity reconstruction due to enhanced optimization convergence.

Keywords: Neural Radiance Fields · Joint scene reconstruction and
pose estimation · Implicit Neural Representations

1 Introduction

NeRF [25] has recently emerged as a compelling approach for synthesizing photo-
realistic images from novel views. NeRF employs a multi-layer perceptron (MLP)
to model a volumetric representation of a 3D scene. It operates by minimizing
the photometric loss, which is the discrepancy between rendered images and
actual images. NeRF’s ability to reconstruct high-fidelity signals, coupled with
its memory efficiency, has propelled its adoption across a wide array of applica-
tions [13,18,31,43,44,46–48], demonstrating its significant impact and versatility.

One of the primary challenges with NeRF is the requirement for precisely
known camera poses for each captured image. To address this challenge, several
approaches such as BARF [23], NeRFmm [40], and GARF [10] have been de-
veloped. These methods facilitate the simultaneous optimization of the NeRF
and the camera poses, using a compact, six-dimensional vector to represent the
camera poses efficiently. However, this compact parameterization, while preva-
lent in contemporary structure from motion (SfM) literature [32, 34], has been
shown to struggle with poor basin of convergence when solved simultaneously
with a NeRF [9]. Drawing wisdom from machine learning, where overparameter-
ization has been recognized as a catalyst for enhanced optimization convergence

https://sfchng.github.io/ineurowarping-github.io/
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(a) Groundtruth (b) BARF [23] (c) Naive (d) Implicit-
Invertible MLP

(e) Explicit-
Invertible INN

Fig. 1: We investigate how overparameterizing rigid warps of rays with an MLP bene-
fits the joint optimization task of camera pose and NeRF. This example estimates the
warps that align the color-coded patches in Fig. 1a while solving for the neural field.
Unlike “BARF” and “naive” MLP pose overparameterization methods fail catastroph-
ically, enforcing invertibility, either implicitly (Fig. 1d) or explicitly (Fig. 1e) signifi-
cantly improves warp estimation, see Sec. 4.1 for details of each method. We establish
that invertibility is a crucial for MLP-based rigid warp representation.

in modern deep neural networks [22,26,35], this paper explores the potential of
pose overparameterization for simultaneous pose and neural field estimation.
Our approach: In traditional NeRF setups, accurately known extrinsic camera
pose, comprising of a global rotation and translation for each image, are used to
explicitly map pixel coordinates and the camera center to determine the viewing
rays in a global world coordinate system [25]. Following the warping operation,
the colors and volume densities along each ray in the world coordinate space
is manipulated individually through a photometric loss function. In this paper,
we explore scenarios where camera poses are not known. Specifically, we propose
using a neural network to model the rigid warp function of ray. While it may seem
counterintuitive to replace a succinct pose function with a more complex MLP,
we argue that the enhanced convergence properties of such overparameterization
[1, 26, 27] – in conjunction with the right constraint and prior – outweigh the
increased functional flexibility.

Additionally, we highlight the critical role of enforcing invertibility when
learning rigid warps using an MLP. 1 To achieve an approximate bijective solu-
tion, one remedy is to use an auxillary network to represent the backward warp;
however this will introduce computational overhead. To this end, we propose ex-
plicitly modeling inversions in the neural network architectures, formally learning
an Invertible Neural Network (INN). Our results demonstrate that opting for an
architecture that is explicitly invertible is more effective for jointly optimizing
both the pose and radiance field, outperforming existing strong baselines [9,23].
Notably, our INN-based approach achieves an improvement of over 50% in pose
accuracy when compared to the standard SE3 parameterization [23].

1 Our use of invertibility strictly adheres to the well-established mathematical defini-
tion. Let f be a function whose domain is X and codomain is Y. f is invertible iff
there exists a function g from Y to X such that g(f(x)) = x ∀x ∈ X and f(g(y)) = y
∀y ∈ Y [14]. We use bijective and invertible interchangeably throughout our paper.
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2 Related Works

2.1 Joint NeRF and pose estimation

Despite NeRF demonstrating compelling results in novel view synthesis, NeRF
requires accurate camera poses. The differentiable nature of volume rendering
used in NeRF facilitates the backpropagation through the scene representation to
update the camera poses. NeRFmm [40] demonstrates the possibility of optimiz-
ing camera poses within the NeRF framework. BARF [23] introduces a coarse-
to-fine positional encoding scheduling to improve the joint optimization of NeRF
and camera poses, and remains a widely adopted method. GARF [10] and SiN-
eRF [42] advocate for leveraging the smoothness inherent in non-traditional acti-
vations to mitigate the noisy gradients due to high frequencies in positional em-
beddings. In contrast, NoPe-NeRF [5] uses monocular depth prior as a geometry
prior to constrain the relative poses. SPARF [37] and SCNeRF [16] demonstrate
that using keypoint matches or dense correspondence can constrain the relative
pose estimates with ray-to-ray correspondence losses. Park et al . [30] proposes a
preconditioning strategy to enhance camera pose optimization. DBARF [8] pro-
poses using low-frequency feature maps to address the joint optimization prob-
lem for generalizable NeRF. Bian et al . [4] proposes a pose residual field which
learn the pose corrections to refine the initial camera pose for neural surface
reconstruction. Closest to our approach is a very recent work L2G by Chen et
al . [9], which tackles the camera pose representation using an overparameteri-
zation strategy. However, we achieve overparameterization in different manner.
Unlike L2G which learn an MLP to predict rigid SE(3) transformations, we
propose using an MLP to model the rigid warp function between the pixel and
the ray space. Our work argues that while overparameterization can be achieved
in different manner, it is tightly coupled with the regularization and constraints
imposed. In our case, invertibility of warps becomes an essential constraint.

2.2 Overparameterization

Overparameterization in deep learning involves employing models with a sub-
stantially greater number of parameters than the quantity of training data. Re-
cent research [22, 26, 35] demonstrates that neural networks, when overparame-
terized, can effectively generalize to new, unseen data, noting that an increase
in parameters often correlates with a decrease in test error. Moreover, [26] re-
vealed that this ability to generalize does not necessarily require explicit regu-
larization, suggesting that the optimization process of overparameterized neural
networks inherently prefers solutions that are more likely to generalize well. Ad-
ditionally, [1, 2, 27, 29] illustrates that overparameterized networks are capable
of consistently finding a global minimum through gradient-based optimization
methods. These insights highlight the remarkable ability of overparameterized
neural networks to deliver accurate predictions on unseen data, emphasizing
their robustness and efficacy in generalizing beyond the training dataset.
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2.3 Invertible Neural Networks for Deformation Fields

Recent advancements in Invertible Neural Networks (INNs) [3,7,12] have broad-
ened their use in the field of 3D deformation. These networks are particularly
useful in modeling homermorphic deformation, where the mapping between any
frames are bijective and continuous. Because of this capability, they are now be-
ing used in various areas, particularly modeling deformation in spatial [17,33,45]
and temporal [6, 20,28,39].

3 Methodology

We define the mathematical notations for the camera operations and the joint
camera pose estimation in Sec. 3.1. Further, we outline our approach in Sec. 3.2.

3.1 Bundle-Adjust NeRF Preliminaries

Camera pose We consider a set of T input images as {It}Tt=1 taken by cam-
era with intrinsic matrix K ∈ R3×3. For each camera t corresponding to these
images, BARF-style approaches [23] define its camera-to-world (C2W) as P =
(Rt, tt) ∈ SE(3), where Rt ∈ SO(3) and tt ∈ R3, respectively.

Camera projection For any vector x ∈ Rl of dimension l, we define its ho-
mogeneous representation x̄ ∈ Rl+1 as x̄ = [xT , 1]. We define π as the camera
projection operator, which maps a 3D point in the camera coordinate frame
denoted as x(C) ∈ R3 to a corresponding 2D pixel coordinate u ∈ R2. π−1 de-
notes the camera backprojection that maps a pixel u coordinate and depth z
to a 3D point in the camera coordinate as x(C), for e.g., π(x(C)) ∼= Kx(C) and
π−1(u, z) = zK−1ū. We use (C) and (W ) to denote that it is defined within the
camera and world coordinate system respectively.

NeRF NeRF represents the volumetric field of a 3D scene as f(γ(x), γ(d)) →
(c, σ), which maps a 3D location x ∈ R3 and a viewing direction d to a RGB
color c ∈ R3 and volume density σ ∈ R. γ : R3 → R3+6L is the positional
embedding function with L frequency bases [25]. This function is parameterized
using an MLP as fΘrgb

. Given T input images {It}Tt=1 with corresponding camera
poses {Pt}Tt=1, NeRF is optimized by minimizing photometric loss Lrgb between
synthesized images Î and original image I as

min
Θrgb

T∑
t=1

∑
u∈R2

∥Î(u, Pt;Θrgb)− Ii(u)∥22, (1)

Volume rendering For simplicity, let’s start by assuming the rendering op-
eration of NeRF operates in the camera coordinate system. We will generalize
this later. Each pixel coordinate determines a viewing direction d in the camera
coordinate system, whose origin is the camera center of projection o(C). We can
define a 3D point along the camera ray associated with u sampled at depth zi
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as r(C)(z) = o(C) + zi,uK
−1ū. 2 To render the colour of Îi,u at pixel coordinate

u, we sample M discrete depth values along the ray between a near bound zn
and a far bound zf . For each sampled value, we query the NeRF fΘrgb

to obtain
the corresponding radiance fields. The output from NeRF is then aggregated to
render the RGB colour as

Î(u) =
∫ zf

zn

T (u, z)σ(r(z))c(r(z))δz, (2)

where T (u, z) = exp(−
∫ z

zn
σ(r(z)))δz′ denotes the accumulated transmittance

value along the ray. We refer readers to [21, 25] for more details of volume ren-
dering operation. In practice, Eq. (2) is approximated using M points sampled
along the ray at depth {zi}Mi=1, which produces radiance field outputs as {yi}Mi=1.
Denoting the ray compositing function in Eq. (2) as g(.) ∈ R4M → R3, we can
rewrite Ĩ(u) = g({yi}Mi=1). Finally, given a camera pose P , we can then trans-
form the ray r(C) to the world coordinate to obtain r(W ) through a 3D rigid
transformation T . The rendered image is then obtained as

Î(u,p) = g

({
f
(
T (r(C)(z), P );Θrgb

)}M

i=1

)
. (3)

Joint optimization of pose and NeRF Prior works [10, 23, 40, 42] demon-
strate that it is feasible to optimize both camera pose and NeRF by minimizing
Lrgb in Eq. (1). This is achieved by considering P as optimizable parameters,
see Sec. 3.1 for its parameterization. Consequently, ray r is now dependent on
the camera pose. Mathematically, this joint optimization can be rewritten as

min
P,Θrgb

T∑
t=1

∑
u∈R2

∥Î(T (r(C)(z, ū);P︸ ︷︷ ︸
G(.)

);Θrgb)− Ii(u)∥22. (4)

3.2 Invertible Neural Warp for Ray Transform

We propose to overparameterize P using an Invertible Neural Network (INN).
There exist two options for parameterization: (i) use a separate INN for each
camera Pt; (ii) use a single INN that is shared across all frames, coupled with a
learnable code that is unique to frame t. Drawing inspiration from the dynamic
NeRF method used for representing deformation fields [6,31,38,39] and also con-
sidering parameter efficiency, we have chosen to pursue the latter strategy for
our proposed pose overparameterization – a single, globally shared neural ΘW
network across all frames, coupled with an optimizable per-frame latent code
Φt ∈ RD, see supp. (Sec. C) for the comparison of using multiple-INNs versus
single-INN. Consequently, we can rewrite G(.) in Eq. (6) as h(r(C);ΘW , Φt),
where h(.) : R3+D → R3. Fig. 2 presents our approach. In our approach, we
2 This can be succinctly written as r(C)(z) = zi,ud as o(C) is [0, 0, 0]T in camera

coordinate space.
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Fig. 2: An overview of our INN-based approach, illustrated using two views I1 and I2.
INN which is denoted as hΘW takes the pixel locations in the camera coordinate system
x
(C)
i,t , along with the frame-dependent latent code Φt, and output its corresponding

location in the world coordinate system as x
(W )
i,t , see Sec. 3.2 for full details.

model each pixel in the camera coordinate system x
(C)
i,t as an individual ray. Our

proposed INN is designed for transforming these rays from camera coordinate
to the world coordinate. Specifically, our proposed INN takes in the pixel coor-
dinates x

(C)
i,t and camera center o

(C)
t , both defined in the camera coordinates t,

coupled with the frame-dependent latent code and outputs their corresponding
equivalent x

(W )
i,t and camera center o

(W )
t in the world coordinates.

Rigidity prior In our formulation, each pixel is represented as an individual
ray within the camera coordinate system. This inherently relaxes the rigidity
constraint. As a result, the output from the INN does not necessarily conform to
a global rigid motion. Given known camera-world correspondences (x(C)

i,t ,x
(W )
i,t ),

we can solve a closed-form rigid registration problem to determine a global pose,
which can be integrated into our optimization problem as a rigidity prior Lrigid

min
T∗

L∑
i=1

∥x(C)
i,t − T ∗ ◦ x(W )

i,t ∥22. (5)

Final optimization problem We solve our final optimization problem as

min
Φt,ΘW ,Θrgb

T∑
t=1

∑
u∈R2

∥Î(h(r(c);ΘW , Φt);Θrgb)− Ii(u)∥22 + λLrigid. (6)

3.3 Advantages of INN for Overparameterizing Rigid Ray Warps

BARF-based approach parameterizes camera pose P of each frame using a SE(3)
(see Sec. 3.1), which guarantees that T is a bijective mapping. Therefore, when
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overparameterizing camera poses, it is crucial that the neural network adheres to
the bijection property because this one-to-one correspondence ensures that there
is a unique output in the world space for every point in the camera space. As we
will demonstrate in Sec. 4.2, simply applying a rudimentary strategy (denoted as
Naive) when overparameterizing the rigid warps of ray (camera-world) with an
MLP often does not achieve convergence, see Fig. 1c and Tab. 1. Consequently, to
attain this bijective property using an MLP, it is necessary to introduce an aux-
illary network to model the backward warps (Implicit-Invertible MLP). While
effective, it presents a significant drawback: it results in a twofold rise in the
computational complexity due to the existence of the backward network to en-
force the self-consistency. To mitigate this substantial increase in computational
demands inherent in the modified MLP approach, we propose the use of INNs for
parameterize these bijections. INN implements the bijective mappings by com-
posing affine transformations into several blocks. Within each block, the input
coordinates are divided into two segments; the first part remains constant and is
used to parameterize the transformation that is applied to the second part [6].
Besides their inherent invertiblity, INN also offers the advantage of homeomor-
phic property, which potentially facilitate a more flexible optimization trajectory
that is less susceptible to a suboptimal minimum trajectory, see Sec. 4.5

4 Experiments

4.1 Baselines

We compare our approach with two representative methods in pose-NeRF joint
optimization: the standard global SE3-approach BARF [23], and the overpa-
rameterized representation L2G [9]. For all experiments, we use the original
implementations including their default settings for coarse-to-fine scheduling,
architecture and hyperparameters, see supp. (Sec. A) for more details. Addi-
tionally, in our 2D planar experiments, we include a comparison with another
two variants called the Naive (MLP) and Implicit-Invertible MLP to execute ray
transform. This comparison is specifically designed to highlight the significance
of invertibility when employing MLPs for executing ray transformation.

Local-to-global (L2G) [9] L2G uses an MLP to predict rigid SE3 transfor-
mation for each ray. These predicted transformation parameters are then used
to analytically estimate the transformed coordinates in the world space.

Naive This is the simplest version of our baseline that uses one primary network,
denoted as hfwd : (x(C), Φt) → x(W ), to learn the forward mapping which takes
in the coordinates from the camera space (coupled with a per-frame latent code),
and outputs the corresponding coordinates in the world space.

Implicit-Invertible MLP We use two networks hfwd and hbwd to enforce
approximate invertibility. Alongside primary network hfwd, we use a secondary
network hbwd : (x(W ), Φt) → x̂(C) to invert the outputs from the primary network
hfwd. To minimize deviations from bijections, we introduce a regularization term
Limplicit as ∥x(C) − x̂(C)∥22 into the optimization problem Eq. (6).
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Explicit-Invertible INN (Ours) We explicitly model inversions in the neural
network architecture by formally learning an INN. We have chosen to utilize
architecture proposed by NDR-INN [6], see supp. (Sec. A.1) for the architecture
details that we use for all our experiments.

4.2 2D Planar Neural Image Alignment

Following BARF [9, 10, 23], we learn a 2D neural image field, for creating a
homography-based panoramic image from N patches cropped from the original
image, each generated with random homography perturbations. Specifically, we
learn a 2D coordinate network f(Θrgb) to render the stitched image. Each pixel
in the N training patch is warped using the estimated homography H to create
the rendered image. We choose the “cat” image from ImageNet [11]. We initialize
patch warps as identity and fix the gauge freedom by anchoring the first warp
to align the neural image to the original image [9,10,23]. We randomly generate
20 different homography instances, with scale-noise parameter 0.1 and 0.2 for
homography and translation, respectively. We solve Eq. (5) for the homography
using a Direct Linear Transform (DLT) solver 3.

Experiment settings. We evaluate our proposed method against BARF [23],
and our three overparameterized network variants: Naive, Implicit- and Explicit-
Invertible MLPs, as detailed in Sec. 4.1. For both naive and Implicit-Invertible
MLPs, we utilized a Leaky-ReLU MLP with five 256-dimensional hidden units,
and a 16-dimensional latent code to represent the frame-dependent embeddings
ϕt. We also follow the default coarse-to-fine scheduling established by BARF. In
the case of Implicit-Invertible MLP, we use the same architecture both hfwd and
hbwd. We use the Adam optimizer [19] to optimize for both the network weights
Θrgb and ΘW . We set the learning rate for both Θrgb and ΘW at 1×10−3, with
both decaying exponentially to 1× 10−4 and 1× 10−5, respectively. We set the
weighting term for Lrigid for both overparameterized MLPs to 1 × 102 and the
consistency term Limplicit for Implicit-Invertible MLP to 1× 101.

Robustness to noise perturbations Fig. 3 analyzes the robustness of BARF
and our approach under different noise perturbations across 20 different homog-
raphy instances. Each run began with the initialization of the homography using
the “groundtruth”, and noise perturbations were gradually introduced, ranging
from 0 to 0.3 to the translation component of the homography. Fig. 3 indicates
that our representation exhibits a higher tolerance to noise compared to BARF.

Results. Tab. 1 summarizes the statistical results from 20 runs, where we re-
port the warp error and patch reconstruction error. We quantify the warp error
in terms of corner error, defined as the L2 distance between the groundtruth
corner position and estimated corner position, and PSNR as the metric to as-
sess the reconstruction quality. We used 5-pixel threshold to define the success
3 https://github.com/kornia/kornia

https://github.com/kornia/kornia
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Fig. 3: Basin convergence analysis of our approach versus BARF in a 2D planar experi-
ment. On the left, we show the success rate of 20 runs, where we initialize the homogra-
phy using groundtruth, and gradually introduced noise perturbations to the translation
component. The noise scale is varied from 0 to 0.30. We used 5-pixel threshold to de-
termine success convergence. Notably, our approach (blue) demonstrates higher noise
tolerance compared to BARF (red). On the right, we show a qualitative comparison
when both methods are perturbed with the highest magnitude of noise.

Table 1: Statistical result for 20 homography runs, with scale noise of 0.1 for homog-
raphy and 0.2 for translation. The warp error is quantified in terms of corner error,
and the patch reconstruction error in measured in PSNR. We provide mean and std
dev for the evaluation. We used 5-pixel threshold to determine success convergence.

Corner error (px) ↓ Patch PSNR ↑ Success rate ↑
Mean Std. dev. Mean Std. dev. (Upper bound:1.00)

BARF [23] 29.63 28.18 28.94 4.38 0.30

Naive 85.59 30.31 25.86 2.07 0.00
Implicit-Invertible 13.92 22.93 33.70 3.93 0.65
Explicit-Invertible (INN) 4.70 6.47 34.71 2.37 0.75

convergence. Fig. 1 presents a qualitative result for a homography instance. By
enforcing approximate invertibility, the Implicit-Invertible MLP demonstrates a
significantly higher rate of successful convergence compared to the naive version
of MLP, with success rates improved by 65%. We further show that by explicitly
injecting invertibility into the architecture (Ours), the success rate is increased to
75%. This result reinforces that invertibility is crucial when learning rigid warp
functions via overparameterization, and using an architecture that guarantees
bijective property is effective in ensuring the pose converge to an optimal solution
during joint optimization in practice. Henceforth, we will focus exclusively on
using our INN-based approach for subsequent results. For completeness, we also
compare with another setup, where each frame is parameterized with a neural
network, see supp. (Sec. B.1). Interestingly, apart from the parameter efficiency,
we find that using a single global neural network for all frames is sufficient to
converge to a good pose solutions. We hypothesized that the difference may be
attributed to the benefits of gradient sharing in the shared neural network setup.
This result is aligned with the findings by Bian et al . [4]. Consequently, we ad-
here to the design where we use one single INN shared across all the frames,
coupled with a frame-specific latent code for the rest of our experiments.
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(a) BARF [23] (b) L2G [9] (c) INN(Ours)
Fig. 4: Qualitative analysis of reconstruction error on leaves (top) and trex (bottom).
We present the average image reconstruction error through insets. Our approach
presents the lowest misalignment error, as indicated darker areas in the error map.

4.3 Neural Radiance Fields (NeRF)

In this section, we compare our proposed representation with BARF [23] and
L2G [9]. We assume known intrinsics for all methods. We perform our experi-
ments on both the LLFF [24] (Sec. 4.4), DTU [15] (Sec. 4.6) as well as Blender
datasets in supp. (Sec. B2). We solve Eq. (5) for the global rigid SE3 transfor-
mation using Umeyama algorithm 4.

Evaluation metrics. For pose estimation, we report the accuracy of the poses
after globally aligning the optimized poses to the groundtruth [9,10,23,37]. 5 We
assess view synthesis using PSNR, SSIM and LPIPS. A standard procedure in
view synthesis evaluation involves performing test-time photometric optimiza-
tion on the trained models. This additional step is intended to factor out the
pose errors, which may otherwise compromise the quality of the synthesized
views [9, 10, 23, 36, 37]. This process is akin to a pose refinement method which
minimises the photometric error on the synthesized image while keeping the
trained NeRF model fixed. However, it is important to recognize that this pose
correction may not accurately represent the initial accuracy of the methods in
terms of pose estimation for view synthesis. Therefore, we opt to report the view
synthesis quality both before and after the pose refinement step. On DTU, we
extend our evaluation to include comparisons of rendered depth with ground-
truth depth using mean depth absolute error, as well as reconstruction accuracy
using Chamfer distance. For the Chamfer evaluation, we utilize the optimized
poses estimated from all methods and employ a neural surface reconstruction al-
gorithm called Voxurf [41] for geometry reconstruction. Further details on pose
alignment and metrics computations in the supp. (Sec. A).

4.4 Forward Facing Scenes: LLFF

Experiment settings. The standard LLFF benchmark dataset [24] consists
of eight real-world, forward-facing scenes captured using hand-held cameras.
4 https://github.com/naver/roma
5 For our proposed method, we evaluate the estimated global poses Eq. (5).

https://github.com/naver/roma
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Table 2: Evaluation of the LLFF dataset [24] using initial identity poses. We compute
results for BARF [23] and L2G [9] using their codebases. The results are averaged
over all eight scenes, see supp. (Sec. B) for a breakdown of results per scene.

Pose accuracy Novel view synthesis
Rotation Translation Before test-time After test-time

( ◦) (×100) PSNR SSIM LPIPS PSNR SSIM LPIPS

BARF [23] 0.90 0.40 17.00 0.41 0.32 23.82 0.72 0.24
L2G [9] 0.48 0.30 17.99 0.46 0.26 24.35 0.75 0.21

INN(Ours) 0.31 0.24 19.31 0.52 0.25 24.28 0.74 0.22

Following [10, 23, 37], we initialize all camera poses with the identity transfor-
mations for all the methods. We employ the same training and testing split as
in BARF [23]. We use the evaluation metrics described in Sec. 4.3.

Implementation details. We train all methods for 200k iterations and ran-
domly sample 2048 pixel rays at each optimization step [9, 10, 23]. We train
without hierarchical sampling. We set the learning for Θrgb to be 1 × 10−3 de-
caying to 3× 10−4, and 5× 10−4 for ΘW decaying to 1× 10−6. We also follow
the default coarse-to-fine scheduling by BARF [23], see supp. for full details.

Results. Our approach achieves a substantial reduction of rotation errors (70%
vs. BARF and 35% vs. L2G) and translation errors (50% vs. BARF and 20%
vs. L2G). Additionally, the superior performance of both our method and L2G
over BARF further highlight the merits of overparameterization for simultane-
ous pose and neural field estimation. This significant improvement in camera
pose accuracy directly enhances the performance of view synthesis, as evident in
Tab. 2. In particular, instances such as trex and leaves observe a significant im-
provement. Fig. 4 illustrates the absolute error between the original image and
the rendered image on these two instances. Our approach presents the lowest
misalignment error, as indicated darker areas in the error map. It is important
to note, however, while L2G and our approach appear comparable after test-
time optimization, this refinement procedure has mitigated the pose estimation
noise to improve PSNR, as discussed in Sec. 4.3. For more qualitative results
and ablation studies, please refer to supp. (Sec. B).

4.5 Homeomorphism perspective: A qualitative analysis

We present a qualitative analysis on a single-view pose estimation that sheds
light on the empirical effectiveness of our approach compared to the L2G method
[9]. Our method leverages the concept of an INN, which predict homeomor-
phisms—continuous, invertible transformations not limited to the rigid motions
of the SE(3) group. Unlike the L2G method, which constrains pose estimation
within the rigid bounds of SE(3), our INN-based approach embraces a broader
spectrum of transformations. This grants the optimization process a higher de-
gree of flexibility, allowing for a diverse range of optimization paths and facili-
tating a smoother trajectory towards the solution. To empirically validate our
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Fig. 5: Qualitative analysis of intermediate rendered image compared to superimposed
Groundtruth (lighter visualization) when using L2G [9] and our approach on single-
view pose estimation. Notably, when using our approach for pose estimation, we observe
noticeable deformation in the rendered scene depicted in the bottom row (zoom in for
better view). These deformations indicate that at each iteration, the INN predicts
general homeomorphisms that are not rigid transformation. Thus yielding a flexible
optimization trajectory that does not land in a suboptimal minimum trajectory.
Table 3: Absolute pose accuracy evaluation of the DTU dataset [15] using initial
noisy poses that corresponds to an average rotation and translation error of 15◦ and
70 respectively. The upper section shows rotation errors in degrees, while the lower
section displays translation errors (×100). red box denotes the best result.

Scan IDs | Initial rotation err: 15◦, translation err (×100) : 70
Methods Metric 24 37 40 55 63 65 69 83 97 105 106 110 114 118 mean

BARF 1.04 1.88 0.55 2.85 0.43 0.78 3.88 0.54 2.20 3.56 11.81 2.01 1.21 2.60 2.52
L2G rotation 0.90 3.07 0.57 10.81 0.74 0.94 1.55 0.59 0.64 2.85 13.15 5.92 2.90 12.47 4.08
INN(Ours) 0.21 0.48 0.73 1.64 0.40 0.62 2.75 0.55 0.54 0.30 3.89 2.91 1.06 0.25 1.17

BARF 3.00 4.08 2.09 11.63 1.43 2.78 12.80 2.13 6.12 12.40 25.88 5.52 4.08 5.04 7.07
L2G translation 2.40 8.80 2.13 32.74 2.78 3.48 5.08 2.31 2.37 5.34 36.20 14.01 8.64 37.16 11.67
INN(Ours) 0.50 1.01 0.97 5.24 0.96 0.78 5.30 0.67 1.19 0.43 9.96 11.52 3.78 0.64 3.07

hypothesis, we conducted experiments using a trained NeRF model to estimate
the camera pose relative to a 3D scene, aiming to minimize the photometric er-
ror between NeRF-rendered and actual observed images. Despite starting from
the same initial pose (off by 20

◦
), and employing a random sampling of 2048

rays per iteration for all methods, our INN approach outperformed the L2G
method. The L2G method often converged to suboptimal poses, whereas the
INN method achieved accurate pose estimation, as evidenced in Fig. 5 where
the NeRF-rendered images is well-aligned with the groundtruth. This success
can be attributed to the INN’s ability to predict a general homeomorphim, a
transformation more general than a rigid transformation, which offers a signif-
icant advantage in navigating the optimization landscape more effectively and
avoiding suboptimal local minima.

4.6 360◦ Scenes: DTU

Experimental settings. We evaluated on 14 test scenes from DTU [4]. Fol-
lowing [9, 23, 37], we synthetically perturb the ground-truth camera poses with
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Table 4: Geometry evaluation of the DTU dataset [15], using initial noisy poses that
corresponds to an averange rotation and translation error of 15◦ and 70 respectively.
The upper section presents mean absolute depth, while the lower section displays
reconstruction error measured by Chamfer distance. red box denotes the best result.

Scan IDs | Initial rotation err: 15◦, translation err (×100) : 70
Pose Metric 24 37 40 55 63 65 69 83 97 105 106 110 114 118 mean

BARF 0.11 0.15 0.11 0.12 0.14 0.10 0.26 0.17 0.17 0.46 0.53 0.17 0.10 0.17 0.20
L2G depth ↓ 0.08 0.24 0.12 0.38 0.17 0.12 0.11 0.18 0.10 0.18 0.24 0.17 0.12 0.84 0.22
INN(Ours) (abs) 0.06 0.14 0.13 0.12 0.15 0.08 0.18 0.17 0.11 0.11 0.13 0.30 0.08 0.06 0.13

BARF 5.47 4.07 4.39 7.64 4.83 5.28 6.43 5.74 8.06 7.21 7.75 8.29 8.24 5.47 6.35
L2G Chamfer ↓ 4.37 9.08 4.41 6.67 8.03 5.92 3.80 6.00 6.30 5.59 7.43 7.35 8.29 8.16 6.53
INN(Ours) 1.56 2.25 5.55 5.68 4.58 4.27 5.51 5.69 5.09 3.73 8.15 7.85 7.35 1.14 4.89

15% of additive Gaussian noise, which corresponds to an average rotation and
translation error of 15◦ and 70, respectively. For a fair comparison, we used the
same initialization for all methods. We refer the readers to supp. (Sec B.5) for
the results with Colmap initialization.

Implementation details. As BARF [23] and L2G [9] have not tested on DTU
datasets, given that the DTU dataset encompass 360◦ scenes which is similar to
the original Blender dataset, we adopted the original hyperparameters used by
the author for training BARF and L2G on the blender dataset. Following Bian
et al . [4], we multiply the output of their local warp network by a small factor
which is α = 0.01 for L2G [9]. For our approach, we set the learning rate for
Θrgb to be 1× 10−3 decaying to 1× 10−4, and ΘW to start from 5× 10−4 and
decaying to 1×10−8. We use the default coarse-to-fine scheduling by BARF [23].

Results. As demonstrated in Tab. 3, we outperform all baselines by a consid-
erable margin across majority of the sequences in pose accuracy. Overall, our
approach achieves approximately a 50% improvement in rotation and a 60% im-
provement in translation over BARF. When compared to L2G, our method shows
a 70% increase in accuracy for both rotation and translation. Additionally, our
approach also consistently surpasses both baselines in geometry evaluation, as
evidenced in the depth and reconstruction error in Tab. 4 and qualitative results
in Fig. 6. For the quantitative results for novel view synthesis and additional
qualitative results, we refer the readers to see supp. (Sec B).

5 Conclusion

In this paper, we examine the benefits of overparameterizating poses via a MLP
in the joint optimization task of camera pose and NeRF. We establish that in-
vertibility is a crucial property. We further show that using an Invertible Neural
Network, inherently equipped with a guaranteed bijection property, significantly
improves the convergence in pose optimization compared to existing representa-
tive methods.
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(a) BARF [23] (b) L2G [9] (c) INN(Ours) (d) Groundtruth

Fig. 6: We showcase the reconstruction results for scan24, scan55, scan105 and
scan106. All meshes are generated using a neural surface reconstruction algorithm
called Voxurf [41] using the poses estimated by different approaches.
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