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A Implementation Details

Training. The details of training configurations for full-/16-shot image classifi-
cation, cross-modal retrieval, and open-vocabulary segmentation are presented
in Table 1. Moreover, Table 2 presents the detailed training configuration for
image classification in base-to-novel generalization (C.1).
Image Augmentation. Following CLIP [29] and the previous work [11, 33],
training images are randomly cropped to match the default pixel resolution
of the model (e.g., 224×224 or 336×336), without employing additional data
augmentation techniques. For testing, images are simply resized to default image
sizes.
Text Templates. For image classification tasks, regardless of the dataset, we
utilize the 80 text templates related to ImageNet as proposed in CLIP [29]. In
the full-shot learning setting, during training, we randomly sample one of the
text templates to construct the text following FLYP [11]. For few-shot learning,
we primarily use the single text template, “a photo of a {class}”, following
CoOp [39] and CoCoOp [38]. During the evaluation, we construct the classifier
weights by employing an ensemble of prompts generated from the 80 text tem-
plates to construct the classifier weights, following CLIP, WiSE-FT [33], and
FLYP.
Open-Vocabulary Segmentation. By following [19], the original OVSeg model
consists of two components. One is a mask proposal network i.e., MaskFormer [6],
and the other is the CLIP image and text encoders [29]. Specifically, the mask
proposal network with Swin-B [21] as a backbone pre-trained on the COCO-
Stuff dataset [3] produces several segmentation masks given an image input.
Meanwhile, the CLIP image encoder is trained on the image masks from COCO
Captions [5] in two stages, starting with full fine-tuning followed by mask prompt
tuning, while freezing the CLIP text encoder. OVSeg employs a dataset com-
posed of mask proposals from MaskFormer and their predictions, which is used
for training. In contrast, we adopt a training strategy for OVSeg that is sig-
nificantly different from the original training strategy. OVSeg with our method
involves a single-stage training process focused solely on our adapters in
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Table 1: Training configurations of various tasks.

Configuration
Classification Classification Cross-Modal Open-Vocabulary

(full-shot) (16-shot) Retrieval Segmentation

Source dataset ImageNet-1K [8] ImageNet-1K [8] COCO [20] COCO Captions [5]

Image encoder
3 CLIP ViTs

CLIP ViT-B/16
2 CLIP ViTs

CLIP ViT-L/14
(B/32, B/16, L/14@336px) (B/16, L/14)

Batch size 512 256 512 256
Total epochs 10 50 10 5
Optimizer AdamW [23]
Scheduler Cosine-annealing schedule [22]
Warm-up step 500
Initial learning rate 5e−4

Drop Probability p 0.2
Momentum m 0.999
Temperature τ 0.01
Margin δ 0.05
Label Smoothing Noise ϵ 0.05 0 0 0
Re-scaling coefficient α 0.5 0.5 0.8 0.4

Table 2: Training configurations of image classification in base-to-novel generalization
setting.

Configuration
Classification

(Base-to-Novel)

Image encoder CLIP ViT-B/16

Batch size 32
Total epochs 100
Optimizer AdamW [23]
Scheduler Cosine [22]
Warm-up step 500
Initial learning rate 5e−4

Drop Probability p 0.2
Momentum m 0.9
Temperature τ 0.01
Margin δ 0.05
Label Smoothing Noise ϵ 0
Re-scaling coefficient α 0.5

the CLIP model. We utilize the ground truth masks and categories from COCO
Caption for training. This approach was initially suggested to result in perfor-
mance degradation in the original OVSeg paper (as mentioned in Table 2 of
OVSeg paper [19]). In our implementation, our method overcomes the issues
they identified and achieves even higher performance. Interestingly, we found
that the performance degraded when mask prompt tuning was used in conjunc-
tion with our method. For testing, the final class predictions are computed by
an ensemble of the prediction of MaskFormer model and the prediction of CLIP
model following the same setting of OVSeg. Specifically, when the prediction
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weight of CLIP is denoted as x and the prediction weight of MaskFormer as y,
the ensemble is expressed as y(1−λ) ∗ xλ. For the ensemble value λ, we used 0.8
in A-847, 0.75 in PC-459, 0.8 in A-150, 0.5 in PC-59, and 0.25 in PAS-20.

B Datasets Details

Image Classification. We use ImageNet (IN) [8] as the ID dataset for fine-
tuning; we evaluate the robustness of the models on five standard OOD datasets
that represent five different types of OOD scenarios: ImageNetV2 (IN-V2) [30]
is a new test set for ImageNet with distribution shift. ImageNet-R (IN-R) [14]
consists of various artistic renditions (e.g., painting, cartoons) of 200 ImageNet
classes ImageNet-Sketch (IN-Sketch) [32] contains sketch images of 1000 Ima-
geNet classes. ObjectNet [1] is a test set that contains images with 313 object
classes collected from new viewpoints on new backgrounds, where 113 classes
overlap with ImageNet. ImageNet-A (IN-A) [15] consists of natural images that
are misclassified by a pre-trained ResNet-50 [12] for 200 ImageNet classes.

Cross-Modal Retrieval. We utilize two standard benchmarks for image-text
cross-modal retrieval, COCO [20] as ID and Flickr30K [36] as OOD. For these
two datasets, each image is associated with the corresponding five captions.
Specifically, COCO is exploited as the ID dataset, and Flickr30K is utilized as
the OOD dataset which has distribution shifts in both image and text modalities.
In COCO, there are 123,287 images, and we follow the data split of [16] with
113,287 images for training, and 5,000 images for testing. Flickr30K contains
29,000 images for training and 1,000 images for testing.

Open-Vocabulary Segmentation. By following [19], we train the models on
COCO Captions [5] and evaluate them on ADE20K [37], Pascal Context [26], and
Pascal VOC [9] with 20 categories (PAS-20). Specifically, we exploit ADE20K
in two versions, one with 150 frequently used categories (A-150) and the other
with diverse 847 categories (A-847). Moreover, we also utilize Pascal Context
in two versions, one with 59 frequently used categories (PC-59) and the other
with the whole 459 categories (PC-459). Following our baseline method [19], we
train a CLIP model on the COCO Captions dataset [5] and test them on several
benchmarks as OOD: ADE20K [37], Pascal Context [26], and Pascal VOC [9].

Image Classification in Base-to-Novel Generalization. In our study of
base-to-novel generalization for image classification, we employed 11 image recog-
nition datasets as used in CoOp [39], encompassing a wide range of recog-
nition tasks. The benchmark includes: ImageNet [8] and Caltech101 [10] for
generic object classification; OxfordPets [28], StanfordCars [18], Flowers102 [27],
Food101 [2], and FGVCAircraft [25] for fine-grained classification; SUN397 [35]
for scene recognition; UCF101 [31] for action recognition; DTD [7] for texture
classification; and EuroSAT [13] for satellite imagery recognition.
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C Additional Experiments

C.1 Generalization From Base to Novel Classes

We conduct experiments to further emphasize generalizability by utilizing 11
datasets to measure the generalization performance in a base-to-novel setting
following CoCoOp [38]. On each of the 11 datasets, we divide the classes into
two equal groups: base classes and novel classes. All models are trained using
only the base classes, with 16 samples per class, while evaluation is conducted
on both base and novel classes separately to test generalizability.

As a default setting for training on few-shot datasets, we construct a text
description of the target class employing a single text-template. We experiment
with two settings varying bottleneck dimensions of R-Adapter: 4-rank and full-
rank, with fewer and more parameters, respectively. We further explore the
model when employing a full-rank structure and sampling templates from a
predefined set of multiple text templates. The results are shown in Table 3.
Advantages in Performance. Our model with full-rank significantly outper-
formed the existing state of the art on most datasets by a large margin. Our
method shows an average improvement of more than 1%p in base classes and over
0.7%p in novel classes compared to existing methods. Additionally, our model
with 4-rank, which has a similar number of parameters as existing methods, per-
formed better on new classes compared to our full-rank one, clearly achieving
state-of-the-art performance. Overall, in terms of harmonic mean, our method
achieves higher performance than existing methods, except for MaPLe [17].
Moreover, we found that using a set of multiple text-templates for sampling
and training, instead of a single text-template, resulted in even greater perfor-
mance gains. Consequently, this approach yields a 1.13%p improvement in the
harmonic mean over the MaPLe, demonstrating the effectiveness of diversifying
textual input during training.
Advantages in Efficiency. Our method easily adjusts to the required num-
ber of parameters by controlling the bottleneck dimension, without any added
latency during inference. However, all existing baseline methods increase infer-
ence latency with added parameters since they involve adding input sequences.
Especially, MaPLe, which achieved state-of-the-art performance, adds prompts
to both text and visual encoders, significantly increasing its inference latency.
Considering these factors, our method is highlighted for maintaining the same
amount of computation as the original pre-trained model while achieving state-
of-the-art performance.

C.2 Detailed Comparison to Parameter-Efficient Fine-Tuning

In this analysis, we conduct a detailed comparison among parameter-efficient
fine-tuning (PEFT) methods, specifically focusing on LoRA, AdaptFormer, and
RepAdapter. It’s important to recall that R-Adapter utilizes a bottleneck mod-
ule consisting of two matrices when the adapter rank is smaller than the hidden
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dimension of the backbone encoder. Conversely, R-Adapter with a full-rank em-
ploys a singular matrix due to the omission of non-linear layers, leveraging a
multiplicative bottleneck structure. In our experiment, regardless of methods,
all adapter modules are uniformly attached to both image and text encoders,
ensuring fairness. However, the attachment locations and attachment manner
differ among the approaches, leading to variations in the number of parameters
even at the same rank.

We note that as the rank increases across all methods, there is a corre-
sponding increase in the number of parameters, which significantly enhances
performance in ID data. However, all existing methods show a decrease in OOD
generalization performance as rank increases. In contrast, our method demon-
strates robustness in OOD even at lower ranks and, unlike other methods, shows
an improvement in OOD performance as the rank increases, creating a substan-
tial gap in OOD performance between our method and existing approaches.
Consequently, when using a similar number of parameters, our method not only
outperforms existing PEFT methods in terms of performance but also ensures
robustness irrespective of rank.

C.3 Additional Ablation Studies

Ablation Study on Re-scaling Coefficient. We investigate the impact of
the re-scaling coefficient α in various tasks. The effect varies with each task and
dataset, and as the distribution shift between in-distribution (ID) and out-of-
distribution (OOD) data increases, performance improvement is noted when the
re-scaling parameter value is smaller. In ImageNet classification, as analyzed
in WiSE-FT [33], fixing the scaling parameter to 0.5 yields sufficiently high
performance for both ID and OOD data, and tuning it can achieve even higher
performance. In Cross-modal Retrieval, although the distribution gap between
COCO and Flickr30K is not very large, a continuous increase is observed as the
scaling parameter increases. However, performance improvement is still noted
compared to when scaling is not applied. In open vocabulary segmentation,
we observe that the mIOU performance generally improves as the coefficient
moderately increases, but it tends to decrease again when the coefficient becomes
too large.
Ablation Study on Label Smoothing Coefficient. We conducted an ab-
lation study on the label smoothing coefficient ϵ, which is not included in the
main text of the paper due to space limitations. The results of experiments on
ImageNet using ViT-B/32 are presented in Table 6. We observe that increasing
the label smoothing parameter up to 0.05 leads to performance improvements in
both In-Distribution (ID) and Out-of-Distribution (OOD) settings. However, we
also notice that label smoothing does not always benefit all tasks. While there
is a clear performance improvement in the full-shot setting of ImageNet classifi-
cation, in cases with fewer samples like the few-shot setting, or in settings other
than classification, even a weak label smoothing noise can deteriorate perfor-
mance. Our proposed loss, MPM-NCE, can consider multiple positive samples
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Fig. 1: Performance of our method varying re-scaling coefficient α in Eq. 9. The ac-
curacy of each Cross-modal Retrieval is the sum of the performances in recall@K for
Image retrieval (R@1, R@5, R@10) and the performances in recall@K for text retrieval
(R@1, R@5, R@10). The accuracy of open vocabulary segmentation is the average of
mIOU of 5 standard datasets.

and also easily apply traditional regularization techniques like label smoothing,
and thus get benefit from them.

D Training Time Comparison

We compare and discuss the training latency of our method with the existing
state-of-the-art method, Mask-Fill. The training latency for Mask-Fill is 8.44ms
per image, whereas, for our method, it is only 1.82ms per image, tested on 64
batches with 3090 GPU. The training latency for Mask-Fill is computed using its
official implementation1. The reasons for the increased latency during training
time and discussion comparing with our method are as follows:

Mask-Fill enhances robustness by using masked images as counterfactual
samples, which helps improve the robustness of the fine-tuning model. It gener-
ates masked images and then distills the information for the masked parts from
a pre-trained model. This process involves extra computation time for creat-
ing masks and generating new images by combining different images. Moreover,
for distillation, two images need to be forwarded by the training model, and
one of them is forwarded by a pre-trained model during each iteration. Con-
sequently, this training method results in longer time consumption compared
to conventional fine-tuning methods. In contrast, our method avoids such com-
plex processing and learns fewer parameters, enabling faster training speeds.
This experiment demonstrates that our method not only surpasses the existing
state-of-the-art method in performance but is also superior in terms of training
time.

1 https://github.com/Coxy7/robust-finetuning

https://github.com/Coxy7/robust-finetuning
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Table 3: Comparison with fine-tuned methods from CLIP in base-to-novel generaliza-
tion. All methods are trained from the base classes (16 shots). HM denotes Harmonic
mean [34] which emphasizes the generalization trade-off. Superscripts denote the rank
of adapter modules. “MT” represents that text description of the target class is con-
structed by sampling from a set of multiple predefined templates as used in FLYP [11].

Base Novel HM

CLIP [29] 69.34 74.22 71.70
CoOp [39] 82.63 67.99 74.60
CoCoOp [38] 80.47 71.69 75.73
KgCoOp [39] 80.73 73.60 77.00
MaPLe [17] 82.28 75.14 78.55

Ours4 80.06 76.27 78.11
Ours8 81.74 76.45 79.01
Ours16 82.34 76.25 79.18
Ours32 83.00 76.16 79.43
OursFull 83.21 75.82 79.34
OursFull (MT) 83.64 76.08 79.68

(a) Average over 11 datasets

Base Novel HM

CLIP [29] 72.43 68.14 70.22
CoOp [39] 76.46 66.31 71.02
CoCoOp [38] 75.98 70.43 73.10
KgCoOp [39] 75.73 69.96 72.78
MaPLe [17] 76.66 70.54 73.47

Ours4 76.38 71.38 73.87
Ours8 76.39 71.81 74.03
Ours16 76.38 71.58 73.90
Ours32 76.76 71.64 74.11
OursFull 77.57 71.58 74.46
OursFull (MT) 77.74 71.70 74.60

(b) ImageNet

Base Novel HM

CLIP [29] 96.84 94.00 94.50
CoOp [39] 98.11 93.52 95.76
CoCoOp [38] 97.96 93.81 95.84
KgCoOp [39] 97.72 94.39 96.03
MaPLe [17] 97.74 94.36 96.02

Ours4 97.74 95.85 96.79
Ours8 98.44 96.02 97.22
Ours16 98.21 96.19 97.19
Ours32 98.67 95.77 97.20
OursFull 98.83 95.67 97.23
OursFull (MT) 98.21 96.36 97.28

(c) Caltech101

Base Novel HM

CLIP [29] 91.17 97.26 94.12
CoOp [39] 94.24 96.66 95.43
CoCoOp [38] 95.20 97.69 96.43
KgCoOp [39] 94.65 97.76 96.18
MaPLe [17] 95.43 97.76 96.58

Ours4 93.73 97.71 95.68
Ours8 95.75 96.92 96.33
Ours16 95.96 98.04 96.99
Ours32 95.91 97.54 96.72
OursFull 95.80 97.37 96.58
OursFull (MT) 96.65 97.48 97.07

(d) OxfordPets

Base Novel HM

CLIP [29] 63.37 74.89 68.65
CoOp [39] 76.20 60.40 72.49
CoCoOp [38] 70.49 73.59 72.01
KgCoOp [39] 71.76 75.04 73.36
MaPLe [17] 72.94 74.00 73.47

Ours4 79.11 74.85 76.92
Ours8 78.74 75.58 77.12
Ours16 77.87 75.05 76.44
Ours32 78.91 75.88 77.36
OursFull 81.24 75.98 78.52
OursFull (MT) 81.88 74.15 77.82

(e) StanfordCars

Base Novel HM

CLIP [29] 72.08 77.80 74.83
CoOp [39] 97.63 69.55 81.23
CoCoOp [38] 94.87 71.75 81.71
KgCoOp [39] 95.00 74.73 83.65
MaPLe [17] 95.92 72.46 82.56

Ours4 87.34 74.03 80.14
Ours8 91.42 72.63 80.95
Ours16 91.33 73.79 81.63
Ours32 92.86 74.34 82.57
OursFull 90.09 73.25 81.16
OursFull (MT) 95.07 73.56 82.94

(f) Flowers102

Base Novel HM

CLIP [29] 90.10 91.22 90.66
CoOp [39] 89.44 87.50 88.46
CoCoOp [38] 90.70 91.29 90.99
KgCoOp [39] 90.50 91.70 91.90
MaPLe [17] 90.71 92.05 91.38

Ours4 90.28 90.79 90.54
Ours8 90.50 91.31 90.9
Ours16 90.58 91.33 90.95
Ours32 90.55 91.42 90.98
OursFull 90.29 90.05 90.17
OursFull (MT) 90.46 91.33 90.89

(g) Food101

Base Novel HM

CLIP [29] 27.19 36.29 31.09
CoOp [39] 39.24 30.49 34.30
CoCoOp [38] 33.41 23.71 27.74
KgCoOp [39] 36.21 35.55 34.83
MaPLe [17] 37.44 35.61 36.50

Ours4 36.01 37.07 36.54
Ours8 35.71 37.55 36.61
Ours16 39.20 36.71 37.91
Ours32 39.56 35.33 37.33
OursFull 41.48 36.17 38.64
OursFull (MT) 40.04 35.73 37.77

(h) FGVCAircraft

Base Novel HM

CLIP [29] 69.36 75.35 72.23
CoOp [39] 80.85 68.34 74.07
CoCoOp [38] 79.74 76.86 78.27
KgCoOp [39] 80.29 76.53 78.36
MaPLe [17] 80.82 78.70 79.75

Ours4 80.42 78.43 79.42
Ours8 81.41 78.63 79.99
Ours16 81.76 77.98 79.82
Ours32 82.08 78.24 80.12
OursFull 81.38 78.06 79.68
OursFull (MT) 82.70 78.36 80.48

(i) SUN397

Base Novel HM

CLIP [29] 53.24 59.90 56.37
CoOp [39] 80.17 47.54 59.68
CoCoOp [38] 77.01 56.00 64.85
KgCoOp [39] 77.55 54.99 64.35
MaPLe [17] 80.36 59.18 68.16

Ours4 73.15 66.43 69.62
Ours8 77.43 66.91 71.79
Ours16 79.05 63.89 70.67
Ours32 79.86 64.37 71.28
OursFull 83.45 64.13 72.53
OursFull (MT) 83.33 64.62 72.79

(j) DTD

Base Novel HM

CLIP [29] 56.48 64.05 60.03
CoOp [39] 91.54 54.44 68.27
CoCoOp [38] 87.49 60.04 71.21
KgCoOp [39] 85.64 64.34 73.48
MaPLe [17] 94.07 73.23 82.35

Ours4 84.88 75.85 80.11
Ours8 90.33 76.03 82.56
Ours16 90.74 75.54 82.44
Ours32 92.74 74.79 82.81
OursFull 90.14 74.26 81.43
OursFull (MT) 88.74 74.92 81.25

(k) EuroSAT

Base Novel HM

CLIP [29] 70.53 77.50 73.85
CoOp [39] 85.14 64.47 73.37
CoCoOp [38] 82.33 73.45 77.64
KgCoOp [39] 82.89 76.67 79.65
MaPLe [17] 83.00 78.66 80.77

Ours4 81.64 76.58 79.03
Ours8 83.04 77.61 80.23
Ours16 84.64 78.69 81.56
Ours32 85.06 78.47 81.63
OursFull 85.06 77.45 81.07
OursFull (MT) 85.21 78.64 81.79

(l) UCF101
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Table 4: Harmonic mean accuracy on base and novel classes. All methods are fine-
tuned with 16 shots per base class.

Methods Param Avg IN Cal Pets Cars Flo Food Air SUN DTD Euro UCF

MaPLE 3.55 M 78.6 73.5 96.0 96.6 73.5 82.6 91.4 36.5 79.8 68.2 82.4 80.8

Ours4 0.25 M 78.1 73.9 96.8 95.7 76.9 80.1 90.5 36.5 79.4 69.6 80.1 79.0
Ours8 0.49 M 79.0 74.0 97.2 96.3 77.1 81.0 90.9 36.6 80.0 71.8 82.6 80.2
Ours16 0.98 M 79.2 73.9 97.2 97.0 76.4 81.6 81.0 37.9 79.8 70.7 82.4 81.5
Ours32 1.97 M 79.4 74.1 97.2 96.7 77.4 82.6 91.0 37.3 80.1 71.3 82.8 81.6

Table 5: Top-1 accuracy of parameter-efficient fine-tuning methods on ImageNet (ID)
and OOD datasets with ViT-B/32. Superscripts denote the rank of adapter or LoRA.

Methods
Trainable ID Out-Of-Distribution (OOD)

Params (M) IN OOD avg. IN-V2 IN-R IN-Sketch ObjectNet IN-A

AdaptFormer16 [4] 0.5 74.7 48.9 64.3 63.8 41.7 45.5 29.3
RepAdapter16 [24] 1.0 74.3 49.7 64.4 65.1 42.4 46.0 30.4
Ours16 1.0 74.5 52.5 65.1 69.5 45.8 47.9 34.0

AdaptFormer128 [4] 3.9 75.6 48.3 64.5 61.7 41.0 45.0 29.3
RepAdapter128 [24] 7.8 76.3 48.9 65.2 62.7 41.9 45.7 29.2
Ours128 7.8 76.7 53.7 66.9 70.2 47.1 48.7 35.5

LoRAFull 163.6 78.0 48.2 66.2 60.0 42.3 45.0 27.4
AdaptFormerFull [4] 20.5 77.2 48.5 66.4 60.6 42.2 45.2 28.0
RepAdapterFull [24] 41.0 76.9 47.7 65.5 60.1 41.3 44.2 27.6
OursFull 20.5 77.7 54.3 67.7 70.8 47.8 49.7 35.6

Table 6: Ablation study on label smoothing coefficient ϵ in Eq. 10.

Label Smoothing Noise ϵ ID OOD

0 77.3 53.9
0.01 77.5 54.1
0.03 77.5 54.2
0.05 77.7 54.3
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