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Abstract. Unsupervised 3D instance segmentation aims to segment ob-
jects from a 3D point cloud without any annotations. Existing meth-
ods face the challenge of either too loose or too tight clustering, lead-
ing to under-segmentation or over-segmentation. To address this issue,
we propose Part2Object, hierarchical clustering with object guidance.
Part2Object employs multi-layer clustering from points to object parts
and objects, allowing objects to manifest at any layer. Additionally, it
extracts and utilizes 3D objectness priors from temporally consecutive
2D RGB frames to guide the clustering process. Moreover, we propose
Hi-Mask3D to support hierarchical 3D object part and instance segmen-
tation. By training Hi-Mask3D on the objects and object parts extracted
from Part2Object, we achieve consistent and superior performance com-
pared to state-of-the-art models in various settings, including unsuper-
vised instance segmentation, data-efficient fine-tuning, and cross-dataset
generalization. Code is release at https://github.com/ChengShiest/
Part2Object.
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1 Introduction

3D instance segmentation, parsing semantic compositions from complex point
cloud scenes into distinct objects, is fundamental and crucial in real-world appli-
cations, such as mixed reality [51], autonomous navigation [3,52], planning [23],
and manipulation [17]. In recent years, 3D instance segmentation has seen sub-
stantial advancements [19, 37, 38, 42, 55, 62], improving both the accuracy and
efficiency of object localization and recognition. Nevertheless, it often demands
large-scale human annotations for fully-supervised training, resulting in costly
and manpower-intensive efforts. While a few studies [33, 47] have initiated to
address 3D instance segmentation without human annotations, their reliance on
3D scene flows from sequential point clouds restricts their applicability to single
point cloud scenarios, such as indoor scenes in ScanNet [12].
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Fig. 1: Motivation of our hierarchical clustering. Single-level clustering results
in a trade-off between under-segmentation for certain objects and over-segmentation
for others. In contrast, our hierarchical clustering allows for gathering and identifying
objects at varying levels of clustering granularity.

Toilet

Clustering

Layer 1

Clustering

Layer 2

Clustering

Layer 3

Clustering

Layer 4

Super Point

Layer 0

Chair

BedPillow

tissue

Table

In this paper, we study unsupervised 3D instance segmentation, aiming to
segment class-agnostic instances from indoor 3D scenes without relying on any
human labels. To address this problem, two straightforward strategies have been
explored recently: 1) to apply traditional clustering [16, 32] or graph-cut meth-
ods [66] to group points into objects based on their RGB-D data, such as co-
ordinates, colors, normal vectors, and self-supervised pretraining features [41].
2) To project 2D instance segmentation results from 2D RGB frames onto the
point cloud using the corresponding camera pose. Typically, 2D RGB frames
are captured concurrently with indoor point cloud data [12, 39], while 2D in-
stance masks are extracted using 2D unsupervised instance segmentation ad-
vancements [59–61]. However, both strategies can only work in straightforward
scenes with few salient objects, as they cannot tackle the fundamental challenges
inherent in unsupervised 3D instance segmentation, as outlined below.

In complex scenes, achieving consistent segmentation granularity for
different objects within a single clustering and graph-cut result is chal-
lenging , given the significant variations in geometric shape, color, and size
among 3D objects, as well as the diverse compositions of these objects within
scenes. This entails a trade-off between under-segmentation for certain objects
and over-segmentation for others, making it almost impossible to attain satisfac-
tory segmentation granularity for all of them. As shown in Fig 1, tighter group-
ing can accurately segment objects with simple geometric shapes and textures,
such as the pillow on the bed (see layer one). However, it can also result in the
over-segmentation of larger and more complex objects like the toilet in the same
layer (layer one), and vice versa. In addition, there is a lack of an effective
strategy to identify whether a point cluster or group represents a 3D
instance. For example, the toilet back (see layer two) forms a well-grouped clus-
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ter, but it does not constitute a meaningful object. The 3D geometric features
are fundamentally semantically insufficient to identify objects. Recently, it has
been discovered that self-supervised vision transformer (ViT) features contain
information about object segmentations in 2D images [6, 60]. Building on this
discovery, 3D unsupervised instance segmentation approaches [41] project the
2D self-supervised ViT features (or their inferred object segmentations) from
2D RGB frames onto 3D point clouds, thereby enhancing the perception of ob-
jectness for 3D point features. However, a 3D point typically corresponds to
multiple pixels in different 2D RGB frames, and this many-to-one mapping is
fragile, easily disrupted by noise features or imprecise masks on any frame, re-
sulting in an inability to distinguish one object from others or the segmentation
of objects into fragmented segments, as illustrated in Fig 3(b) and (c). In addi-
tion, despite enhanced point features, discerning nearby objects or those sharing
similar semantics remains challenging due to the inherently greater complexity
of 3D scenes compared to 2D images.

To tackle these challenges, we introduce a simple yet effective principle,
“Gather & Aim”, for the automatic discovery and segmentation of 3D objects.
For the gathering , inspired by the observation that tighter or looser groupings
can respectively include certain objects within a scene, we propose allowing the
gathering of potential objects at varying levels of grouping granularity, rather
than being restricted to a single level. Specifically, we perform hierarchical clus-
tering in the 3D scene, gradually grouping points into larger clusters, as illus-
trated in Fig 1. Therefore, instead of striving to improve single-layer clustering
results, ours is expected that as long as each potential instance appears in one of
the layers, we will be able to lock onto the segmentation mask of that instance.
This mitigates excessive reliance on any single-level clustering results, thereby
enhancing the clustering’s adaptability to significant variations among objects
and scenes. For the aiming , we propose to target the 3D objectness priors, a set
of candidate objects, from temporally consecutive 2D RGB frames. We leverage
both the temporal consistency across frames and the prior knowledge of unsu-
pervised object discovery within frames to extract the 3D objectness priors. Note
that we jointly estimate 2D objects from multiple frames first and then approx-
imate object-level 3D bounding boxes, departing from the point-level projection
used in previous methods [41], to address the fragility issue of the many-to-one
mapping from pixels to points. It avoids adhesive or scattered 3D fragments
caused by inconsistencies and occlusions over 2D RGB frames. Finally, the 3D
bounding boxes serve as indicators to identify the 3D instance masks within the
multi-level clusters. Our “Gather & Aim” strategy enables leverage of 2D seman-
tic priors for 3D object identification while harnessing 3D geometric priors for
precise instance segmentation.

Furthermore, the taxonomy of how object parts are composed into an ob-
ject is a strong yet disregarded prior information for unsupervised 3D instance
segmentation. For example, the taxonomy based on the parts of a chair, in-
cluding the back, arm, seat, and leg, can assist in addressing highly challenging
scenarios, such as distinguishing two closely positioned and semantically similar
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chairs as two separate instances. Thanks to our hierarchical clustering, we can
not only identify objects but also trace their constituent parts (see the toilet
and its parts in layers three and two, respectively). Therefore, we extract both
objects and object parts from our hierarchical clustering and name our clus-
tering algorithm Part2Object. Expanding on this, we enhance the 3D instance
segmentation framework, Mask3D [42], to support hierarchical 3D part and in-
stance segmentation. Our improved model, named Hi-Mask3D, takes the object
and object parts from Part2Object as pseudo-labels for learning 3D instance
segmentation by incorporating explicit interactions between object parts and
objects.

To evaluate the effectiveness of our Part2Object clustering and Hi-Mask3D
model, we conduct experiments on the challenging and cluttered indoor environ-
ments [4, 12, 39] in three settings: 1) direct evaluation on unsupervised instance
segmentation, 2) application to data-efficient fine-tuning, and 3) cross-dataset
generalization, all showing significant performance improvement. In summary,
our contributions are multi-fold:

– We propose two key insights for unsupervised 3D instance segmentation: 1)
Employing hierarchical clustering enables the gathering of objects at varying
levels of clustering granularity. 2) Leveraging 3D objectness priors from tem-
porally consecutive 2D frames as guidance, while harnessing 3D geometric
priors to clustering on the point cloud for precise instance segmentation.

– Based on our insights, we propose an innovative hierarchical clustering ap-
proach, Part2Object. It progressively groups points into object parts and ob-
jects while extracting and leveraging 3D objectness priors to guide the clus-
tering process. Our Part2Object significantly outperforms the state-of-the-
art training-free unsupervised 3D instance segmentation methods by 16.8%
mAP@50 on the ScanNet dataset.

– We propose Hi-Mask3D, an extension of 3D instance segmentation to sup-
port hierarchical unsupervised 3D part and instance segmentation. Exper-
iments demonstrate that Hi-Mask3D consistently and significantly outper-
forms state-of-the-art models in all the settings.

2 Related Work

Unsupervised 3D instance segmentation. 3D instance segmentation is an
essential task in 3D scene understanding, which aims to locate and recognize
different objects in a 3D point cloud. However, the cost and labor intensity
of 3D scene-level instance annotation underscore the significance of exploring
challenging unsupervised instance segmentation methods. Early works utilize
raw geometric information, including coordinates, colors, and normal vectors, to
perform traditional clustering [15,16,32] for segmentation. Recently, inspired by
the new paradigm in 2D unsupervised instance segmentation, some works [41,66]
introduce pseudo labels and self-training to unsupervised 3D instance segmenta-
tion. Specifically, these methods use 2D or 3D self-supervised models to extract
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point cloud features, applying graph-cut algorithms to generate pseudo-labels for
training and prediction. As illustrated earlier, the clustering method encounters
a trade-off between under-segmentation and over-segmentation. Relying on a sin-
gle graph-cut algorithm, as recent works do, falls short of achieving consistent
granularity in complex indoor environments.
Transfer 2D foundation models into 3D. The rapid advancements in 2D
vision have given rise to powerful foundation models [2,6,13,18,26,28,43–45,53],
proving beneficial across a variety of visual tasks. In contrast to the 2D domain,
3D vision encounters challenges with data scarcity and training limitations, hin-
dering the development of foundation models. Consequently, several works in
the 3D turn to leveraging 2D foundation models to address 3D problems. In 3D
instance segmentation, some works [7,64] utilize 2D vision foundation models to
generate pseudo-labels for 2D images, aiding in the training and prediction of
3D models through 2D to 3D projection algorithms. Other works [31,36] employ
features rather than outputs obtained from 2D foundation models, enhancing
the feature extraction capabilities of 3D models through pixel-point alignment.
However, relying solely on 2D features or 2D pseudo-labels poses challenges in
addressing cluttered indoor scenes with stacked objects.
Supervised point cloud segmentation. Supervised point cloud segmenta-
tion can be divided into instance-level and part-level segmentation. The for-
mer has been significant breakthroughs in recent years [8, 19, 20, 22, 25, 27, 37,
38, 42, 50, 55, 56, 58, 62, 63]. However, these approaches demand a substantial
amount of annotated data and focus on learning object-level attributes, neglect-
ing the understanding of parts and their contributions to the composition of
objects. In the realm of 3D part segmentation, various setups, including super-
vised [30,37,65], weakly supervised [9,10,57] instance segmentation and semantic
segmentation, as well as open-world semantic segmentation [24, 36], have been
extensively explored. While these approaches have demonstrated promising re-
sult, their primary emphasis lies in determining how to divide an object into
parts. To integrate instance-level and part-level perspectives, we perform hierar-
chical clustering with the prior knowledge of how parts compose objects, unifying
instance-level object identification and part-level constituent tracing.

3 Methodology

Problem definition. Unsupervised 3D instance segmentation [41, 67] is the
task of generating class-agnostic masks for all foreground objects in a 3D point
cloud scene solely based on raw RGB-D data, without relying on any object
detection or instance segmentation annotations. The raw RGB-D data [12, 39]
consists of the point cloud P ∈ RN×3 and corresponding 2D RGB frames {Ii}Mi=1,
where each image frame Im ∈ RH×W×3. With raw RGB-D data, 3D instance
segmentation task aims to output all object masks Pobject in the scene.
Method overview. As shown in Fig 2, our unsupervised framework has two
major components: 1) the hierarchical clustering algorithm (Sec 3.1 and Sec 3.2),
Part2Object, which progressively group points into larger clusters. During clus-
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Fig. 2: Overview of our Part2Object hierarchical clustering and Hi-Mask3D
instance segmentation framework. Part2Object extracts 3D objectness priors
from consecutive 2D RGB frames and uses them to guide hierarchical clustering from
points to object parts and objects. Hi-Mask3D utilizes objects and parts identified by
Part2Object as pseudo-labels, learning for improving instance segmentation through
the utilization of object parts.
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tering, aided by objectness priors from 2D frames, we can effectively obtain both
object-level and part-level segmentation masks, which serve as pseudo-labels for
learning unsupervised instance segmentation. 2) The end-to-end 3D instance seg-
mentation model Hi-Mask3D (Sec 3.3) extends the original Mask3D model [42]
by explicitly predicting segmentation results of object parts and leveraging them
to aid instance segmentation. By self-training on the pseudo-labels extracted
from the first-stage Part2Object, Hi-Mask3D can effectively predict 3D instance
segments.

3.1 Hierarchical Clustering on 3D Point Cloud

In this section, we introduce the hierarchical clustering process of our Part2Object,
which starts by grouping initial points into initial clusters and then progressively
merging them into larger clusters. We will sequentially cover: 1) the feature rep-
resentation of points, 2) the initialization of clusters from points, and 3) the
hierarchical clustering process for merging clusters. Point Feature Represen-
tation. Given a 3D surface point cloud P , we denote its norm and color as
PNorm and PRGB, respectively. The 3D feature f3D

i of point pi ∈ P comprises
pi, pNorm

i , and pRGB
i , representing the location, color, and geometry information,

respectively. Additionally, we define point cloud 2D semantics feature f i by
projecting 2D features [6] of RGB frames into 3D space using the correspond-
ing camera pose. Here, 2D features are extracted using the 2D self-supervised
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method DINO [6], without rely on any 2D instance annotations. Cluster Ini-
tialization and Feature Representation. Given the vast number of points
in the point cloud data [1], we initially apply the VCCS algorithm [34] to gen-
erate super-points on the point cloud, forming the first-layer clusters {c0i }

N0
i=1 as

follows:
{c0i }

N0
i=1 = VCCS(P, PNorm, PRGB), (1)

where VCCS algorithm takes points’ coordinates P , norms PNorm, and colors
PRGB as input and group original N points into N0 super-points as {c0i }

N0
i=1.

We consider each super-point c0i as a cluster, consisting of multiple points that
are closely positioned and share similar color and norm characteristics. Then,
we define the feature representation for the cluster based on the features of the
points within the cluster. Instead of directly averaging point features within the
cluster, we compute a weight for each point and perform a weighted sum of
features. These weights are determined by the similarity between each point’s
feature and the average feature of points within the cluster. This approach helps
mitigate the influence of noisy points in the cluster, leading to more robust
representations. Specifically, for the cluster c0i , its cluster feature f0

i is computed
as follows,

f0
i =

∑
pj∈c0i

sim(f j , f̄
0
i )∑

pj∈c0j
sim(f j , f̄

0
i )
f j , where f̄0

i =
∑
pj∈c0i

1

|c0i |
f j . (2)

The pj ∈ c0i denotes each point pj within the cluster c0i , and f j is the feature
of point pj . The f̄0

i is the average feature of points within c0i , and sim(·, ·)
denotes the computation of cosine similarity. As depicted in the example in
Fig 3(a), our cluster feature f0

i demonstrates greater robustness compared to f̄0
i .

For simplicity, we abbreviate the operations in Equ 2 as function FU(·), which
computes the cluster feature for the inputted cluster based on point features,
e.g ., f0

i = FU(c0i ).
Hierarchical Clustering with One Stop Criteria. Next, we group and
merge the first-layer clusters {c0i }

N0
i=1 to the next-layer clusters {c1i }

N1
i=1 based

on their features {f0
i }

N0
i=0 and spatial coordinates, progressively and iteratively

forming higher-hierarchical clusters {cti}
Nt
i=1, where t represents the t-th layer in

hierarchical clustering. In each single clustering layer, our clustering principle is
that two clusters can only be merged when they are semantically similar and
spatially adjacent: 1) the feature similarity between them ranks among the top
K similarities between any pair of clusters. 2) The closest points between two
clusters are adjacent. Specifically, when considering two clusters in the t-th layer,
cti and ctj , along with their features f t

i and f t
j , the merging process to form the

next-layer cluster ct+1
k and feature f t+1

k is as follows:

ct+1
k = cti ∪ ctj if rank(sim(f t

i,f
t
j)) ≤ K and dist(cti, c

t
j) ≤ T,

f t+1
k = FU(cti ∪ ctj),

(3)
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where rank(·) denotes the ranking of feature similarity among pairwise cluster
similarities in this clustering layer, where a higher rank signifies a higher simi-
larity, and dist(·, ·) computes the Euclidean distance between closest points of
the two clusters. The K and T represent the threshold values for ranking and
distance, respectively. However, we observe that solely using the merging metric
in Equ 3 can result in the incorrect merging of parts from different objects in the
early stages of clustering (i.e., shallow layers of clustering). This occurs because
clusters at the shallow layers are typically scattered fragments with highly local
features, which hinder them from perceiving the entire object. To track this is-
sue, we first extract 3D objectness priors, represented by a set of 3D bounding
boxes of potential objects B3D, detailed in Sec 3.2. Then, we design a stopping
criteria based on the 3D objectness priors to prevent clusters belonging to dif-
ferent objects from being merged. Criteria : Stop merging clusters belonging to
different objects! Specifically, for any pair of clusters cti and ctj that meet the
merging metric, we extra assess their spatial relationship relative to each 3D
object b3Dk ∈ B3D. If clusters cti and ctj are respectively inside and outside the
object b3Dk , then reject their merging because they do not belong to the same
object.
Collect Objects and Parts from Clustering. By employing hierarchical
clustering with the stopping criteria, we identify clusters that stop merging with
others as 3D objects, denoted as P̂object. Additionally, in hierarchical clustering,
objects with complex geometric are typically merged from scattered fragments
into meaningful parts, and then into complete objects. As shown in Fig 1, scat-
tered “toilet” fragments are combined into object parts such as the toilet back
and seat (see layer two), which are then formed into the object “toilet” (layer
three). Therefore, we can trace back from objects P̂object to identify the clusters
from the previous level that form them, considering these clusters as potential
object parts, denoted as P̂part. Both objects P̂object and object parts P̂part iden-
tified in hierarchical clustering serve as pseudo-labels for training our instance
segmentation model, Hi-Mask3D (Sec 3.3).

3.2 3D Objectness Priors From 2D Frames

In this section, we introduce our grouping-first-then-projection pipeline to ex-
tract 3D objectness priors B3D from 2D RGB frames [12], where B3D is the set
of 3D bounding boxes for potential objects in the scene.
Grouping-first-then-projection Pipeline. To extract 3D objectness priors,
a simple strategy involves projection-first-then-grouping: projecting 2D unsuper-
vised instance segmentation masks [46, 60] from 2D frames onto the 3D point
cloud to acquire 3D masks, then grouping and merging these 3D masks based on
their spatial relationships to generate 3D objects, as shown in Fig 3(c). However,
due to variations in object sizes and corresponding camera poses of 2D frames
across different scenes, it is nearly impossible to establish a unified grouping
criterion for different objects. If the grouping criterion is too strict, allowing
only masks with high overlap to be grouped, masks from multiple parts of a
large object cannot be merged (see Fig 3c-“strict”). Conversely, if the criterion
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Fig. 3: Robustness of our cluster features and 3D objectness priors. (a) Vi-
sualization of the first 3 PCA components and our computed weights of points in
Equ 2. (b) Visualization of 2D DINO features’ PCA components, 3D points’ normal
vectors, and our 3D object priors. The comparison between (c) the projection-first-
then-grouping pipeline and (d) our grouping-first-then-projection pipeline.
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is relaxed, masks that should belong to multiple objects may be merged into a
single object, e.g ., the “chair” and “sofa” in Fig 3c-“relaxed”. We attribute this
limitation to the inability to rely solely on 3D spatial relationships and 3D point
features (see Fig 3b) to determine if multiple 3D masks belong to the same ob-
ject. To tackle this issue, we propose a grouping-first-then-projection pipeline:
1) it co-segments objects across multiple 2D frames by exploiting the temporal
consistency of the frames, naturally identifying and grouping multiple 2D masks
for each single object. 2) It projects the 2D masks corresponding to each object
onto the 3D point cloud and then directly merges them.
Object Co-segmentation from Consecutive 2D RGB Frames. Given that
2D RGB frames are captured consecutively, we leverage their temporal consis-
tency to co-segment multi-frame 2D masks corresponding to the same objects.
First, for each RGB frame Im, we apply the 2D unsupervised instance segmen-
tation method MaskCut [60] to obtain the 2D masks of objects in it, denoted
as Om. As MaskCut uses the image encoder of 2D self-supervised DINO [6]
to extract image feature map, we employ the same encoder to extract features
for objects Om by masked average pooling each object mask oim ∈ Om over
the frame’s feature map. Next, for any adjacent pair of frames Im and Im+1, we
compute the pairwise similarity between their object masks Om and Om+1 based
on mask features. Then, for each object mask oim ∈ Om in frame Im, we find the
object mask oj

∗

m+1 in frame Im+1 with the highest similarity as its corresponding
candidate mask as follows,

oj
∗

m+1 = argmax
ojm+1∈Om+1

sim(ojm+1, o
i
m),

gim−→m+1 = oj
∗

m+1 if sim(oj
∗

m+1, o
i
m) > τ else Null,

(4)
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where sim(ojm+1, o
i
m) is to compute the cosine similarity between mask features of

object masks ojm+1 and oim. The oj
∗

m+1 in frame Im+1 is the candidate object mask
of the object mask oim in frame Im. Notably, only when the similarity between
the object mask oim and its candidate object mask oj

∗

m+1 exceeds the threshold
π, they are considered to belong to the same object. After determining the same
objects between any adjacent frames, gim−→m+1, we propagate this “sameness” to
all adjacent frames to identify the same objects across all frames. Consequently,
we can gather objects and identify all 2D masks in different frames of each object.
3D Objectness Priors. Given that we have grouped 2D masks into different
objects, for each object, we can directly project its 2D masks onto the 3D point
cloud and seamlessly merge their 3D masks into a unified whole [64], forming the
object’s 3D mask. Furthermore, instead of directly utilizing the 3D masks of ob-
jects, we utilize the 3D bounding boxes B3D of their masks to guide hierarchical
clustering. This decision is based on treating the collected 3D objects from 2D
frames as objectness priors and leaving precise segmentation to the clustering
process itself.

3.3 Hi-Mask3D and Learning Objective

In this section, we introduce our 3D instance segmentation framework, Hi-
Mask3D. It extends and adapts the 3D instance segmentation model, Mask3D [42],
to predict and utilize object parts to improve 3D instance segmentation.
Introduction to Mask3D. The 3D instance segmentation model Mask3D [42]
mainly consists of three components: 1) a feature backbone, a sparse convo-
lutional U-net [11] that takes a colored point cloud as input and yields multi-
resolution feature matrices {F r}, where each F r ∈ RMr×C of size Mr. 2) A mask
module predicts instance masks B corresponding to instance queries Q ∈ RK×C

by computing the dot product between queries Q and scene features {F r}. 3)
A query refinement module, a transformer decoder [54] that cross-attends K
instance queries Q with multi-resolution feature matrices {F r}. In the r-th de-
coder layer of query refinement module, the cross-attention between instance
queries Qr and feature matrix F r is formulated as follows,

Qr = softmax(Qr−1F
T
r /

√
C)F r. (5)

Note that for simplicity of demonstration, we omit the QKV projection [54] and
intermediate instance mask B [42] in the cross-attention formulation.
Hi-Mask3D with Hierarchical-Aware Detector. Our Hi-Mask3D modifies
the query refinement module of Mask3D to adapt for both object and object part
segmentation. Specifically, we start with two sets of queries Qo and Qp represent-
ing object queries and object part queries, respectively. Next, in each decoder
layer, we no longer directly perform cross-attention between object queries and
feature matrix to update object queries. Instead, we perform hierarchical at-
tention: 1) conducting cross-attention between object part queries and feature
matrix, and 2) updating object queries using part queries. This enables explicit
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interaction between object part queries and object queries, which helps to lever-
age the information from object parts to improve object segmentation. In the
r-th decoder layer, the hierarchical attention is formulated as follows:

Qp
r = softmax(Qp

r−1F
T
r /

√
C)F r,

Qo
r = softmax(Qo

r−1(Q
p
r)

T /
√
C)Qp

r .
(6)

The last-layer part queries and object queries undergo the mask module to obtain
object part and part segmentation results, Ppart and Pobject, respectively.
Training Objective. Following Mask3D [42], we adopt bipartite graph algo-
rithm [5, 48] to match prediction Pobject and Ppart with pseudo-labels P̂object

and P̂part, respectively. To supervise segmentation masks, we combine DICE [14]
loss and Binary Cross Entropy (BCE) loss [29]. Similar to [41], we also employ
iterative rounds of self-training to enhance the segmentation capabilities of Hi-
Mask3D. During self-training, predictions from the previous round are utilized
as pseudo-labels for the subsequent round.

4 Experiment

Datasets and Implementations. We evaluate our method on four public in-
door point cloud datasets, including ScanNet [12], Scannet200 [40], S3DIS [4] and
Replica [49] . Following Mask3D [42], we employ a Sparse CNN, Res16UNet34C [11],
implemented in MinkowskiEngine [11], as the point cloud encoder. Our Hi-
Mask3D is trained for 600 epochs with a learning rate 1e-4 and a batch size 4. Ex-
periments are conducted using PyTorch [35] and executed on NVIDIA Tesla A40
GPUs. We evaluate the performance of class-agnostic instance segmentation us-
ing standard average precision scores. The scores consist of mAP@25, mAP@50,
and mAP, representing performance metrics at IoU thresholds of 0.25, 0.5, and
mean average precision, respectively. Hyper-parameter T = 0.05 in Equ 3 and τ
= 0.3 in Equ 4.

4.1 Comparison with State-of-the-Art Unsupervised Methods

Table 1 shows the results on ScanNet dataset [12] under two different settings:
Traning-free Setting. In the training-free setting, all methods rely solely on
clustering [6] or graph-cut [46, 60] algorithms for prediction, as no annotations
are available for use. Table 1a compares our method, Part2Object, with the
previous state-of-the-art method, Unscene3D [41], which also leverages DINO
features but applies graph-cut algorithms on 3D point clouds. Compared to Un-
scene3D, our approach demonstrates significant enhancements across all metrics,
with increases of 35.2%, 16.8%, and 6.7% in mAP@25, mAP@50, and mAP, re-
spectively. These improvements are attributed to our utilization of 3D objectness
priors, which guide the clustering process.
Data-efficient Fine-tuning Setting. In the data-efficient fine-tuning setting,
all methods initially undergo either pretraining or self-training. Subsequently,
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Table 1: Comparison of instance segmentation results on ScanNet val.

(a) Training-free Setting. All methods do not
require gradient backpropagation to obtain pre-
diction results.

w/o training ScanNet Val [12]

Methods mAP@25 mAP@50 mAP

HDBSCAN [32] 32.1 5.5 1.6
Nunes [33] 30.5 7.3 2.3
Felzenswalb [16] 38.9 12.7 5.0
CutLER [60] 7.0 0.2 0.3
Unscene3D [41] 19.9 10.0 5.9
Ours 55.1 26.8 12.6

(b) Data-efficient Setting with x% available
data annotations. A 0% value indicates that the
method can provide pseudo-labels, and training
is conducted on them.

w/ training mAP@50 ScanNet Val [12]

Methods 0% 1% 5% 10% 20%

Scratch [42] / 14.1 33.3 39.2 43.4
CSC [21] / 22.1 39.9 43.8 48.9
HDBSCAN [32] 10.5 15.1 36.3 40.0 42.7
Felzenswalb [16] 15.2 25.3 37.2 45.7 50.0
Unscene3D [41] 23.2 28.4 46.8 55.7 60.7
Ours 32.6 44.1 64.2 68.0 72.1

they fine-tune on downstream data with varying percentages (0% represents
pseudo-labels solely). Under this setting, the extraction of pseudo-labels is the
primary requirement, followed by the necessity for models to exhibit strong learn-
ing capabilities. As demonstrated in Table 1b, Hi-Mask3D exhibits remarkable
performance even with limited data, showcasing the robust 3D representation ca-
pabilities learned on the pseudo-labels from Part2object. Specifically, our method
surpasses the previous SOTA by 15.7% and 11.4% when considering the utiliza-
tion of only 1% and 20% of the available data, respectively.

4.2 Comparison on Cross-dataset Generalization

Table 2 and Table 3 show our comparisons with fully-supervised Mask3D [42]
on cross-dataset generalization, including both zero-shot and dataset-efficient
settings. In both settings, our Hi-Mask3D is trained on pseudo-labels from our
unsupervised Part2Object on the ScanNet dataset [12], while Mask3D is trained
fully supervised on ScanNet.
Cross-dataset Zero-shot Generalization Setting. In Table 2, we com-
pare unsupervised Hi-Mask3D with fully-supervised Mask3D on three down-
stream datasets, including ScanNet200 [39], S3DIS [4] and Replica [49]. Com-
pared with the fully supervised Mask3D trained on ScanNet, our Hi-Mask3D
trained on pseudo-labels from Part2Object achieves consistent performance im-
provement without using any manually annotated data. Hi-Mask3D surpasses
fully-supervised Mask3D by 10.7%, 4.8%, and 6.4% in terms of mAP@50 on
ScanNet200, S3DIS, and Replica datasets, respectively. Thanks to the learning
from pseudo-labels in Part2Object, Hi-Mask3D has acquired more generalizable
representations of 3D objects. Unlike fully-supervised methods, which are con-
strained to annotated classes in the training dataset, Hi-Mask3D demonstrates
robust performance in cross-dataset generalization.
Cross-dataset Data-efficient Generalization Setting. In Table 3, we con-
duct data-efficient training on downstream datasets, such as ScanNet200 [39]
and S3DIS [4], after pre-training our Hi-Mask3D on ScanNet’s pseudo-labels ex-
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Table 2: Comparison on cross-dataset zero-shot generalization setting. We
compare the zero-shot generalization ability of unsupervised Hi-Mask3D with fully-
supervised Mask3D on three downstream datasets: ScanNet200, S3DIS and Replica.

Zero-shot ScanNet200 Val [39] S3DIS 6-fold [4] Replica [49]

Methods m@25 m@50 mAP m@25 m@50 mAP m@25 m@50 mAP

Mask3D [42] 30.8 24.2 15.4 17.6 11.7 7.7 20.8 15.6 9.7

Ours 63.2 34.9 16.3 24.5 16.5 8.5 36.5 22.0 11.2

Table 3: Comparison on cross-dataset data-efficient generalization setting.
We utilize pseudo-labels from Part2Object to pre-train our Hi-Mask3D and conduct
data-efficient finetuning on downstream datasets, comparing them with Mask3D.

Methood Dataset
mAP@25 mAP@50

1% 5% 10% 20% 1% 5% 10% 20%

Scratch ScanNet200 [39] 2.1 22.5 30.6 40.2 1.3 8.2 18.4 22.9

Ours ScanNet200 [39] 59.4 70.4 72.3 77.8 35.4 52.8 56.2 62.8

Scratch S3DIS [4] 1.7 10.1 20.8 45.4 1.0 2.9 9.1 25.9

Ours S3DIS [4] 49.1 55.9 65.1 70.2 25.7 35.0 46.4 49.4

tracted from Part2Object. For ScanNet200 and S3DIS, Hi-Mask3D outperforms
Mask3D 47.4% and 24.7% mAP@50 with 20% data, respectively. When lim-
ited data is available, the improvement brought by pretraining on pseudo-labels
from Part2Object is even greater, with the enhancement increasing from 37.6%
to 57.3% as the available data decreases from 20% to 1%.

4.3 Ablation Study

To evaluate the effectiveness of our hierarchical clustering Part2Object and 3D
instance segmentation architecture Hi-Mask3D, as well as the effect of hyper-
parameters, we conduct comprehensive and detailed ablation experiments, as
outlined in Table 4a and Table 4b.
Ablation on Part2Object Clustering. Table 4a illustrates the variants of
Part2Object clustering, starting with a baseline utilizing the single-layer clus-
tering algorithm. The performance of this baseline yields only 6.1% in mAP and
13.8% in mAP@50. This limitation arises due to the single-layer clustering being
either too loose or too tight, leading to over-clustered or under-clustered objects.
Subsequently, we remove the guidance of objectness priors from our proposed
clustering algorithm, denoted as “w/o OG”. Without object priors, while objects
may appear at every layer, it becomes challenging to determine which layer they
belong to. Furthermore, we replace our cluster feature computation function,
“FU(·)”, as simple averaged over features of points within the cluster, “w/o FU”.
The 2.0% decline in mAP highlights the importance of removing noise features
for more robust cluster feature representations.
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Table 4: Ablation study. We conduct ablation studies on ScanNet val. We validate
the effectiveness of our Part2Object clustering, Hi-Mask3D, and self-training procedure.

(a) Ablation study on Part2Object clus-
tering and Hi-Mask3D architecture. OG, FU
denotes objectness guidance and cluster feature
function, respectively.

Ablation on ScanNet Val [12]

Clustering m@25 m@50 mAP

Baseline 37.8 13.8 6.1
w/o OG 43.2 20.7 10.4
w/o FU 44.2 21.5 10.6
Ours 55.1 26.8 12.6

Architecture

Mask3D 59.0 31.0 14.2
Hi-Mask3D 64.9 36.0 16.9

(b) Ablation study on Self-training and
Hyper-parameter.

Ablation on ScanNet Val [12]

Self-Training m@25 m@50 mAP

Pseudo labels 55.1 26.8 12.6
Round 1 60.7 32.6 15.3
Round 2 64.3 35.2 16.5
Round 3 64.9 36.0 16.9

Hyper-parameter

K = 0.4 55.7 22.6 10.3
K = 0.5 57.0 25.3 12.0
K = 0.6 55.1 26.8 12.6
K = 0.7 44.5 21.1 10.6

Ablation on Hi-Mask3D. We compare our Hi-Mask3D with Mask3D using the
same pseudo-labels extracted from Part2Object. Hi-Mask3D improves Mask3D
by 2.7% and 5.0% in terms of mAP and mAP@50, respectively. This demon-
strates that additional part information aids in object understanding. Further-
more, through reporting the performance of self-training, we observe that after
several rounds, the mAP increases from 15.3% to 16.9%.
Ablation on Hyper-parameter. We conduct ablation on the import hyper-
parameter K in Equ 3. Since the number of clusters at each layer varies, we
use percentages (K=0.6 indicates the top 60%) to measure how many of the top
clusters from each layer can be aggregated. Table 4b shows the performance of
Part2Object at different K. We use grey to indicate the default setting.

5 Conclusion and Limitations

We introduce Part2Object, an efficient hierarchical clustering algorithm, that
progressively groups point clouds into object parts and objects, while leveraging
3D object-ness prior to precisely target objects. Furthermore, we propose the
Hierarchical-Aware Mask3D, facilitating self-training with pseudo-object and
part labels from Part2Object. Experimental results demonstrate that we con-
sistently surpass all existing methods in both unsupervised settings and data-
efficient settings. Ethics Statement: Given that our 2D knowledge is derived
from the self-supervised models DINO, we acknowledge that biases and contro-
versies inherent in the training data for these models may be introduced into
our model.Acknowledgment: This work was supported by the National Nat-
ural Science Foundation of China (No.62206174) and MoE Key Laboratory of
Intelligent Perception and Human-Machine Collaboration (ShanghaiTech Uni-
versity).
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