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Abstract. Detecting AI-generated images has become an extraordinar-
ily di�cult challenge as new generative architectures emerge on a daily
basis with more and more capabilities and unprecedented realism. New
versions of many commercial tools, such as DALL·E, Midjourney, and
Stable Di�usion, have been released recently, and it is impractical to
continually update and retrain supervised forensic detectors to handle
such a large variety of models. To address this challenge, we propose a
zero-shot entropy-based detector (ZED) that neither needs AI-generated
training data nor relies on knowledge of generative architectures to ar-
ti�cially synthesize their artifacts. Inspired by recent works on machine-
generated text detection, our idea is to measure how surprising the image
under analysis is compared to a model of real images. To this end, we rely
on a lossless image encoder that estimates the probability distribution of
each pixel given its context. To ensure computational e�ciency, the en-
coder has a multi-resolution architecture and contexts comprise mostly
pixels of the lower-resolution version of the image. Since only real images
are needed to learn the model, the detector is independent of generator
architectures and synthetic training data. Using a single discriminative
feature, the proposed detector achieves state-of-the-art performance. On
a wide variety of generative models it achieves an average improvement
of more than 3% over the SoTA in terms of accuracy. Code is available
at https://grip-unina.github.io/ZED/.

1 Introduction

The quality of AI-generated images has improved tremendously in recent years,
to the point where they are virtually indistinguishable from real images upon vi-
sual inspection. In addition, the latest generators are widely available online and
allow easy creation and retouching of images based on simple textual prompts.
All this opens the way to endless application opportunities in a variety of �elds,
from the creative arts to industries of all kinds. However, on the �ip side, such
tools can be also used for malicious purposes, thus posing serious threats to our
society. For example, pre-trained generators can be easily optimized to generate
fake works by a speci�c artist [31], or used to orchestrate e�ective, large-scale dis-
information campaigns to in�uence public opinion in advanced democracies [20].
These immediate risks create an urgent need for reliable and automated detec-
tion of AI-generated images [41].
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Fig. 1: ZED leverages the intrinsic model of real images learned by a state-of-the-art
lossless image coder. For real images, the model is correct and the actual coding cost
is close its expected value. Synthetic images have di�erent statistics than real images,
so they �surprise� the encoder, and the actual coding cost di�ers signi�cantly from its
expected vale. This is evident from the graphic on the right that shows how the coding
cost gap increases for synthetic images much more than for real ones when predicting
high resolution details from low resolution data.

Until very recently, supervised learning paradigms dominated the image foren-
sics community, with deep models trained on large datasets of real and fake im-
ages [64]. These approaches, however, are tailored to speci�c domains and are dif-
�cult to generalize to unseen deepfake samples. In the seminal paper by Wang et

al . [74], it is shown that a simple detector trained only on ProGAN images from
20 di�erent categories generalizes well to other images created by di�erent gen-
erative adversarial networks (GAN) thanks to suitable augmentation. However,
performance still su�ers on images generated by prompt-driven di�usion models
(DM). Similarly, a detector suitably trained on Latent DM images performs well
on all other DM images but fails to generalize properly on GAN images [10].
To reduce the dependence on training data, recent works [2, 11, 51, 67] rely on
general-purpose features extracted by pre-trained visual-language models, such
as CLIP (Contrastive Language-Image Pre-Training) [56]. Despite the good per-
formance, these methods still depend on the choice of the training dataset. A
recent trend to improve generalization is based on few-shot methods [12, 17, 33]
which can partially solve the problem, but still require some prior knowledge of
the target models, even if limited to a few images. With this work we make a
step further and develop an approach that is not in�uenced at all by newer and
previously unseen generative models.

To this end, we propose a zero-shot detection method that only requires real
images for learning their underlying distribution. Our key idea is to use lossless
coding and a multi-resolution prediction strategy for computing conditional dis-
tributions of all image pixels at three di�erent levels of resolution. Given such
distributions, we compute statistics related to the actual and expected coding
cost. If the image is coherent with the predicted distribution (no surprise), then
there is no mismatch and the image under analysis is labelled as real. We expect
synthetic images to be characterized by a higher coding cost under the distribu-
tion of real images (see Fig. 1). Based on this intuition, we design discriminative
features that measure how well the image under test �ts the model of real im-
ages embedded in the encoder. Even by using a single feature, we can obtain



Zero-Shot Detection of AI-Generated Images 3

signi�cant performance above 95% in terms of AUC for several recent models,
such as DALL·E, Midjourney, and SDXL.

In summary, the main contributions of this paper are the following:

� we propose a zero-shot detector of arti�cially generated images: no fake im-
ages are necessary for training which guarantees independence from any
speci�c generation method;

� this is the �rst work that exploits an implicit model of real images, learnt
for lossless encoding to address image forensics task;

� our experiments show on a wide variety of generative models that even us-
ing a single feature the proposed detector provides state-of-the-art results
(+3.4% in terms of accuracy).

2 Related work

Supervised learning. The problem of distinguishing synthetic images from
real ones is commonly formulated as a binary classi�cation task. State-of-the-art
methods explicitly or implicitly exploit forensic artifacts by leveraging a large
amount of real and generated images. Some of them rely on semantic �aws, such
as face asymmetries [4] or incorrect perspective, lighting, shadows [21, 22, 65].
However, technology advances very quickly and such errors will very likely dis-
appear in next-generation tools. Therefore, most methods focus on low-level
and inconspicuous artifacts [9, 18]. Major e�orts have been made to prevent
conventional supervised detectors from over�tting the training data. Popular
recipes include using datasets as varied as possible with intense augmenta-
tion [74], pre-training models on large general-purpose datasets [46], preserving
�ne-grain details of images [7,27], exploiting high-frequency artifacts in the spa-
tial [43, 68, 72] or Fourier domain [18, 24, 78], leveraging inter-pixel correlation
discrepancies [71,79], adopting inversion techniques [1, 75].

With the advent of di�usion models that presents signi�cant architectural
di�erences with GANs, the importance to design methods that work equally
well on known and unknown sources became even more evident [10]. An im-
portant �nding was the increased generalization that could be achieved using
pre-trained large vision-language models, such as CLIP-ViT [51]. In this case
only a lightweight linear classi�er is trained on top of these features to adapt to
the forensic task. Very good performance is obtained on DMs even if the net-
work was trained only on GANs. Other methods also show the potential of such
approach [2, 11,59], sometimes including multimodal features [44,67].

Some supervised methods assume to have only real images available and
create the synthetic images needed for training by simulating the artifacts in-
troduced by a generator, for example by passing real images through an au-
toencoder [24,34,78]. The more generative architectures are simulated, the more
e�ective is the detector. Of course, the performance degrades on images gen-
erated by an architecture not considered in the simulation phase. Di�erently
from all these methods our approach does not require collecting or generating
synthetic images thus avoiding any type of dependence on this class.
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Few-shot/incremental learning. A signi�cant step towards improved gener-
alization is the use of few-shot or incremental learning strategies [12, 17, 33, 47].
Along this path, a recent work [19] proposes to regularly re-train a detector on
new synthetic generators in the very same temporal order of their release, as
in a real-world scenario. Results show a good generalization to unseen models,
but only as long as the architecture of new generators is similar to that of old
ones. Although few-shot methods represent an important progress in reducing
the dependence on training data, the ultimate goal is to remove this dependence
entirely to ensure maximum generalization. In pursuit of this goal, in this work
we propose a truly zero-shot detector.

Zero-shot learning. Only a few very recent papers avoid training on synthetic
data altogether. A solution was proposed in [60] based on the observation that
synthetic images are reconstructed more accurately than real images by a latent
DM autoencoder. The main limitation is that the method only reliably detects
images generated by latent di�usion models. The method in [30], instead, ex-
ploits the fact that small perturbations of [real/synthetic] images correspond to
[small/large] variations in the embedding space of a pre-trained large model. Dif-
ferently from these strategies our work takes inspiration from some interesting
proposals that have recently appeared for synthetic text detection [25,29,49,69].
They exploit the fact that LLMs (Large Language Models) work by generat-
ing the probability distribution of the next token given the previous ones. In
the generation phase, new tokens are sequentially added to a sentence based on
these distributions. In the analysis phase, one can replicate the process for a
given sentence under test and measure how well the actual tokens match the
predicted ones. A good match suggests that the sentence was indeed generated
by an LLM. Although inspired by these methods, our zero-shot synthetic im-
age detector di�ers from them because it leverages a model of real images and
does not depend in any way on synthetic data or generators. Moreover, to build
the model we take advantage of the remarkable �eld-proved ability of lossless
encoders to accurately describe pixels based on their context.

3 Method

3.1 Background

Here we provide some background on zero-shot methods that leverage large
pre-trained language models for machine-generated text detection. They exploit
the native functionality of these models to provide next-token predictions [29].
Before a string of characters s can be processed by a language model, it must
be parsed into a sequence of tokens (mostly words). The tokenizer T outputs a
list of indices

T : s → {x0, x1, . . . , xL}, (1)

where xi ∈ {1, ..., n} is the index of the i-th token of the sequence, addressing a
size-n vocabulary of tokens. The language model operates by predicting the next
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index/token given the list of previous ones, thereby allowing for the generation
of a full sentence given just a short prompt. Actually, language models output
more information than just the index of the most likely token. Given the list of
previous indices Xi = {x0, . . . , xi−1}, they provide the probability of all possible
values of the current one, that is, P (xi = k|Xi), for k = 1, . . . , n.

The idea is to exploit this functionality to measure the conformity of the
string under analysis to the LLM intrinsic model of language. That is, these
methods try to answer the question �How likely is it that this sentence was
generated by my LLM?� Hence they compute (for free) the likelihood of the
given list of indices under the probability distribution learned by the LLM

P (x0, . . . , xL) = P (x0) ·P (x1|x0) · . . . ·P (xL|x0, . . . , xL−1) = P (x0)

L∏
i=1

P (xi|Xi)

(2)
In practice, the negative log-likelihood (also called log-perplexity) is computed
instead, that is (neglecting x0)

NLL = −
L∑

i=1

logP (xi|Xi) (3)

If the i-th observed index xi was very likely to come after the previous ones,
namely, it is not surprising, its contribution to the NLL is close to 0. On the
contrary, if it was unlikely to appear, given the previous ones (an anomaly) it
impacts signi�cantly on the NLL. Overall, a sequence with low NLL is likely to
have been generated by the LLM, and will be therefore detected as synthetic.
Of course, this basic description is only meant to convey the general concepts,
the reader is referred to the literature [26] for more details.

3.2 From Text to Images

When we try to translate the above concepts into the realm of images, we run
into a big problem: the most e�ective and popular image generation engines
do not provide anything similar to the next token distribution observed in the
case of LLMs. Indeed, there exist some autoregressive synthesis methods [45,58]
that could be adapted to this task, but their generation approach is very di�er-
ent from those of the most popular GAN- and DM-based methods. Therefore
in this work we change perspective or, better said, we now assume the correct
one-class perspective, and look for a model of real images, rather than synthetic
ones. Armed with such a model, we will be able to decide whether a given im-
age is unsurprising, therefore real, or somewhat anomalous, therefore synthetic,
regardless of the speci�c generation model used to create it.

Now, the concepts of prediction, surprise, perplexity, along with information
measure and entropy, are pervasive in the literature on image coding, part of
information theory. Lossless image encoders typically include a predictor that,
given a suitable context, estimates the value of the target pixel, and an entropy
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encoder that e�ciently represents prediction errors. Indeed, by analyzing the
recent literature in the �eld we managed to single out a tool that perfectly suits
our needs, the Super-Resolution based lossless Compressor (SReC) proposed by
Cao et al . [6], which provides a computationally lightweight tool for predicting
the distribution of image pixels at multiple resolution.

3.3 Super-resolution based Lossless Compressor

Here we present a high-level description of SReC, focusing only on the aspects
more relevant for our purposes. The interested reader is referred to the origi-
nal paper for details [6]. The general idea is to train a neural network to pre-
dict the current pixel, xi,j , given a set of previously coded pixels, and encode
the di�erence between the true pixel value and its prediction. However, this
purely autoregressive formulation is highly impractical, as it implies long encod-
ing/decoding times. Therefore, SReC uses a multi-resolution prediction strategy.
A low-resolution version y(1) of the original image x(0) is built through 2×2 av-
erage pooling, that is

y
(1)
i,j =

x
(0)
2i,2j + x

(0)
2i+1,2j + x

(0)
2i,2j+1 + x

(0)
2i+1,2j+1

4
(4)

Then, each four-pixel group of the high-resolution image is predicted based only
on the low-resolution image, independent of other groups at the same resolution
level, allowing for parallel processing and high-speed encoding. Since the fourth
pixel of a group is known, given the other three and the low resolution image,
the conditional joint distribution of the group reads

P (x
(0)
2i,2j , x

(0)
2i+1,2j , x

(0)
2i,2j+1|Y

(1)
i,j ) =P (x

(0)
2i,2j |Y

(1)
i,j ) · P (x

(0)
2i+1,2j |x

(0)
2i,2j , Y

(1)
i,j )

· P (x
(0)
2i,2j+1|x

(0)
2i,2j , x

(0)
2i+1,2j , Y

(1)
i,j )

(5)

where Y
(1)
i,j is the relevant context in the lower resolution image, that is a re-

ceptive �eld centered on y
(1)
i,j . Each term in this factorization is estimated by a

dedicated convolutional neural network (CNN). In particular, a parametric dis-
tribution is assumed, given by the mixture of K discrete logistic distributions,

P (x|X) =

K∑
k=1

wklogistic(x|µk, sk) (6)

where logistic(x|µ, s) = σ(x−µ+0.5
s )−σ(x+µ+0.5

s ) is the di�erence of two sigmoid
functions, with position parameter µ and scale parameter s, andK = 10 is always
assumed. The CNN takes the context X of the pixel of interest as input and out-
puts the weights of the mixture together with the position and scale parameters
of all logistics. In turn, these parameters allow one to compute the desired dis-
tribution. This whole process is replicated on two more lower-resolution scales,
for a total of four levels, the lowest resolution, an 8×8 subsampled �prompt�
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Fig. 2: NLL and Entropy. We compute the spatial distribution of NLL and Entropy at
three resolutions. For real images (top) the paired maps are very similar at all scales:
when the uncertainty on a pixel (entropy) grows, also the coding cost (NLL) does.
Therefore, the NLL-Entropy di�erence maps are all very dark. For synthetic images
(bottom) NLL and Entropy maps are not always similar, because the model is not
correct, and hence the di�erence maps are brighter, especially the high-resolution map.

image, coded in clear, and three higher resolution images, each one predicted
from its lower resolution version. All networks are trained to minimize the cross
entropy between the predicted model probability Pθ(x) and the empirical data
distribution P (x) given by the training image dataset. We mention in passing
that this loss is closely related to the log-perplexity considered for text synthesis.

To summarize, SReC provides us with a lightweight tool for computing con-
ditional distributions of all image pixels at three di�erent levels of resolution,
and therefore to compute all kinds of statistics that can expose the mismatch
between a test image and the learned model. Considering that SReC achieves
state-of-the-art performance in lossless image compression, one can also argue
that the learned model of real images is very accurate. Given this tool, we can
now design a zero-shot detector of synthetic images.

3.4 Features and Decision Statistics

Let x ∈ {0, . . . , 255}N×M×3 be the image under test. In our multi-resolution
framework, this will be the highest-resolution version, x(0) = x. Through 2×2
average pooling, we generate a lower resolution version y(1) = avpool(x(0)),
and then, through rounding, its integer-valued version x(1) = round(y(1)). The
process is repeated, and eventually we have four integer versions of the image
{x(0), x(1), x(2), x(3)}, together with three non-integer versions {y(1), y(2), y(3)}.
In the context of lossless coding, the lowest resolution version, x(3), must be sent
in clear together with the rounding bits at levels 3, 2, and 1, but we mention
this only for completeness and for a more compelling interpretation of results.
The CNNs trained on real images provide the predicted probability distribution
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Fig. 3: Extracting decision statistics. The full resolution image x(0) is downsampled
three times. The lowest-resolution version, x(3), feeds the level-2 CNN, which outputs
the probability distributions of level-2 pixels. These distributions, together with the ac-
tual level-2 pixels, are used to compute the level-2 coding cost NLL(2) and its expected
value H(2). All these steps are then repeated for levels 1 and 0. Eventually, NLLs and
entropies are combined to compute the decision statistics.

for all pixels3 of levels 0, 1, and 2

P (x
(l)
i,j = k|X(l)

i,j ) (7)

where k ∈ {0, . . . , 255} and X
(l)
i,j is the context for pixel x

(l)
i,j , including a portion

of the lower-resolution image y(l+1) and possibly some same-resolution neighbors
of the current pixel. Given the above distribution, we compute the negative log
likelihood and the entropy at each pixel

NLL
(l)
i,j = − logP (x

(l)
i,j |X

(l)
i,j )

H
(l)
i,j = −

∑
k

P (k|X(l)
i,j ) logP (k|X(l)

i,j ) (8)

These quantities are shown in Fig.2 for two sample images, real and synthetic.
Then, through spatial averaging, we obtain the corresponding quantities for the

images at all resolution levelsNLL(l) = ⟨NLL
(l)
i,j⟩ andH(l) = ⟨H(l)

i,j ⟩, for l = 0, 1, 2.
These are the features associated by the system to input image and our decision
statistics will be suitable combinations of them.

Before going on, it is convenient to give a physical interpretation of these
quantities. Each NLL can be interpreted as the actual coding cost for the corre-
sponding image. While each entropy can be interpreted as the expected value of
the coding cost given the context, when the image is coherent with the predicted
distribution. In the presence of a mismatch, NLL−H > 0, on the average, with
a gap that increases with increasing distribution mismatch. Our fundamental
assumption is that the trained CNNs provide a good model of real images, and
synthetic images tend not to follow the same model. Therefore, we expect that
synthetic images are characterized by higher coding cost, hence higher NLL, un-
der this distribution. This observation would lead us to use the NLLs as decision
3 More precisely, all color components of all pixels, but to simplify notations, in the
following we will neglect color and treat the image as if grayscale.
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statistics. However, the coding cost does not depend only on the distribution
mismatch but also (predominantly) on the intrinsic information content of the
image, measured by the entropy. A complex image, say a photo of a crowd, is
more di�cult to encode/describe than a smooth image, say a blue sky, no matter
what model we use. Therefore, to get rid of this bias, we consider the coding cost
gap, de�ned as the di�erence D(l) = NLL(l) −H(l), as decision statistic. Hence,
for each image, we have three basic decision statistics, one for each resolution
level. It is worth observing that some forms of normalization are adopted for
machine generated text detection as well [29, 49, 70]. A block diagram of our
method is shown in Fig.3.

A sample graph of the coding cost gap is shown in Fig.1, on the right. For
real images and three families of synthetic images we report the average gap
(solid line) plus/minus its standard deviation (colored band) for the various res-
olutions levels. Two important observations can be made. First of all, the level-0
coding cost gap, concerning the full resolution image, seems to be much more
discriminant than the others. Moreover, the gap grows much faster for synthetic
images than for real images when going from level 1 to level 0. Therefore, as
decision statistics we will consider both D(0) (the level-0 coding cost gap) and
∆01 = D(0) − D(1) (its slope). In addition, in preliminary experiments we ob-
served that synthetic images are sometimes characterized by a coding cost much
lower rather than much higher than expected, that is the NLL is much lower than
the entropy. This is also an anomaly, which signals the likely synthetic nature
of the image. Therefore, besides the above statistics we also consider their abso-
lute values

∣∣D(0)
∣∣ and ∣∣∆(01)

∣∣. These observations are supported by the sample
graphical analysis shown in Fig.5 in the ablation study.

4 Results

4.1 Datasets and Metrics

We benchmarked our model on a large variety of synthetic generators both GANs
and DMs: GauGAN [53], BigGAN [5], StarGAN [8], StyleGAN2 [38], Di�usion-
GAN [76], GigaGAN [35], GALIP [73], DDPM [32], ADM [16], GLIDE [50],
Stable Di�usion [62, 63], DiT [54], DeepFloyd-IF [39], Stable Di�usion XL [55],
DALL·E [14], DALL·E 2 [57], DALL·E 3 [52], Midjourney V5 [48], and Adobe
Fire�y [23]. We collected images from publicly available datasets [3,10,51,74] and
generated additional images as needed when they were not publicly available.
We ensured that all datasets included pristine and synthetic images with similar
semantic content, both compressed and uncompressed, to avoid any kind of bias
(see Fig.4). For some synthetic generators we have multiple datasets, built on
the basis of di�erent real image datasets LSUN [77], FFHQ [37], ImageNet [15],
COCO [42], LAION [66] and RAISE [13]. This is a fortunate circumstance: we
kept them carefully separate as this allows us to analyze how the performance
of a detector depends on the class of real images used in the synthesis phase.
Overall we used a total of 29k synthetic images and 6k real images. More details
on the generated and actual images are provided in the supplementary material.
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StyleGAN2Diffusion-GAN DiT SDXL

FFHQLSUN ImageNet COCO

Fig. 4: Examples of real and AI-generated images of di�erent categories used in our
experiments. Top: real images from LSUN, FFHQ, ImageNET and COCO. Bottom:
generated images from Di�usionGAN, StyleGAN2, DiT and SDXL.

Following other papers [11, 43, 51] we measure performance using the area
under the ROC curve (AUC) and the balanced accuracy. We also show the
in�uence of the threshold selection on the performance.

4.2 Ablation Study

Features analysis. First, we want to provide a better insight into the role and
importance of the features described in Section 3.4: D(0) (the 0-level coding cost
gap), its slope ∆01 = D(0) − D(1) and their absolute values. To this end, we
consider the set of real and synthetic (DALL·E 2, GLIDE, Midjourney, SDXL)
images of the Synthbuster dataset [3]. We note, in passing, that this dataset
includes only uncompressed images, which dispels any possible doubt that our
method exploits some JPEG compression bias between real and fake images [28].
Some selected scatter plots and graphs are shown in Fig.5. The rightmost box
shows that encoding cost (NLL) and entropy (H) alone are not very discrimi-
nating, even if computed at the more informative level 0 (high resolution). In
contrast, their di�erence, the 0-level coding cost gap D(0), seems to separate the
di�erent classes quite well (central box), in particular the real class (violet) from
the others. Note that the level-1 gap (not shown) is not equally discriminating,
and the level-2 gap, plotted on the y axis, turns out to be essentially useless. In
the third box we plot the empirical distributions of D(0) for the various classes.
This representation makes the good separability of the classes further clear but
also highlights an unexpected phenomenon: GLIDE images group mostly to the
left of the real class, that is, they have a lower-than-expected coding cost. Al-
though not in line with our initial hypotheses, this fact nevertheless represents
an anomaly, which can be detected by thresholding the absolute value of the
statistic rather than the statistic itself.
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Fig. 5: Decision statistics. NLL and entropy by themselves are not discriminant (left).
Their di�erence (center) is much more useful for detection, but only at high resolution,
D(0), while D(1) is less discriminant and D(2) basically useless. Right box shows his-
tograms of D(0) for real and synthetic images. Note that for GLIDE, D(0) is negative,
on the average. Good discrimination is still possible based on the absolute value.
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Fig. 6: AUC of proposed method as a function of decision statistic (see Section 3.4)
and dataset of real images used to train the lossless encoder: Open Images, LAION,
COCO, and their augmented versions (∗). Synthetic test images are selected to match
the corresponding real test images: ImageNet (top), and LAION (bottom).

In�uence of the real class. To better understand the role of the real dataset
used to train the lossless encoder, we perform an experiment in which we vary
it. Along with the original encoder pre-trained on the Open Images dataset [40]
(about 338k high-resolution images), we consider two other versions, trained
from scratch on the LAION dataset [66] (≃117k), and the COCO dataset [42]
(≃106k), respectively, using the same hyperparameters as [6]. Additionally, we
consider versions (marked with *) trained on the same datasets, augmented
with JPEG compressed images with quality between 80 and 100. We compute
the performance in terms of AUC on two di�erent datasets of synthetic and
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Table 1: Reference methods. For each one we indicate the key idea, the datasets of real
and synthetic images used for training with their sizes, whether or not augmentation
is used, the test strategy.

Acronym [ref] Idea/Approach Training Real/Fake Size(K) Augment. Test Strategy

Wang2020 [74] High diversity LSUN/ProGAN 360/360 ✓ global pooling

PatchFor. [7] Patch-based CelebA,FF/various 84/272 resizing

Liu2022 [43] Noise-based LSUN/ProGAN 360/360 ✓ global pooling

Corvi2023 [10] No-downsampling COCO,LSUN/Latent 180/180 ✓ global pooling

LGrad [72] Gradient-based LSUN/ProGAN 72/72 ✓ resizing

DIRE [75] Inversion LSUN-Bed/ADM 40/40 resizing

DE-FAKE [67] Prompt-based LSUN/Stable Di�. 20/20 resizing

Ojha2023 [51] CLIP LSUN/ProGAN 360/360 ✓ cropping

NPR [71] Residual LSUN/ProGAN 72/72 resizing

AEROBLADE [60] AE rec. error - / - - / - global distance

real images, where this latter class comes from ImageNet [15] (Fig.6, top) or
LAION [66] (Fig.6, bottom). We can observe that the best and more uniform
results across the four decision statistics are obtained using COCO∗, while train-
ing on Open Images guarantees good performance if the real class is LAION,
but bad performance if it is ImageNet. Additional results are included in the
supplementary material.

4.3 SoTA Comparison

In our analysis we include only methods with code and/or pre-trained models
publicly available on-line. Eventually, we included 7 CNN-based methods [7,10,
43,71,72,74,75], 2 CLIP-based methods [51,67] and a training-free method [60].
A brief summary of these techniques is provided in Tab.1, while a more detailed
description is given in the supplementary material. For a fair comparison we
avoid testing on ProGAN [36] and Latent Di�usion [61], because a good number
of these supervised methods were trained on datasets that include images from
these generators. Even so, we have a total of 30 datasets for testing. Results
are reported in Tab.2 in terms of AUC, with the best �gure for each dataset
highlighted in bold. Note that each row is characterized by the name of the
generator (e.g., GauGAN) and by a single letter that recalls the set of real
images used to train it: S for LSUN, F for FFHQ, I for ImageNet, C for COCO,
L for LAION, R for RAISE. This detail allows us to study how the performance
depends on the real dataset (but with synthetic images from the same generator
and with semantic content aligned with real images).

First of all, we observe that for most reference methods the average AUC
does not exceed 80%. Notable exceptions are the CLIP-based Ojha2023 (88.4%)
and the CNN-based Corvi2023 (89.4%). Interestingly, some methods show very
di�erent performance when the real class changes. This may be due to JPEG
bias as already suggested in [28,60]. A deeper analysis on this point is presented
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Table 2: AUC for reference and proposed methods. Best score in bold with a 0.5%
margin. S = LSUN, F = FFHQ, I = ImageNet, C = COCO, L = LAION, R = RAISE.
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GauGAN C 98.9 80.8 99.7 83.8 81.6 99.9 43.8 100. 89.1 55.1 99.8 99.8 99.9 99.7

BigGAN I 92.7 85.5 94.7 83.4 77.2 99.8 59.0 99.6 86.8 51.9 92.3 88.6 95.9 92.6
StarGAN F 94.7 100. 99.9 95.9 73.9 40.4 45.9 99.7 81.5 84.0 100. 100. 100. 100.

S 98.1 83.8 99.7 89.1 99.8 58.3 39.1 96.7 100. 30.0 96.6 96.1 96.7 96.5
StyleGAN2

F 94.9 85.1 99.9 58.4 82.7 55.5 47.6 91.0 71.3 60.1 43.1 87.7 41.1 88.7
I 73.7 61.0 97.3 50.5 76.4 99.9 64.3 94.6 82.4 47.5 72.4 68.1 72.4 68.1

GigaGAN
C 79.5 84.0 99.6 90.9 76.7 99.9 87.9 97.6 95.5 80.6 96.5 94.0 96.7 93.4

Di�.GAN S 89.8 92.6 99.5 96.6 99.5 49.8 44.8 97.4 100. 43.9 99.4 99.4 99.5 99.5
GALIP C 89.7 98.2 94.3 87.7 56.7 100. 75.6 98.6 90.7 65.0 98.4 96.3 99.7 99.4
DALL·E L 66.4 71.7 95.0 98.3 95.2 99.8 55.9 97.3 99.5 24.1 99.2 95.8 98.2 95.4
DDPM F 31.6 98.4 22.8 100. 9.8 23.1 50.5 77.7 92.4 81.7 76.6 25.2 93.8 79.6

S 67.6 67.6 70.6 80.3 81.1 52.0 37.4 88.2 94.1 53.1 49.5 53.5 69.4 71.0
ADM

I 61.0 81.9 94.4 81.1 72.7 99.5 69.1 85.3 78.5 80.3 87.8 90.5 95.3 92.1
C 64.8 97.4 96.3 97.2 81.5 99.9 92.4 88.8 95.4 98.0 47.8 88.5 91.1 91.1
R 32.2 95.0 56.6 86.5 50.6 42.9 92.2 72.8 63.3 87.7 23.2 89.4 51.1 65.1GLIDE
L 72.6 74.1 90.8 86.9 90.3 100. 60.2 95.3 99.8 68.7 54.5 84.2 93.8 88.5

DiT I 58.6 83.1 88.0 100. 56.2 99.6 87.4 77.8 78.4 99.8 89.4 84.3 94.9 91.0
C 68.2 86.1 95.3 100. 54.7 99.9 93.3 97.9 76.5 99.8 48.4 74.8 54.6 71.4

Stable D. 1.4
R 37.9 61.8 73.4 100. 50.0 37.6 88.0 87.7 43.0 96.9 99.4 98.7 97.0 97.2
C 56.5 78.6 94.2 100. 62.8 99.3 97.9 82.3 89.3 99.9 83.0 90.3 84.5 89.1

Stable D. 2
R 50.2 38.7 34.8 100. 41.4 35.5 80.7 89.5 44.0 97.4 98.5 96.8 95.8 95.9
C 83.8 60.8 89.3 100. 89.3 99.5 94.0 80.0 99.3 87.9 99.9 99.9 99.9 99.8

SDXL
R 54.3 68.4 31.1 100. 57.2 47.1 84.4 85.1 76.7 69.7 100. 100. 99.1 99.2

Deep.-IF C 78.0 62.7 72.2 99.9 68.8 98.9 96.9 92.9 91.6 81.9 91.7 82.3 88.4 79.4
C 88.5 52.4 98.9 88.2 78.6 99.9 80.6 97.1 90.0 59.3 100. 100. 100. 99.9

DALL·E 2
R 64.8 41.9 70.4 69.4 58.6 44.7 70.9 95.2 39.5 32.8 100. 100. 100. 100.

C 65.0 47.3 99.5 100. 88.4 99.9 96.2 86.4 97.7 99.7 99.7 99.5 98.3 98.2
DALL·E 3

R 10.9 52.7 0.2 60.8 37.9 47.6 92.4 36.4 48.7 48.3 79.1 66.7 78.0 78.1
Midjourney R 40.2 57.8 40.7 100. 56.3 51.0 78.1 66.2 77.0 99.0 99.7 99.3 98.5 98.5
Adobe Fire�y R 84.8 49.4 11.8 98.0 40.6 57.4 81.4 97.5 32.1 52.8 73.6 41.2 80.8 80.4

AVG 68.3 73.3 77.0 89.4 68.2 74.6 72.9 88.4 80.1 71.2 83.3 86.4 88.8 90.0

in the supplementary material. The proposed zero-shot approach goes above 80%
with all decision statistics, reaching the top value of 90.0% when |∆01| is used.
Obviously, this is a very good result, but what makes it especially valuable is
the absence of any dependence on the generators' models. This point is further
stressed by the fact that the AUC remains extremely stable across all test sets,
with a minimum of 65.1% on GLIDE-R. On the contrary, the best competitor,
Corvi2023, has a long score of top results but also some very poor ones. suggest-
ing a certain instability, likely due to the presence/absence of speci�c artifacts
in the test images, and eventually the risk of not adapting to models of new con-
ception. We want also to draw the reader's attention on the already mentioned
case of GLIDE and on the fact that the proposed method exhibits wildly di�er-
ent results with di�erent decision statistics. In particular, with |D(0)| the AUC
is 89.4% as opposed to the already mentioned 65.1% with |∆01|. This suggests
there may be better ways to exploit the basic NLL(l) and H(l), possibly jointly
at all levels, to synthesize a better and more stable decision statistics.

Finally, in Fig.7, we report the accuracy as a function of the decision threshold
for the best methods. A separate curve is shown for each real image dataset by
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Fig. 7: Balanced accuracy as a function of the detection threshold. For each dataset of
real images, we average accuracy over all associated synthetic generators. The dotted
vertical line indicates the global optimal threshold and the × symbol the corresponding
accuracy. Note that only for the proposed method all peaks are very close, indicating
the presence of a single threshold. Charts for other methods are reported in the Suppl.

averaging over the associated synthetic generators. Unlike AUC, the accuracy
critically depends on the selection of a good threshold and some calibration data
may be needed for this purpose. Note that only for the proposed method there
is a single good threshold that ensures near-optimal accuracy for all datasets.

4.4 Limitations

Our work was developed to detect whether an image has been fully generated
and not to detect local manipulations. However, it could be easily extended
to accomplish this task since we already compute a map of local pixel-wise
statistics. Furthermore, our approach relies on a model of the real class learned
by the encoder. If real images do not satisfy this model, the approach may not
perform correctly. For example, if images are highly compressed or resized (as is
the case on the web), statistical analysis may not be reliable.

5 Conclusion

We introduced a novel zero-shot forensic detector to distinguish AI-generated
images from real ones. Unlike most current methods, our approach does not re-
quire fake images during training, which ensures generalization to yet unknown
generative models. The idea is to exploit an implicit model of real images and
classify o�-model images as synthetic. To this end, we leverage an appropriate
lossless encoder, trained only on real images, that can predict the probability
distribution of each pixel given its context. Synthetic images are expected to
not respect this distribution, thus revealing their arti�cial nature. Our experi-
ments show that the proposed detector is consistently competitive with detectors
trained in supervised modality, and outperforms them in terms of generalization
ability. We believe that our approach is an important stepping stone towards
e�ective forensic tools that can operate without relying on domain- or method-
speci�c training data. Future work will focus on making the method robust to
the most common forms of image impairment, so as to make it suitable for in
the wild application.
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