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A Long Caption in Multi-modality Learning

In this section, we discuss various studies related to the generation of extended
captions within the context of text-to-image (T2I) synthesis. Several notable
works [1, 4, 5] have employed Multimodal Large Language Models (MLLM) to
produce comprehensive and rich captions for T2I tasks. These approaches let
models better capture and draw a picture by utilizing more intricate and accurate
captions of scenes. Meanwhile, in language-image pretraining tasks, our objective
is for elaborate captions to leverage real-world images more effectively, thereby
endowing multimodal foundation models with some additional capabilities (e.g .,
Vision-Language Compositionality in Appendix D).

B Sampling from Mixture Generated Long Captions

In the main paper, we mainly use the long caption from ShareGPT4V as the
training text. However, different MLLMs may focus on different regions of real-
world images due to their difference of training process and data. Thus, the
generated long/short captions from MLLMs can help each other. Inspired by this
straightforward idea, we merge all captions from different MLLMs together, and
sample the sub-captions from the set of merged captions. As shown in Figure 1,
we use three kinds of MLLMs to generate the long captions and short captions,
and then sample the sub-captions from it as the input of text encoder.

As shown in Table 1, the number of sub-captions and tokens exceeds the
result of using ShareGPT4V alone. Further, our ablation studies on the mix-
ture generated long captions reveal that an increased number of sub-captions
correlates with enhanced performance, surpassing the result achieved with long
captions solely from ShareGPT4V. These findings suggest that various MLLMs
capture distinct image regions, providing complementary information.

We also analyze the mixture generated long captions, characterized by a
greater number of tokens and subcaptions, can capture the contents of an image
⋆ Equal contribution
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more comprehensively than one kind of captions as shown in Figure 2. In future
work, we aim to investigate the synergistic effects of integrating additional
MLLMs.

Table 1: Ablation study of sampling number of sub-captions from mixture generated
long captions. We use ViT-B/16 as image backbone. ‘CLIP*’ refers to enhancing CLIP
with image data augmentation following SimCLR [6]

K

Text Retrieval Image Retrieval Classification Segmentation
Flickr30k MSCOCO Flickr30k MSCOCO ImageNet VOC-20

R@1 R@1 R@1 R@1 Acc.(%) mIOU
CLIP 29.4 14.3 19.9 10.2 16.0 62.7
CLIP* 32.6 14.8 21.4 11.5 20.3 64.4
2 68.1 39.6 54.3 29.1 30.7 83.1
4 72.6 44.1 58.2 32.6 30.1 85.5
6 74.9 44.9 59.2 33.4 31.9 85.4
8 75.0 45.6 60.8 33.8 32.8 86.6
10 74.3 47.2 61.6 34.8 33.6 87.4
12 75.5 46.4 61.5 35.0 34.3 86.7
14 75.9 47.4 61.8 35.0 33.9 87.2
16 75.3 48.1 61.7 35.1 34.7 87.8
18 74.4 46.4 62.4 34.9 34.6 88.2
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Fig. 1: Illustration of DreamLIP with mixture generated long captions.
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Fig. 2: Statistics of merged caption that include raw caption, three long captions
and three short catptions generated by MLLMs (i.e., InstructBLIP, LLAVA-1.5 and
ShareGPT4V).

C Data Augmentation with Synthetic Images Generated
by SDXL-turbo

Language-image pre-training could benefit from long captions generation, due
to the strong captioning capacity of image-to-text models. Meanwhile, as shown
in Figure 3, we would explore whether text-to-image models (e.g ., SDXL-turbo [9])
can bring performance improvement for language-image pre-training. An image
may be depicted through a variety of sentences, while a single caption also has
the capacity to evoke numerous images. Thus, we adopt the SDXL-turbo to
generate some images from raw captions and short captions. As shown in Table 2,
the DreamLIP with synthetic images outperforms DreamLIP on three kinds of
datasets, which approves the ability of the introduction of synthetic images.
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Fig. 3: Illustration of DreamLIP with synthetic images generated by SDXL-turbo.
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Table 2: Zero-shot transfer evaluation of different models. Performance on ImageNet
and 10 common downstream datasets are reported.
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Model Architecture: ViT-B/32

CC3M
CLIP 10.2 71.3 32.1 33.8 1.4 1.0 12.0 12.1 50.9 10.8 23.6 17.2

DreamLIP 16.1 82.0 45.4 41.3 2.5 1.0 13.9 18.8 64.4 14.1 30.0 25.9
+ Synthetic Images 21.7 80.9 51.2 45.1 3.2 1.5 20.8 24.1 68.2 15.6 33.2 29.4

CC12M
CLIP 26.5 72.5 38.0 37.1 13.7 2.6 11.4 46.2 74.0 25.7 34.8 32.9

DreamLIP 48.9 86.4 63.0 55.7 17.9 1.9 23.5 41.9 83.2 25.8 44.8 44.2
+ Synthetic Images 46.0 86.1 57.2 53.3 26.1 3.3 26.3 56.4 83.7 31.3 47.0 46.4

YFCC15M
CLIP 26.9 77.8 48.2 42.5 5.5 4.7 18.5 15.7 62.0 39.0 34.1 33.3

DreamLIP 51.7 87.9 60.7 54.8 9.4 7.1 26.8 36.3 79.6 48.6 46.3 46.6
+ Synthetic Images 54.2 87.1 57.9 53.5 14.1 8.7 31.4 32.3 80.8 40.5 46.1 47.5

Model Architecture: ViT-B/16

CC3M
CLIP 10.3 54.9 21.8 25.0 0.8 1.4 10.5 12.8 43.3 10.2 19.1 20.3

DreamLIP 19.4 74.3 44.2 45.9 2.8 1.0 17.0 27.1 63.1 14.7 31.0 31.1
+ Synthetic Images 22.8 72.8 43.0 46.6 3.9 1.2 22.1 25.7 70.0 17.7 32.6 33.3

CC12M
CLIP 25.3 66.5 32.1 39.9 14.7 1.9 13.5 45.0 59.8 15.0 31.4 34.0

DreamLIP 58.3 87.3 62.6 54.3 29.7 4.9 29.2 60.3 83.1 28.9 49.9 50.3
+ Synthetic Images 58.3 87.3 64.6 53.9 29.7 4.9 29.2 60.3 83.1 28.9 50.0 50.7

YFCC15M CLIP 35.0 67.1 34.8 42.0 5.1 6.3 13.9 20.4 54.5 44.3 32.3 34.1
DreamLIP 44.2 89.0 62.0 57.1 9.2 6.4 30.5 32.6 79.8 40.2 45.1 48.2

D Evaluation on Vision-Language Compositionality

We compare DreamLIP with CLIP on Attribution, relation, ordering (ARO) [11]
and SugarCrepe [7] benchmark. These two benchmarks are used to measure
compositional understanding of vision-language models. Results are shown in Ta-
ble 3. DreamLIP significantly outperforms CLIP across all tasks when pretrained
on the same dataset (Merged-30M). Also, DreamLIP-30M achieves better results
on 7 out of 11 tasks compared to CLIP-400M. It indicates the usage of long
captions with detailed descriptions well enhance model’s compositional under-
standing.

Table 3: Results on the ARO [11] and SugarCrepe [7] benchmark. CLIP-30M and
-400M indicate the CLIP is pre-trained on Merged-30M and LAION-400M dataset,
respectively. DreamLIP-30M is pre-trained on Merged-30M dataset

Model
Aro SugarCrepe

VG COCO Flickr Replace Swap Add
Attribution Relation Order Order Object Attribute Relation Object Attribute Object Attribute

CLIP-30M 58.28 43.52 23.42 27.02 82.99 73.10 59.25 60.00 65.17 69.84 63.15
DreamLIP-30M 78.17 53.62 41.26 42.78 91.46 82.23 72.40 69.80 79.43 81.38 77.46
CLIP-400M 59.92 47.86 38.83 42.56 91.58 82.75 67.57 61.22 68.62 82.01 78.61
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E Experiments

E.1 Hyper-Parameters

Table 4 provides an overview of the pre-training hyperparameters used for CLIP
on all datasets. Further details can be found in Table 4. The pre-training pro-
cesses of CC12M, YFCC15M and Merged-30M were conducted on four machines
with eight A100 GPUs. For CC3M, eight A100 GPUs are used.

Table 4: Detailed pre-training hyper-parameters for CLIP training on all four image-
text datasets.

Config Value

Batch size 1, 024
Optimizer AdamW [8]
Learning rate 5× 10−4

Weight decay 0.5
Adam β β1, β2 = (0.9, 0.98)
Adam ϵ 1× 10−8

Total epochs 32
Warm up iterations 2, 000
Learning rate schedule cosine decay

(a) Hyper-parameter on CC3M.

Config Value

Batch size 8, 192
Optimizer AdamW [8]
Learning rate 5× 10−4

Weight decay 0.5
Adam β β1, β2 = (0.9, 0.98)
Adam ϵ 1× 10−8

Total epochs 32
Warm up iterations 2, 000
Learning rate schedule cosine decay

(b) Hyper-parameter on CC12M.

Config Value

Batch size 8, 192
Optimizer AdamW [8]
Learning rate 5× 10−4

Weight decay 0.5
Adam β β1, β2 = (0.9, 0.98)
Adam ϵ 1× 10−8

Total epochs 32
Warm up iterations 2, 000
Learning rate schedule cosine decay

(c) Hyper-parameter on YFCC15M.

Config Value

Batch size 8, 192
Optimizer AdamW [8]
Learning rate 5× 10−4

Weight decay 0.2
Adam β β1, β2 = (0.9, 0.98)
Adam ϵ 1× 10−6

Total epochs 32
Warm up iterations 2, 000
Learning rate schedule cosine decay

(d) Hyper-parameter on Merged-30M.

E.2 Additional Ablation Study

Different Image Backbones in Semantic Segmentation. Table 5 shows the
transferable performance of CLIP and DreamLIP with different image backbones
on semantic segmentation tasks. DreamLIP always achieves better performance
than CLIP across different pre-training data and different image backbones.

Ablation study of σ. Table 6 shows the performance of DreamLIP when
adjusting σ. σ controls the sparsity of subcaption-specific grouping visual tokens,
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Table 5: Transferable performance of semantic segmentation on ADE-847, PC-459,
ADE-150, PC-59, and VOC-20. Following SAN [10], we used the full training set of
COCO-stuff as the training data and our DreamLIP as pretrained models.

Data Method ADE-847 PC-459 ADE-150 PC-59 VOC-20 avg.
Model Architecture: ViT-B/32

CC3M CLIP 2.1 5.2 12.3 33.8 65.4 23.8
DreamLIP 4.1 7.5 17.1 39.9 76.5 29.0

CC12M CLIP 3.3 6.7 15.7 39.2 79.7 28.9
DreamLIP 6.1 10.0 23.3 43.6 85.5 33.7

YFCC15M CLIP 3.2 8.1 14.4 42.0 82.3 30.0
DreamLIP 6.4 11.1 22.4 48.9 88.2 35.4

Merged-30M CLIP 5.8 10.2 21.0 45.8 86.9 33.9
DreamLIP 8.1 12.5 25.3 49.9 90.9 37.3

Laion-400M CLIP 6.1 12.2 21.3 46.3 88.3 34.8
Model Architecture: ViT-B/16

CC3M CLIP 1.9 5.3 11.4 34.5 64.4 23.5
DreamLIP 4.9 8.7 20.5 45.0 84.5 32.7

CC12M CLIP 3.4 7.9 16.4 39.5 80.4 29.5
DreamLIP 6.6 12.3 23.7 48.4 85.2 35.2

YFCC15M CLIP 1.2 4.9 13.9 41.5 74.0 27.1
DreamLIP 6.6 13.5 24.7 51.4 90.9 37.4

Merged-30M CLIP 7.3 12.1 25.6 49.1 86.4 36.1
DreamLIP 9.8 15.4 30.6 55.1 92.2 40.6

Laion-400M CLIP 10.1 12.6 27.5 53.8 94.0 40.6

as shown in Eq.6 in the main paper. Larger σ results in sparser subcaption-
specific grouping visual tokens within an image.

Table 6: Ablation study of σ. σ is a sparsity threshold as shown in Eq.6 in the main
paper. It controls the sparsity of subcaption-specific grouping visual tokens. ViT-B/16
is used as the image backbone. All models are pretrained on CC3M.

σ

Text Retrieval Image Retrieval Classification Segmentation
Flickr30k MSCOCO Flickr30k MSCOCO ImageNet VOC-20

R@1 R@1 R@1 R@1 Acc.(%) mIOU
CLIP 29.4 14.3 19.9 10.2 16.0 62.7
CLIP* 32.6 14.8 21.4 11.5 20.3 64.4
0.0 69.5 42.8 54.4 30.4 31.1 84.5
0.1 71.0 41.2 54.3 30.4 31.9 84.2
0.3 71.1 41.6 54.2 30.3 31.7 84.0
0.5 70.9 42.4 54.4 30.0 31.7 85.0
0.7 72.5 42.2 54.9 30.4 31.8 85.8

Ablation study of λS. We present the influence of λS in Table 7. λS denotes
the weight of fine-grained alignment contrastive loss, as shown in Eq.9 in the
main paper. For most global-level tasks (retrieval and classification), the best
performance is reached when λS = 0.7. For local-level tasks, i.e., semantic
segmentation, the best performance is reached when λS = 0.9. The results
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indicate the fine-grained alignment contrastive loss is helpful for vision-language
alignment. Larger λS leads the model to learn more fine-grained clues.

Table 7: Ablation study of λS , which controls the weight of fine-grained alignment
contrastive loss. ViT-B/16 is used as image backbone. All models are pretrained on
CC3M.

λS

Text Retrieval Image Retrieval Classification Segmentation
Flickr30k MSCOCO Flickr30k MSCOCO ImageNet VOC-20

R@1 R@1 R@1 R@1 Acc.(%) mIOU
CLIP 29.4 14.3 19.9 10.2 16.0 62.7
CLIP* 32.6 14.8 21.4 11.5 20.3 64.4
0.1 69.5 42.8 54.4 30.4 31.1 84.5
0.3 71.0 41.2 54.3 30.4 31.9 84.2
0.5 70.2 42.2 55.0 30.8 31.7 83.6
0.7 71.4 42.6 55.6 31.6 32.1 84.6
0.9 71.1 42.2 55.9 31.5 31.9 85.0
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Fig. 4: Some statistics of long captions generated by ShareGPT4V. (a)-(c) refer to
number of sub-captions from long captions; (d)-(f) refer to number of tokens in long
captions.

E.3 Statistic of Long Captions on Different Datasets

We conducted some statistics (i.e., the number of tokens and sub-captions) of
long captions generated by ShareGPT4V on different datasets. (a)-(c) refer to
number of sub-captions from long captions; (d)-(f) refer to number of tokens in
long captions.
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(a) Image (b) GT (c) CLIP (d) DreamLIP

Semantic Segmentation Image-text Retrieval

(a) Image (c) CLIP (d) DreamLIP

• a big truck with some branches in the 
back of it 

• A school bus waits in traffic behind a car.  

• A city street that has piles on snow on it 

• A truck with a snow plow attached to the 
front.  

• A snowy ladnscape with a car crashed into 
a pole 

• A red pick up truck with a plow blade 
drives down a snowy suburban road

• A truck with a snow plow attached to the 
front

• A snowy landscape with a car crashed into 
a pole

• A city street that has piles on snow on it
• A white service truck passes a 

neighborhood intersection

• A tree has dying leaves and apples in a 
forest. 

• A bowl full of tomatoes sitting next to a 
flower. 

• A teddy bear leaning against a tree next 
to the road.  

• A tree containing apples with more trees 
in the background.  

• An orange hanging alone at the end of a 
branch. 

• A tree containing apples with more trees 
in the background.   

• A young boy reaching up to grab a red 
apple.   

• A tree has dying leaves and apples in a 
forest.   

• A teddy bear is leaning on a tree    

• a bird feeder that is attached to a tree   

• A baked dish on a plate being touched by 
a woman .

• A plate of food on a tray in a room. 
• A white plate topped wti chicken and a 

cup of guacamole .
• A young girl preparing a dish of some sort.. 
• The tennis player is running to meat the 

ball.

• A woman holding a plate of cake covered 
in frosting

• A woman is holding a slice of red and 
white cake

• A person reaching out and cutting a cake
• A woman holding a plastic utensil passing 

out a piece of cake
• A woman holding up a cake for her 

birthday

Fig. 5: Visualization of semantic segmentation and image-text retrieval.

F Visualization

F.1 Visualization of Semantic Segmentation and Image-text
Retrieval.

In order to offer a comprehensive qualitative understanding, we have curated a
set of examples from the VOC and MSCOCO validation sets in Figure 5, show-
casing the notable accuracy improvements achieved by DreamLIP. These carefully
chosen examples serve as compelling evidence of our method’s remarkable ability
to effectively distinguish between intricate and nuanced categories. Notably,
our method excels in scenarios where vanilla CLIP encounters challenges and
struggles to make accurate differentiations. By presenting these examples, we
substantiate the claim that our approach significantly enhances the discrimina-
tive power of the model, particularly in fine-grained categorization tasks.

F.2 Attention Map Visualization.

We visualize the attention map between different sub-captions from the gen-
erated long captions in Fig.6 following [2, 3]. As we motivate above, DreamLIP
can indeed focus on the corresponding regions according to the different sub-
captions. Even the dog’s tongue (as shown in row 2 and column 2) and the
microphone (as shown in row 3 and column 3) in the noisy background can be
precisely perceived by DreamLIP.

G Limitations

The existing multimodal large models suffer from hallucinations, with longer
captions leading to more severe hallucinations. Directly using the generated long
captions will introduce much noise. How to solve the multimodal hallucination
problem under long captions, which can further improve the performance of our
method.
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A player, clad 
in a black 

jersey 
adorned with 
the number 2, 

is in the 
midst of an 
action shot 

Cute brown 
and white 
puppy on a 

leash

The absence 
of other 

people in the 
image puts 

the spotlight 
solely on the 
man and his 

music

an outdoor 
patio area 

with a 
table and 

chairs

The ball, a stark 
white against the 

blue court, is 
captured in mid-air, 

just above the 
player‘s head, 

indicating a powerful 
serve or hit. In the 
background, another 
player can be seen 

The dog’s 
ears are 

perked up, 
indicating 

alertness or 
curiosity

In the background, 
a microphone 

stand can be seen, 
hinting at the 
possibility of 

vocals 
accompanying the 

guitar

This column supports a 
wooden awning, under 
which a stone bench 
and a small table are 

nestled, inviting one to 
sit and enjoy the 

tranquility of the space.
The backyard itself is 
a lush green oasis, with 

a variety of plants …

This player is 
dressed in a red 

jersey, 
providing a 

striking 
contrast to the 
blue court and 

the black jersey 
of the player in 
the foreground

Its tongue 
is sticking 

out 
slightly, 
adding a 
playful 

touch to 
the scene

An old man 
with glasses 
playing bass 
on stage at a 

concert

Dominating the 
foreground is a 
brick column, 
its dark hue 
contrasting 

with the lighter 
tones of the
surrounding 

area

Fig. 6: Visualization for Attention Map. The sub-captions corresponding to the
attention maps are split from the generated long captions.
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