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Abstract. Multi-Label Image Recognition (MLIR) is a challenging task
that aims to predict multiple object labels in a single image while mod-
eling the complex relationships between labels and image regions. Al-
though convolutional neural networks and vision transformers have suc-
ceeded in processing images as regular grids of pixels or patches, these
representations are sub-optimal for capturing irregular and discontinuous
regions of interest. In this work, we present the first fully graph convolu-
tional model, Group K-nearest neighbor based Graph convolutional Net-
work (GKGNet), which models the connections between semantic label
embeddings and image patches in a flexible and unified graph structure.
To address the scale variance of different objects and to capture informa-
tion from multiple perspectives, we propose the Group KGCN module
for dynamic graph construction and message passing. Our experiments
demonstrate that GKGNet achieves state-of-the-art performance with
significantly lower computational costs on the challenging multi-label
datasets, i.e. MS-COCO and VOC2007 datasets. Codes are available at
https://github.com/jin-s13/GKGNet.

1 Introduction

Multi-label image recognition (MLIR) (also referred to as multi-label classifica-
tion) is a fundamental task in computer vision, which aims to predict a set of
labels of a single image. Compared with single-label image recognition, MLIR
is more challenging due to its combinatorial nature. It has received increasing
attention because of its broad real-world applications, such as human attribute
recognition [19] and scene understanding [26].

Modeling the relationships between each target label and the correspond-
ing image regions is critical yet challenging for MLIR. The regions that relate
to a certain label may be complicated and even discontinuous. For example,
to recognize the presence of dogs in an image, multiple regions need to follow
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Fig. 1: Illustration of feature extraction in CNN, vision transformer, and graph convo-
lutional network (GCN). (a) CNN excels at processing continuous regions but struggles
with irregular regions of interest. (b) Vision transformers handle complex regions of in-
terest but introduce redundant interference from the background. (c) GCN constructs
connections between the destination node and multiple objects of interest distributed
in different spatial locations.

with interest, since there may exist multiple dogs. Convolutional neural net-
works (CNN) [12, 14, 34] regard the image as grids of pixels and apply sliding
convolutional kernels according to spatial positions. As shown in Fig. 1 (a), CNN
process continuous regions well but struggles to fit irregular regions of interest.
In contrast, vision transformers [6] treat the image as a sequence of patches and
extract the visual features from the patches via attention. As shown in Fig. 1 (b),
vision transformers can handle complicated regions of interest by capturing the
whole image features. However, interactions with the background increase costs
and affect performance. For small-size target objects, most patches belong to
the background thus the sum of their attention scores cannot be ignored. Graph
methods like Vision GNN [11] views visual patches as nodes, forming a flexi-
ble approach to extract features by representing images as graphs. As shown in
Fig. 1 (c), the graph representation constructs the connections according to the
semantic meanings and focuses on the regions of interest distributed in different
spatial locations.

In this work, we propose the first fully graph convolutional network (GCN)
for the task of MLIR, termed Group K-nearest neighbor based Graph convolu-
tional Network (GKGNet). GKGNet regards both the image patches and target
labels as graph nodes and processes them in a unified graph structure. GKGNet
constructs two distinct graphs: a cross-level graph that models the label-object
relationship between target labels and image patches, and a patch-level graph
that processes and updates the image features between patches. Thus, GKGNet
enables the adaptive integration of features from patches of interest, even in the
presence of irregular and discontinuous regions, leading to the effective updating
of the unified graph representations of visual features and label embeddings.

Graph construction is the key to the success of GCN. The K-nearest neigh-
bor (KNN) graph, where there is an edge between each node and its K most
similar nodes, is one of the most widely used graph structures [11]. However, this
approach is sub-optimal for the following reasons. First, the number of neigh-
bors K controls the size of the area where region features will be extracted and
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aggregated. Large K will lead to feature over-smoothing and involve interference
of the invalid background, while small K will affect feature extraction and mes-
sage passing. A fixed K cannot adaptively handle objects with different scales.
Second, this method finds the neighbors by measuring the distance between the
destination node and the candidate source nodes. It is difficult to define a unique
measurement of distance to represent the rich dimensions of “high-level” labels.

Therefore, we propose the Group KNN-based GCN (Group KGCN) mod-
ule, which splits node features into multiple groups and constructs connections
among each group. By designing each group to potentially connect to different
source nodes, the Group KNN approach allows a destination node to inter-
act with a dynamic number of source nodes and handle objects with different
scales. Also, this dynamic connectivity enables the model to capture informa-
tion from multiple perspectives, which is crucial for MLIR. For instance, rec-
ognizing the class “zebra" requires consideration of both shape and appearance
features. Furthermore, MLIR involves capturing multi-label correlations, where
the context surrounding the target objects is also important for accurate recog-
nition [2, 4, 29–32]. Therefore, by allowing for flexible and varied connectivity
patterns, the Group KNN approach is able to model these complex relationships
between image regions and labels.

Experiments on two well-known benchmarks, i.e. MS-COCO and VOC2007,
verify the effectiveness of the proposed method. Our method achieves new state-
of-the-art performance with significantly lower computational costs.

This paper’s contribution can be summarized as follows:

– We introduce GKGNet, the first fully graph convolutional model for multi-
label image recognition, which builds unified graph representations for visual
features and label embeddings, explicitly modeling the flexible relationship
between labels and regions of interest.

– To handle scale variance and capture diverse perspectives, we propose the
Group KGCN module for dynamic graph construction and message passing.

– Our proposed model is validated on popular benchmark datasets, including
MS-COCO and VOC2007. It consistently outperforms previous state-of-the-
art approaches with lower computational complexity.

2 Related Work

2.1 Multi-Label Image Recognition

Multi-label image recognition (MLIR) (also referred to as multi-label classifica-
tion) is an extension of image classification, which aims to predict multiple class
labels for an image. Several approaches [12,14,34] design powerful Convolutional
Neural Network (CNN) architectures for the task of MLIR. CNN extracts the
visual features of the input image and predicts multiples labels according to
the same features. Instead of explicitly capturing the regions of interest, these
methods treat each label equally and simply consider MLIR as multiple binary
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Fig. 2: Overview of GKGNet. GKGNet splits the input image into a set of patch
nodes, and regards the learnable label embeddings as label nodes. Four-stage network is
applied to process the patch nodes and label nodes in the unified graph structure. The
number of patch nodes is reduced after each stage to extract multi-scale visual features.
At each stage, the patch nodes are first updated via Patch-Level Group KGCN modules,
and then Cross-Level Group KGCN modules updates the label nodes by building the
connections between target labels and image regions of interest. The output patch
nodes and label nodes of the last stage are combined for multi-label prediction.

classification tasks. Recently, some works [6, 17, 22] explore to use transformers
for the task of MLIR to capture semantic relationships among the labels. C-
Tran [17] uses a transformer encoder to process image features and label embed-
dings simultaneously, while Q2L [22] employs a transformer decoder to explicitly
exchange information between target labels and image features. These methods
predict labels using visual features of the whole image, leading to redundant
background interference and performance hindrance. Moreover, such designs de-
mand high computational costs, particularly as image resolution increases.

There are several works [1, 4, 5, 29, 30, 32] applying graph convolutional net-
work (GCN) for MLIR. They use CNN for image representation learning and
only use GCN to model the relationship between multiple labels. However, these
methods do not explore the important connections between the global classifica-
tion label and spatial visual regions. Moreover, the image representations learned
by CNN are not well-aligned with the semantic embeddings of labels processed
by GCN, which hinders message passing. To deal with the above problems, we
instead propose a fully graph convolutional network, termed GKGNet, to cap-
ture the relationship between target labels and the spatial areas in a unified
graph representation. GKGNet adaptly searches the regions of interest for each
target label in the flexible graph structure. It is able to fit in irregular areas and
capture complex correlations without introducing any computational cost.

2.2 Graph Convolutional Network

Graph is a versatile and flexible data structure and it can process any kind of
data that can be converted into a set of nodes and edges. They can represent
both non-Euclidean data, such as social networks, and Euclidean data, such as
images [33]. Graph convolutional networks (GCN) [13] are introduced to learn
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graph representations using convolutional operations on the graph’s Laplacian
matrix based on spectral graph theory. GCN is highly effective for message pass-
ing and correlation modeling in computer vision tasks, such as multi-label clas-
sification [4], relationship proposal generation [28], scene graph generation [35],
and human pose estimation [15]. Recently, a GCN-based backbone network called
ViG [11] has been proposed to directly convert images into graph structures to
learn visual representations. This approach divides an image into patches and
considers them as nodes in a graph. Edges are constructed by identifying K-
nearest neighbors (KNN) for each node, and effective message passing captures
the spatial relationships between visual patches. However, the KNN-based ap-
proach limits the destination node to aggregate information from a fixed number
of source nodes, which may not be appropriate for tasks involving target labels
with regions of different sizes and shapes. To address this limitation, we propose
the Group KGCN module, which can adapt to different numbers of neighbors
based on practical requirements.

3 Method

3.1 Overview

We propose a fully graph convolutional network (GCN), termed Group K-nearest
neighbor based Graph convolutional Network (GKGNet), for the task of multi-
label image recognition. The overview of GKGNet is illustrated in Fig. 2. Inspired
by ViG [11], the input image is divided into N image patches, and each patch is
transformed into a visual feature vector with dimension C by a fully-connected
layer. These feature vectors are represented as patch nodes in our graph repre-
sentations. The learnable label embeddings are viewed as label nodes, which have
the same feature dimension C as the patch nodes. The patch nodes and label
nodes are processed by four hierarchical stages, and the number of patch nodes
is reduced after each stage to extract multi-scale visual features. Each stage
consists of two kinds of Group KGCN modules, i.e. Patch-Level Group KGCN
module and Cross-Level Group KGCN module. Patch-Level Group KGCN mod-
ule serves as image feature extractor to capture the spatial relationship between
visual features, and Cross-Level Group KGCN module establishes the cross-
correlation between target labels and the related regions of interest. In order to
construct flexible connections between nodes, Group KGCN module allows each
node to correlate with different number of patch nodes according to practical
needs. Finally, the classifier is applied to the output patch nodes and label nodes,
and both of them are taken into consideration for class possibility prediction.

3.2 Group KGCN Module

Our GKGNet paradigm entails the representation of both patch and label fea-
tures in a graph form, wherein edges are established among neighboring nodes
to facilitate message passing. A conventional technique for graph construction
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involves identifying the K-nearest neighbors (KNN) of the destination node, as
depicted in Fig. 3 (a), and subsequently updating the destination node’s features
based on those of its neighbors, i.e. source nodes. However, such a methodology
restricts itself to a fixed number of source nodes and may not be optimal for the
task of MLIR, because the target label may be associated with regions of vary-
ing sizes and different number of source nodes should be connected. To address
this issue, we propose Group K-nearest neighbors (Group KNN), which provides
greater flexibility in constructing the graph structure, for Group KNN-based
GCN (Group KGCN) module, enabling effective message passing.

Group KNN. Group KNN based graph construction divides both source nodes
S = {S1, S2, · · ·, SNS

} ∈ RNS×C and destination nodes D = {D1, D2, · · ·, DND
} ∈

RND×C into G groups of sub source nodes and sub destination nodes by splitting
feature dimensions, where C denotes the dimension of the destination node and
source node, and NS and ND are numbers of source nodes and destination nodes
respectively. Each sub destination node selects to connect with sub source nodes
within the same group. For group g, the i-th sub destination node Dig ∈ RC

G (i ∈
[1, ND], g ∈ [1, G]) searches for the K-nearest neighbors among the corresponding
sub source nodes Sg = {S1g, S2g, · · ·, SNSg} ∈ RNS×C

G . Cosine similarity is used
for neighborhood search.

(c) Group KGCN Module
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Fig. 3: Illustration of Group KGCN. (a) Traditional KNN based graph construc-
tion (K=2). (b) Group KNN based graph construction (G=2, K=2). The blue check
marks indicate the source nodes are selected. (c) Structure of Group KGCN module.

The utilization of distinct groups allows the destination node to establish
connections with a variable number of source nodes, ranging from K to K ×G.
As shown in Figure 3 (b), the sub destination node D11 links to the sub source
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nodes S11 and S21, while the sub destination node D12 connects with the sub
source nodes S31 and S41. This enables the destination node D1 to interact
with four source nodes: S1, S2, S3, and S4. This scenario typically occurs when
the destination node concerns a broader area of interest, such as a large target
object. Conversely, when the neighbors of distinct groups overlap, the number
of selected source nodes decreases. For instance, both sub destination nodes of
D2 connect with the source nodes S2, resulting in an interaction with only three
source nodes: S1, S2, and S4. This scenario typically occurs when the destination
node involves only small regions of interest, such as a small target object, thereby
helping to circumvent irrelevant information during message passing.

Module structure. As shown in Fig. 3 (c), the Group KGCN module conducts
message passing between the destination node and source nodes after the graph is
constructed via Group KNN. The sub destination node Dig is updated according
to its K-nearest neighbor source nodes {Ŝ1g, Ŝ2g, · · ·, ˆSKg} ⊆ Sg via group max-
relative graph convolution. Ŝ represents the selected nearest neighbors.

Group max-relative graph convolution is an extension of [18]. For each sub
destination node, it aggregates features of its group-wise neighbors by maximiz-
ing every dimension of the relative feature Dig − Ŝkg as follows:

D
′

ig = max({Dig − Ŝkg|k ∈ [1,K]}). (1)

Then all the updated sub destination nodes are processed to output the
renewed destination node D̃i as follows:

D̃i = Di + FFN(Di + Linear(Concat(Di, {D
′

ig}))), (2)

where Concat indicates the concatenation operation, and Linear is a fully con-
nected layer. FFN denotes the feed-forward network. The original destination
node Di and its G sub-destination nodes processed by group max-relative graph
convolution are concatenated together for destination node feature update. The
residual structure is used to relieve the over-smoothing problem.

Computation cost analysis. Our Group KGCN module improves model accu-
racy without adding computational costs. Traditional KNN-based GCNs have a
distance calculation cost of O(NS × ND × C) for NS source nodes, ND des-
tination nodes, and dimension C. The Group KGCN module has a cost of
O(G×NS ×ND × C

G ) = O(NS ×ND × C), which is the same.

3.3 Patch-Level and Cross-Level Group KGCN

Each GKGNet stage consists of two types of Group KGCN modules. Patch-Level
Group KGCN module updates visual features within patches and Cross-Level
Group KGCN module builds connections between labels and patches.
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We apply Patch-Level Group KGCN modules, where both destination and
source nodes are patch nodes, to extract image features. This graph-based ap-
proach allows modeling semantic relationships among regions. Patch-Level Group
KGCN modules capture the parts of an object or multiple objects of the same
category distributed in different locations for more robust visual representations.

Besides the relationship among patch-level visual features, we take into con-
sideration the cross-level label-patch correlation. We construct Cross-Level Group
KGCN modules that enable message passing from patch nodes (source nodes) to
label nodes (destination nodes), to learn label embeddings from the region fea-
tures. The graph representation provides a flexible way to extract global context
information, which are important for the task of multi-label image recognition
(MLIR) where the target objects may be irregular and discontinuous. Group
KNN based graph construction enables each label to capture objects of differ-
ent scales and multi-label correlations. By constructing the unified graph rep-
resentation for labels and patches, the cross-level graph effectively benefit label
recognition from the regions of interest in the same representation space.

3.4 Classifier and Loss Function

The classifier utilizes both patch nodes and label nodes outputted by the last
stage for MLIR. The final scores are:

Y = Sigmoid(Yxp
+ Yxl

), (3)

where Yxp ∈ RL and Yxl
∈ RL are the logits predicted by patch nodes and

label nodes using the fully connected layers respectively. L is the number of
target categories. Label smooth loss Lsmooth [27] and asymmetric loss Lasy [25]
are applied to supervise the training process. The total training loss is L =
Lsmooth + Lasy.

4 Experiments

We evaluate our model on several benchmark datasets, including MS-COCO [20]
and Pascal VOC [9]. We follow common practice [17,29,30] to report the average
of Overall Recall (OR), Overall Precision (OP), Overall F1-score (OF1), per-
Class Recall (CR), per-Class Precision (CP), per-Class F1-score (CF1) and the
mean Average Precision (mAP) as the evaluation metrics. OF1, CF1 and mAP
are emphasized as the most important metrics as OR, OP, CR and CP are
easily affected by the classification threshold. We set the threshold as 0.5 for
recall, precision, and F1 score in our experiments.

4.1 Implementation Details

Numbers of Patch-Level Group KGCN modules are set as [2, 2, 6, 2], and numbers
of Cross-Level Group KGCN modules are [1, 1, 1, 1] for four hierarchical stages
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Table 1: Comparisons with state-of-the-art methods on MS-COCO. All the methods
adopt models pre-trained on ImageNet-1K dataset. † means using model EMA. We
report multiple evaluation metrics (higher is better), among which mAP, CF1, and
OF1 are the primary ones. GKGNet significantly outperforms the existing approaches
in terms of both accuracy and efficiency.

All Top3
Resolution Param(M) FLOPs(G) mAP CP CR CF1 OP OR OF1 CF1 OF1

ResNet-101 [12] 224 × 224 44.5 7.8 78.3 80.2 66.7 72.8 83.9 70.8 76.8 69.7 73.6
SRN [34] 224 × 224 76.8 9.0 77.1 81.6 65.4 71.2 82.7 69.9 75.8 67.4 72.9
IDA-SwinS(H) [21] 224 × 224 48.9 8.7 80.6 64.5 81.1 71.8 65.8 83.9 73.8 71.4 74.5
Mltr [6] 224 × 224 33.0 - 81.9 80.7 71.5 75.2 81.4 76.3 78.1 - -
GKGNet (Ours) 224 × 224 33.3 5.2 82.0 81.7 73.1 77.1 83.1 76.3 79.6 73.7 76.1
CADM [3] 448 × 448 - - 82.3 82.5 72.2 77.0 84.0 75.6 79.6 73.5 76.0
ML-GCN [4] 448 × 448 44.9 31.5 83.0 85.1 72.0 78.0 85.8 75.4 80.3 74.6 76.7
KSSNet [29] 448 × 448 173.8 - 83.7 84.6 73.2 77.2 87.8 76.2 81.5 - -
MS-CMA [31] 448 × 448 - - 83.8 82.9 74.4 78.4 84.4 77.9 81.0 74.9 77.1
MCAR [10] 448 × 448 - - 83.8 85.0 72.1 78.0 88.0 73.9 80.3 75.1 76.7
TDRG [32] 448 × 448 68.3 42.2 84.6 86.0 73.1 79.0 86.6 76.4 81.2 75.0 77.2
Q2L-R101 [22]† 448 × 448 193.6 51.4 84.9 84.8 74.5 79.3 86.6 76.9 81.5 73.3 75.4
IDA-SwinS(H) [21] 448 × 448 48.9 35.0 85.5 68.9 85.6 76.3 69.8 87.5 77.7 75.2 77.4
GKGNet (Ours) 448 × 448 34.0 21.9 86.7 86.4 77.1 81.5 87.3 79.7 83.3 77.0 78.8
SSGRL [2] 576 × 576 92.3 68.5 83.8 91.9 62.5 72.7 93.8 64.1 76.2 76.8 79.7
KGGR [1] 576 × 576 - - 84.3 85.6 72.7 78.6 87.1 75.6 80.9 75.0 77.0
MCAR [10] 576 × 576 - - 84.5 84.3 73.9 78.7 86.9 76.1 81.1 75.3 77.0
ADD-GCN [30] 576 × 576 48.2 52.7 85.2 84.7 75.9 80.1 84.9 79.4 82.0 75.8 77.9
C-Tran [17] 576 × 576 120.4 84.2 85.1 86.3 74.3 79.9 87.7 76.5 81.7 76.0 77.6
TDRG [32] 576 × 576 68.3 69.8 86.0 87.0 74.7 80.4 87.5 77.9 82.4 76.2 78.1
IDA-R101(H) [21] 576 × 576 53.2 54.1 86.3 - - 80.4 - - 82.5 76.4 78.2
IDA-SwinS(H) [21] 576 × 576 48.9 64.0 86.4 69.6 86.5 77.1 69.6 88.8 78.1 75.6 77.8
Q2L-R101 [22]† 576 × 576 193.6 80.8 86.5 85.8 76.7 81.0 87.0 78.9 82.8 76.5 78.3
GKGNet (Ours) 576 × 576 34.7 40.1 87.7 87.0 78.5 82.5 87.6 81.0 84.2 77.6 79.3

respectively. The feature dimensions C for each stage are set as [80, 160, 400, 640].
We choose K = 9 for the number of neighbors and G = 2 for the number of
groups in all the Group KGCN modules. ImageNet-1K [8] pre-trained weights of
Pyramid ViG-S [11] are used for Patch-Level Group KGCN modules initializa-
tion, while Cross-Level Group KGCN modules and learnable label embeddings
are randomly initialized. During training, we utilize AdamW optimizer [23] with
a weight decay rate of 0.05 and momentum of 0.9 to train GKGNet for 80 epochs.
The initial learning rate is 1×10−4 with a linear warm-up of 1×10−3. We reduce
the learning rate by a factor of 0.1 at the 5th and 50th epoch for Pascal VOC
dataset, and at the 10th and 50th epoch for MS-COCO [20] dataset respectively.
All experiments are based on MMClassification [7].

4.2 Comparisons on MS-COCO Dataset

MS-COCO [20] is one of the most widely used benchmark datasets for multi-label
classification. It contains 122,218 images that are composed of 82,081 training
images and 40,137 validation images. There exist 80 kinds of object labels in
total, with 2.9 labels on average for each image. We report results on three
commonly used input resolution settings on the dataset: 224 × 224, 448 × 448,
and 576×576. All methods apply the models pre-trained on ImageNet-1K [8] as
the common practice. For our GKGNet, only Patch-Level Group KGCN uses pre-
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trained weights, while other parts use random initialization. For fair comparisons,
we do not report results that apply much larger models (e.g . Swin Large with
197M parameters) and extensive pre-training data (e.g . ImageNet21K), which
involves a different experiment setting from ours.

As shown in Table 1, our method achieves the best performance on all the
input resolution settings in terms of mAP, CF1, and OF1. Compared with trans-
former based methods (e.g . C-Tran [17] and Q2L [22]), the flexibility of graph
structure enables the model to focus only on the regions of interest and to avoid
background interference, which saves computational cost and improves the per-
formance. For example, GKGNet outperforms Q2L by 1.2% mAP with half the
FLOPs under the 576×576 resolution setting. Kindly note that Q2L also utilizes
Exponential Moving Average (EMA) technique that maintains moving averages
of the trained model parameters to improve training robustness and model per-
formance. ML-GCN [4], KSSNet [29], MS-CMA [31], ADD-GCN [30], SSGRL [2],
and TDRG [32] are GCN based models. We find that our proposed GKGNet
outperforms them by a large margin, which demonstrates the superiority of the
unified design of patch-level and cross-level graph-based interaction, and the
proposed Group KGCN modules that construct the graph structure adaptively
according to the scale of target objects. Under the 448× 448 resolution setting,
our model improves upon ML-GCN, KSSNet, MS-CMA, and TDRG by 3.7%,
3.0%, 2.9%, and 2.1% mAP respectively. We also compare with the model using
the transformer backbone (IDA-SwinS(H) [21]). Our method shows consistent
superiority over the transformer backbone at various resolutions. For example,
under the 448 × 448 resolution setting, GKGNet outperforms IDA-SwinS(H)
(86.7 mAP v.s. 85.5 mAP).

Table 2: We compare GKGNet with state-of-the-art methods using the same feature
extractor ViG on MS-COCO (448× 448 input size) † means using model EMA.

All Top3
mAP CF1 OF1 CF1 OF1

ViG [11] 82.5 76.6 80.0 72.7 76.2
+ C-Tran [17] 84.5 79.2 80.8 75.6 77.0
+ Q2L [22] 85.5 77.1 78.2 74.9 76.8
+ Q2L [22]† 85.9 79.2 80.8 76.1 77.9
GKGNet 86.7 81.5 83.3 77.0 78.8

Same backbone. To decouple the effect of image feature extractor, we apply
ViG to state-of-the-art methods (C-Tran and Q2L) using official codes and rec-
ommended training settings. The result of ViG is also reported as the baseline
by replacing the final linear layer as [12]. The same ImageNet-1K pre-trained
weights are applied to all the models. The results of Q2L with and without
the Exponential Moving Average (EMA) technique are both reported. As shown
in Table 2, our proposed GKGNet improves upon ViG baseline by 4.2% mAP,
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Table 3: Comparisons with state-of-the-art methods on Pascal VOC2007 dataset.
We report the average precision in each category, and the mean average precision
(mAP) of all the categories. All the models are pre-trained on the MS-COCO (576×576
input size). Our proposed GKGNet outperforms the previous state-of-the-arts.

Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Person Plant Sheep Sofa Train TV mAP

SSGRL 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0
ASL 99.9 98.4 98.9 98.7 86.8 98.2 98.7 98.5 83.1 98.3 89.5 98.8 99.2 98.6 99.3 89.5 99.4 86.8 99.6 95.2 95.8
ADD-GCN 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0
Q2L 99.9 98.9 99.0 98.4 87.7 98.6 98.8 99.1 84.5 98.3 89.2 99.2 99.2 99.2 99.3 90.2 98.8 88.3 99.5 95.5 96.1
GKGNet (Ours) 99.9 99.4 99.2 99.4 87.0 98.2 99.1 99.6 88.4 99.5 92.6 99.5 99.5 98.7 99.5 89.5 99.3 90.4 99.7 97.2 96.8

Table 4: Effect of model compo-
nents in GKGNet. The experiments
are conducted on MS-COCO (448 ×
448 input size). P, C, and G repre-
sent Patch-Level Graph, Cross-Level
Graph, and Group KNN, respectively.

P C G mAP CF1 OF1
79.9 74.6 78.7

✓ 82.5 76.6 80.0
✓ ✓ 85.5 80.4 82.6
✓ ✓ ✓ 86.7 81.5 83.3

Table 5: Effect of Group KNN on
general classification. Top-1 accu-
racy of the original Pyramid ViG-Tiny
and the one enhanced with our Group
KNN are reported on general classifi-
cation datasets (448× 448 input size).

ImageNet-1K CIFAR-10
Pyramid ViG-Ti 78.2 94.6
+ Group KNN 79.3 94.9

CIFAR-100 Flowers
Pyramid ViG-Ti 74.4 83.6
+ Group KNN 76.5 87.2

and outperforms C-Tran and Q2L by a clear margin, which demonstrates the
effectiveness of our specific design of GKGNet for the task of MLIR.

4.3 Comparisons on Pascal VOC 2007 Dataset

Pascal VOC 2007 [9] is a commonly used benchmark dataset for MLIR, which
contains 20 label categories. It has 9,963 images in total, and is divided into a
train-val dataset (5,011 images) and a test dataset (4,952 images). The model is
trained on the train-val dataset and evaluated on the test dataset as the common
settings [2,22,25,30]. For fairness, we follow the previous works [2,30] to pre-train
the model on the MS-COCO and report results at 576× 576 resolution.

As shown in Table 3, our approach achieves 0.7% mAP improvement (96.8%
vs 96.1% mAP) upon the previous state-of-the-art method Q2L. GKGNet con-
sistently outperforms the previous methods on 14 of 20 categories, and achieves
the competitive results on the remaining 6 categories. We also notice that the
gain is more significant for these challenging categories, e.g . chair and table.

4.4 Ablation Study

Effect of model components. In GKGNet, the Patch-Level and Cross-Level
Group KGCN modules model intricate object-object and label-object relation-
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Table 6: Effect of object scales. We
report mAP for varying object sizes on
MS-COCO with 448× 448 input size.

Small Medium Large
TDRG [32] 31.3 69.4 85.1
Q2L [22] 30.7 70.2 85.6
GKGNet 35.6 73.6 86.6

Table 7: Sensitivity to random initial
values. We report results on MS-COCO
with 576× 576 input size.

All Top3

mAP CF1 OF1 CF1 OF1

GKGNet 87.7 ± 0.0 82.2 ± 0.1 83.8 ± 0.1 77.6 ± 0.0 79.3 ± 0.0

ships,while Group KNN adaptively constructs graphs. Table 4 validates these
components individually. The first line shows the result of ResNet-50, which
has comparable parameters to our model. Patch-Level graphs capture spatial
relationships, achieving a 2.6% gain. The Cross-Level graphs use unified rep-
resentations of patch features and label embeddings to extract specific visual
features for each target label, resulting in a 3.0% gain. Group KNN based graph
construction handles scale variances, enhances feature diversity, and captures
label correlations, leading to a significant improvement (86.7% vs. 85.5% mAP).

Additionally, Group KNN demonstrates potential for general image recogni-
tion. We apply Group KNN to the pyramid ViG-Tiny [11], and maintain fairness
with identical training settings and hyper-parameters across all datasets. Train-
ing details are available in Supplementary. As shown in Table 5, our proposed
Group KNN achieves a substantial improvement in top-1 accuracy on ImageNet-
1K, CIFAR-10, CIFAR-100 [16], and Flowers [24] datasets, while maintaining the
same model parameters and computational complexity (10.7M parameters and
1.7B FLOPs). The significant performance gain serves as strong evidence sup-
porting the superiority of Group KNN based graph construction.

Effect of object scales. MS-COCO divides objects into small (area < 322),
medium (322 < area < 962) and large (area > 962). Results for various target
object scales are shown in Table 6, with GKGNet achieving a notable 4.9% mAP
gain for small objects compared to Q2L. Q2L faces challenges with small objects
due to excessive whole-image interactions and background interference in trans-
formers. In contrast, GKGNet selects regions of interest, saving computation and
bypassing background disruptions.

Sensitivity to random initial values. We conduct experiments with three
different random seeds for initialization and report their performances via mean
and variance. Experiments show that the model’s performance is robust to dif-
ferent initial values.

Effect of G and K. For Group KGCN module, the number of groups G and
the neighbor number K are important hyper-parameters. We explore the effect
of G from 1 to 8 and show the results in Fig. 4 (Left). Setting G = 2 significantly
improves the performance upon G = 1 (traditional KNN), which validates the
importance of dynamic neighbor number choosing. Further increasing G does
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Fig. 4: Effect of the number of groups G (Left) and number of neighbors K (Right).
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Fig. 5: Visualization of the learned connections between label node and patch nodes
in the Cross-Level Group KGCN module. The colored blocks indicate that the patches
are connected to the label “bottle”, “cup”, or “car”.

not bring more gains, so we choose G = 2 for simplicity. For neighbor number
K, as shown in Fig. 4 (Right), having too few neighbors (e.g . K = 3) leads to
the loss of information, while larger K performs similarly well. We set K = 9,
aligning with ViG.

4.5 Visualization and Analysis

Cross-Level Group KGCN module. In Fig. 5, we visualize the connections
of different groups at the last stage of Cross-Level Group KGCN module. Cross-
Level Group KGCN module adaptively connects each label embedding to patches
of different scales, shapes and locations. In Fig.5 (a), for the label “bottle”, one
group focuses on the bottom and neck, and the other captures the body, suf-
ficiently avoiding information loss. In Fig.5 (b), for the smaller “cup”, different
groups select several overlapped patches, effectively capturing foreground regions
while reducing background interference. In Fig. 5 (c), the Group KGCN mod-
ule captures co-occurring categories through multiple perspectives. For the lable
“car”, the first group identifies car areas, while the second group locates the area
of traffic lights, enhancing semantic relations and producing robust predictions.
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Group 1

(a)

(b)

Input Image Group 2

Fig. 6: Visualization of connections in the Patch-Level Group KGCN module. Deep
blue represents the destination node, and baby blue patches are its selected neighbors.
Red lines depict the connections between patch nodes.

Patch-Level Group KGCN module. Patch-Level Group KGCN module
updates features of each patch by interacting with neighbor patches to capture
semantic visual relationships flexibly. In Fig.6 (a), the destination patch (deep
blue) selects two different groups of source patches (baby blue) to interact with
different parts of the horse: forequarters and hindquarters. It learns message
passing among semantically related patches, covering regions of interest through
multiple groups. In Fig.6 (b), the destination patch selects spatially distributed
foreground patches (multiple cows) as neighbors, enabling long-range correlation.
The overlapped selection of two groups avoids background interference due to
the small size of foreground areas.

5 Conclusion

In this paper, we propose GKGNet, a novel fully graph convolutional model
for the task of MLIR. We pioneer to study the unified graph representations for
both visual features and label embeddings. Group KGCN module is proposed for
dynamic graph construction and message passing. It is effective in handling the
scale variance of different objects, capturing information from different perspec-
tives, and modeling the co-occurrence of different objects. Comprehensive experi-
ments on public benchmark datasets, i.e. MS-COCO and VOC2007, demonstrate
the effectiveness of our method. We hope the idea of unifying multi-modality fea-
tures with dynamic graph representations can be broadly useful and our work
can draw the community’s attention to this promising direction. In the future,
we plan to extend our work to a wider range of graph-based learning problems,
e.g . point clouds and social networks.

Limitations. Due to resource limitation, we are not able to present results of
larger-scale models and extensive pre-trainin, e.g . ImageNet22K, which requires
thousands of GPU hours. We’re still actively seeking collaborations and more
resources to scale up both the model and data.
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