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Abstract. Building a general-purpose intelligent home-assistant agent
skilled in diverse tasks by human commands is a long-term blueprint of
embodied AI research, which poses requirements on task planning, envi-
ronment modeling, and object interaction. In this work, we study primi-
tive mobile manipulations for embodied agents, i.e. how to navigate and
interact based on an instructed verb-noun pair. We propose DISCO,
which features non-trivial advancements in contextualized scene mod-
eling and efficient controls. In particular, DISCO incorporates differen-
tiable scene representations of rich semantics in object and affordance,
which is dynamically learned on the fly and facilitates navigation plan-
ning. Besides, we propose dual-level coarse-to-fine action controls lever-
aging both global and local cues to accomplish mobile manipulation
tasks efficiently. DISCO easily integrates into embodied tasks such as
embodied instruction following. To validate our approach, we take the
ALFRED benchmark of large-scale long-horizon vision-language naviga-
tion and interaction tasks as a test bed. In extensive experiments, we
make comprehensive evaluations and demonstrate that DISCO outper-
forms the art by a sizable +8.6% success rate margin in unseen scenes
even without step-by-step instructions. Our code is publicly released at
https://github.com/AllenXuuu/DISCO.

Keywords: Differentiable scene semantics · Dual-level control · Embod-
ied instruction following

1 Introduction

Recent years have witnessed a huge effort [3, 28, 44, 48] in developing embodied
agents to perform everyday household tasks in indoor environments. However,
accomplishing long-horizon household tasks in the unstructured real world by
human commands remains challenging for modern robots. Numerous fundamen-
tal capabilities are essential for such a comprehensive robotic application, en-
compassing multimodal understanding, decomposing long-term objectives, per-
ceiving the environment, and taking actions. Fig. 1 gives an intuitive case. The
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Fig. 1: An example of vision-language navigation and interaction task in ALFRED [44].
An agent is given a goal directive and step-by-step instructions to perform mobile
manipulation of multiple subgoals. Our work can omit step-by-step instructions.

agent parses human directives to make corresponding plans. Then, it perceives
the surroundings to localize semantic entities, navigates to desired waypoints,
and interacts with objects.

We center on primitive tasks of mobile manipulations in this work, which
necessitates fundamental capability to navigate and interact based on an in-
structed verb-noun pair, e.g . Pickup Lettuce. Besides, leveraging the impressive
power of language models [2,13,14,22,40] in high-level task planning, our method
leads to a comprehensive embodied application.

Existing works for mobile manipulation include neural policies [7, 41, 44, 47]
and map-based planning [5, 24, 36]. The former requires numerous training tra-
jectories and annotations of high costs and suffers from the conflict of long-
horizon nature and memory-less perception. The latter lacks flexibility in exe-
cution and hardly self-adapts in running time. To this end, we present DISCO
(DIfferentiable Scene Semantics and Dual-level COntrol). It learns dynamic
scene representations of objects and affordances on the fly, which facilitates map-
based coarse navigation planning. A neural policy is deployed next to perform
fine controls and boost object interaction.

Learning a dependable spatial representation of the scene is crucial for robotic
applications, which can be 2D top-down view [36] or 3D voxels [5] in practice.
An ideal scene representation should embody the following attributes: (1) Rich
semantics in objects and affordances. It encapsulates objects and potential ac-
tions in the spatial space. (2) On-the-fly update. The scene is always dynamic
and subject to changes upon interaction. (3) Easy accessibility for queries. It
can be queried to facilitate downstream tasks like map-based trajectory plan-
ning. (4) Generalizability. The representation can be learned in unseen scenes.
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To the best of our knowledge, previous research in mobile robotics has hardly de-
veloped representations encompassing all these attributes. In contrast, we build
differentiable scene representations with all these attributes and demonstrate its
prowess in the realm of interactive navigation.

Recent large models [6,7] equipped with scaled datasets and model capacity,
have demonstrated successes in generating end-to-end neural actions. However,
when faced with limited data, neural policies [41,47] struggle on academic bench-
marks [44], primarily due to the data-hungry issue. Besides, mobile manipulation
tasks often involve lengthy trajectories, yet semantic objectives within egocentric
observations are rare. This scarcity presents significant challenges to neural poli-
cies. To address this, we direct actions based on global and local spatial cues and
formulate dual-level coarse-to-fine controls. First, we design analytical controls
on the map to drive the agent coarsely toward the object, with global cues from
the scene representations. Subsequently, a fine-grained short-horizon neural con-
trol tailored to local egocentric observation is designed to fine-tune the pose and
manipulate the object efficiently. Prior works use manually-defined rules [36] or
human-in-the-loop feedback [37] to perform some sort of adjustments. But they
are hard to formulate and scale up. Our dual-level control paradigm reduces the
need for lengthy action trajectories and enhances overall efficiency.

DISCO can easily integrate into embodied applications such as embodied
instruction following, where an embodied agent takes multimodal inputs to ac-
complish mobile manipulation tasks. We deploy DISCO on the widely-used AL-
FRED [44] benchmark consisting of long-horizon vision-language navigation and
interaction tasks simulated in AI2THOR [27] environment as a testbed. AL-
FRED incorporates high-level human language directives to define the ultimate
goal of each task, coupled with low-level step-by-step instructions for agent plan-
ning, as depicted in Fig. 1. In this work, we also challenge the planning ability
in long-horizon tasks under a setting that omits low-level instructions. In exten-
sive experiments, we achieve a substantial 11.0% gain of success rate in unseen
scenes without step-by-step instructions, which even outperforms the state-of-
the-art method that uses step-by-step instructions by 8.6%. We have also made
thorough analyses and qualitative studies for a comprehensive evaluation.

Our contributions include: (1) We develop differentiable representations en-
riched with object and affordance semantics. It is dynamic, easy to query, and
can be easily deployed in unseen environments. (2) We propose a dual-level
approach that integrates both global and local cues for coarse-to-fine controls,
enabling efficient mobile manipulation within limited imitation data. (3) In ex-
tensive experiments, we have evaluated our agent on ALFRED [44] benchmark
and achieved new state-of-the-art performance with sizeable improvements.

2 Related Works

Embodied Navigation and Interaction. Mobile robotics requires fundamen-
tal ability in navigation and interaction. In past years, many simulators, scene
assets, and benchmarks [3,9–11,15,19,27–29,43,44,48,50,53,56], including both
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indoor and outdoor scenes, have been developed to facilitate algorithm researches
in embodied AI. Early works only require navigation in static environments, such
as PointNav [1] and ObjectNav [4]. However, subsequent studies [29,44,50] have
expanded to interactive navigation, with semantic changes in dynamic scenes
and object manipulation. The body of related works can be diversified into dif-
ferent categories based on modalities. Some employ natural language as instruc-
tions, as seen in [3, 28, 44]. In contrast, other works like SoundSpace [9] utilize
audio instructions, and DialFRED [17] incorporates dialogue into navigation.
Besides, embodied mobile manipulation agents should possess the ability to per-
form complex reasoning tasks, such as room rearrangement [50] and question
answering [11,19,45] as well. The long-term target of indoor navigation and in-
teraction research is to build agents to accomplish everyday household activities
like humans [48].

Works on ALFRED. As a widely-used interactive vision-language navigation
benchmark, ALFRED [44] attracts much interest from the research community.
Existing works on ALFRED can be divided into model-free [25, 39, 41, 44, 46,
47, 54] and model-based [5, 24, 33, 36, 37] schools. The former school deploys an
end-to-end neural policy to generate actions, necessitating extensive and costly
training trajectories and instructional annotations. Early works [41, 44] utilized
LSTM or Transformer to encode visual observation, language instructions, and
action history for next-step prediction. They are trained to mimic expert behav-
ior but exhibit subpar performance in novel environments. Some other techniques
like panoramic observation [25] and instruction alignment [47] have been pro-
posed for improvement. In contrast, the latter school constructs a model of the
scene to facilitate action planning. The modeled scene can be a representation
of 3D voxels [5] or 2D top-down views [24,36,37]. Object search modules [24,36]
were designed to help agents find objects. In-context planning and memory were
explored in [26]. In our work, the novel dual-level control utilizes the advantages
of both sides.

Affordance. Affordance [18] reveals the potential interactions in the physical
world. It is a multidisciplinary concept of vision, cognition, and robotics. Affor-
dance can be learned from 2D [31] and 3D [12,52] visual contents, language model
reasoning [23], experienced interactions [38] and reinforced value estimations [2].
This concept finds a variety of robotic applications, such as scene exploration
[38], optimal view selection [30], and mobile manipulation [7,23,49]. In our study,
we utilize the ground-truth knowledge from the embodied simulator and learn
affordances through supervised learning.

LLMs for Mobile Manipulation. The recent advancements in Large Lan-
guage Models (LLMs) suggest their substantial potential in scaling robotic mo-
bile manipulations. LLMs contribute significantly to mobile agents by facilitat-
ing scene understanding [22], task planning [14,51], affordance grounding [2] and
decision making [6,7]. They can be integrated into the robotic navigation frame-
work via prompted query [55], multi-expert discussion [34], or fine-tuning [51],
paving for more comprehensive robots.
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RGB Depth Object Navigable Pickable Openable

Fig. 2: The perception foundation. (i) 1st column: egocentric RGB frames as
the initial observation. (ii) 2nd column: depth estimations. (iii) 3rd column: object
instance segmentations. (iv) 4th-6th columns: affordance masks predictions: the nav-
igable mask and two interactable masks (namely pickable and openable) as references.

3 Approach

We introduce how DISCO works in this section, including the perception system
in Sec. 3.1, the scene representation in Sec. 3.2, the dual-level coarse-to-fine
controls in Sec. 3.3, and its application to Embodied Instruction Following in
Sec. 3.4.

3.1 Perception

Our agent perceives the surroundings from an egocentric RGB frame. We use
three neural nets to estimate finer-grained spatial information: depth, instance
segmentation, and affordances. All three generate pixel-wise information about
the frame. Fig. 2 gives an intuitive example. We deploy a Mask R-CNN [20] to
detect objects, and two U-Nets [42] to estimate depth and affordances respec-
tively. The architecture settings of segmentation and depth estimation modules
are the same as baselines [5, 24,36].

Training reliable perception modules requires a substantial amount of high-
quality curated data. They are of significant cost in the real world, but in our
study, we collect data via querying a simulation oracle in AI2THOR [27]. The
ground-truth depth is from the depth sensor. The ground-truth object segmen-
tation of 85 classes is from the projection of the simulated objects in AI2THOR.
The collected affordance includes one navigation class and seven interaction
classes. For navigability, we discretize the scene into grids of 25cm×25cm, align-
ing with the agent moving step size. Then we teleport our agent to traverse over
all grids and determine navigable ones. Pixels in the egocentric view that are
localized in the navigable grids form the navigability mask. For interactivity, we
directly query actionable properties of objects (e.g . Openable) from AI2THOR
and merge all actionable objects in the view into the affordance mask of a certain
interaction class.
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Fig. 3: An overview of the DISCO framework. Starting from the egocentric
RGB frame, our perception system predicts pixel-wise depth, instance segmentation,
and affordance frames. They are converted into semantic point clouds via projection
and localized in the scene. We build differentiable scene representations with semantic
queries to model the scene. They are optimized using gradient descent to match lo-
calized point cloud semantics. We apply dual-level coarse-to-fine controls. The coarse
control depends on the global semantic map to approach the localized target. The fine
control leverages a neural policy based on the local visual frame to interact.

We collect all frames from training trajectories to train perception networks,
while unseen scenes are strictly prohibited. The Mask R-CNN [20] network for
instance segmentation is initialized from a COCO [32] pre-trained checkpoint
and then is finetuned by AdamW for 15 epochs with base learning rate 2e-4 and
batch size 60. Default Mask R-CNN losses are adopted. A linear warm-up [35]
of the learning rate is used in the first 1,000 steps. The U-Net [42] for depth
estimation is optimized by AdamW for 15 epochs with base learning rate 1e-3
and batch size 80. The depth of each pixel is discretized into 50 bins of 10cm each
and trained via a cross-entropy loss. The U-Net [42] for affordance estimation is
optimized by AdamW for 25 epochs with base learning rate 1e-3 and batch size
80. We use binary cross-entropy loss to supervise all classes.

3.2 Learning Scene Representations

Prior works [5,24,36] mainly utilize cell-based representations to model the scene.
However, discrete cells suffer from imperfect perception issues, e.g . hand-crafted
rules are required to fix an object miss in one frame. We leverage continuous
features to learn more robust scene representations. It softly models the scene
map with a trade-off between historical and current observation. Different from
the matching mechanism in previous continuous representation work [16], we use
gradients to update the scene.
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We model the scene as a 20m×20m room and discretize it into 25cm×25cm
squares, which leads to M × M(M = 80) grids in total. This configuration
can cover all scenes in AI2THOR [27] and aligns the moving step size. Each
grid is allocated a C−dimensional(C = 256 in our implementation) embedding.
Additionally, we initialize No+Na semantic queries of C dimensions each, where
No is the number of object classes and Na is the number of affordance classes.

Our scene representation facilitates straightforward querying and yields a
semantic map. Let si(i = 1, 2 · · · ,M2) be the scene representation of the i-th
grid, qj(j = 1, 2 · · · , No+Na) be the j-th semantic query vector. We obtain the
probability pi,j of the j-th class at i-th grid by a composition function f , such as
pi,j = f(si, qj). For system efficiency, we employ a minimal query mechanism via
inner-dot followed by sigmoid, i.e. f(si, qj) = σ(sTi qj), where σ is the sigmoid
function. We apply zero-value initialization for si while random initialization
from a normal distribution for qj , thus it predicts pi,j = 0.5 of no certainty at
the beginning of the episode.

A scene is usually dynamically changed subject to embodied interactions.
Therefore, a key factor of our scene representation is on-the-fly optimization at
each step. We illustrate the learning framework in Fig. 3 and describe the more
detailed process below. Starting from the egocentric RGB frame, our percep-
tion system predicts extra depth, segmentation, and affordance frames of rich
geometric and semantic information. Following the semantic mapping procedure
in [8, 36], the egocentric frame is converted to point clouds with semantics via
camera projection. Notably, AI2THOR uses a discrete action space thus we esti-
mate camera pose by the accumulation of historic actions. Top-down projection
is followed to generate an allocentric point map of the current observation. The
localized semantic-aware points are used to supervise the scene optimization.
Let ci be localized points in i-th grid and cji be the points of j-th semantics
among them. Then cji/ci is the proportion of semantic points. We normalize the
proportion to get the soft grid-level semantic label yji :

yji =
cji/ci

max1≤k≤M2{cjk/ck}
, (1)

where the positive label 1 is assigned for the largest semantic proportion and
other labels decrease. We optimize representations of visible grids at each step
while leaving other grids unchanged. We threshold localized point cloud density
to determine visibility, i.e. the visibility of i-th grid vi = 1[ci > ρ] where 1[·]
is the binary indicator function and ρ (ρ = 500 in our implementation) is the
threshold. With all the estimated utilities above, we optimize the scene using
back-propagation. For visible grids with vi = 1, we compute the cross-entropy
loss between yji and f(si, qj) to update the feature. The learning step is formu-
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Fig. 4: The design of fine action control. DISCO employs a neural policy network to
predict fine action steps. RGB, depth, and the object mask are sent to the network
to derive a feature, followed by an object-specific classifier to predict the action. The
policy is trained by mimicking expert actions.

lated as:

L(yji , f(si, qj)) = −(1− yji )(1− f(si, qj))− yji f(si, qj), (2)

si ←− si − α ·
∑
j

vi ·
∂

∂si
L(yji , f(si, qj)), (3)

qj ←− qj − α ·
∑
i

vi ·
∂

∂qj
L(yji , f(si, qj)). (4)

For each step, we update si and qj for 10 learning iterations with learning rate
α = 0.01.

Till now, we have built scene representations that can be optimized by seman-
tic scene differentiation. It omits some hand-crafted scene-updating strategies in
prior work [36] and proves to be more generalizable.

3.3 Coarse-to-Fine Action Control

In this section, we introduce how DISCO acts to accomplish a primitive task
represented as a verb-noun pair, e.g . Pickup Lettuce. It first starts with random
walks until the target object is observed. Then we execute coarse-to-fine controls
to perform mobile manipulation, where the coarse control navigates to approach
near the object and fine control refines the agent pose for interaction.
• Random Walk. Our agent begins with a random walk if the object has never
been detected by the detector. We use the navigable query (one of the affordance
classes) to obtain the navigability map of the scene. Then, we randomly select
a navigable waypoint and apply the Breadth First Search (BFS) algorithm to
plan a trajectory to the destination.
• Coarse Control. The random walk terminates once the object is spotted by
the detector. Then, we apply map-based coarse control to navigate the agent
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close to the localized target. The coarse control is based on global cues, i.e.
semantic scene maps. We query the scene representations to obtain probabilistic
maps of the semantic objects and affordances of all grids, where affordances play
a supplement role in localizing a desired interaction. Next, we select the grid of
the largest object-affordance union probability as the target. For instance, when
the agent is asked to Pickup Lettuce, it queries the object Lettuce distribution
in the scene as well as the affordance Pickupable distribution, then the grid of
maximal multiplied union probability is targeted. Our coarse control is designed
to approach the object. We expand the target location and its neighboring grids
within 1m distance to be the destination of coarse navigation. BFS algorithm
based on the navigability map is applied to plan trajectories.

• Fine Control. Though map-based coarse actions are efficient in planning
lengthy navigation trajectories. It can’t be self-adapted to manipulate objects.
The local state, such as view direction and distance to the object, greatly affects
whether an interaction can be successful. Some refinement based on local cues,
i.e. egocentric frames, are essential for better manipulations. To this end, we
propose fine action controls by a neural network, illustrated in Fig. 4. In the fine
action step, we formulate each state as (o, x, z, h), where o is the target object
going to be manipulated, (x, z) is the agent location and h is the camera horizon.
We adjust the agent direction to the target object by referring to the localized
yaw first. This makes the target object visible. We use the concatenation of
RGB, estimated depth, and the mask of the target object to be the input of the
policy. The input includes geometric distance and identifies the target object.
We use a ResNet50 [21] to encode the feature, followed by object class-specific
classifiers to generate actions. The independent classifier design is motivated
by the widely used object detector head design [20]. We find some insights into
neural policy learning. First, we adjust agent rotation to keep the object in view,
which reduces the ambiguity of control. Second, our neural policy is applied
exclusively in short-horizon refinement stages, simplifying the learning process
for lengthy trajectories. Notably, existing works [24,36] use hand-crafted rules or
tests to deal with the openness of openable receptacles. Our affordance module
(Fig. 2) automatically detects openable property and helps DISCO to act.

We build an expert planner with full knowledge of all scenes to help policy
learning by imitation. The expert building process follows the generative pipeline
of ALFRED [44]. It can label all interactable states and plan transiting actions
by BFS search. Since coarse control navigates the agent close to the target within
1m, the fine control next only requires short-horizon refining steps, which eases
the difficulty of training. We collect data on states within 4 expert steps to inter-
actions. We iterate over all objects and all short-horizon states to save frames,
generating a training set of 316,935 frames. As default training trajectories of
ALFRED [44] contain 1,051,308 frames, we find training short-horizon policy is
more data-efficient. We train the policy by imitating planned actions from the
expert, also known as behavior cloning. It is supervised by expert actions using
a cross-entropy loss. We optimize the policy using an AdamW optimizer with a
constant learning rate 5e-5 and train it for 40 epochs with a batch size of 100.
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3.4 Application: Embodied Instruction Following

DISCO performs primitives of mobile manipulation tasks commanded by verb-
noun pairs and can be easily applied in diverse embodied tasks. We take the
embodied instruction following tasks from ALFRED [44] as a test bed, where
the agent is commanded by natural language instructions to accomplish long-
horizon tasks of many mobile manipulation subgoals. More introduction about
the benchmark can be found in the supplementary material. However, though we
take vision-language navigation and interaction to conduct main experiments,
we believe DISCO has the potential for other modality instructions like sound [9]
or dialog [17] with different instruction processing modules.

In the detailed implementation, for a fair comparison with the baseline, we in-
herit the instruction processing procedure and some building components from
FILM [36]. Notably, though ALFRED provides low-level step-by-step instruc-
tions, our methods can also run without these annotations. High-level goal di-
rectives are only used by default to generate subgoal plans. To generate plans,
we adopt fine-tuned BERTs [13] from [36] to parse natural language instructions
into ALFRED internal parameters. Next, leveraging the patterned task nature
of ALFRED, templates are used to convert parameters into multiple verb-noun
manipulation subgoals. For instance, we take the case in Fig. 1 as an example.
Language models recognize it as a pick_clean_then_put task with object argu-
ment Lettuce and receptacle argument DinningTable. It is converted to subgoal
series: (Pick, Lettuce), (Clean, Lettuce), (Put, DinningTable) using the template.
We give more details about the instruction processing and the holistic applica-
tion in the supplementary material.

4 Experiments

4.1 Evaluation Protocols

We evaluate our method on ALFRED [44], consisting of large-scale long-horizon
vision-language navigation and interaction tasks. The dataset is divided into
train, validation, and test splits, containing 21,023/1,641/3,062 episodes respec-
tively. We use test split to compare with competitive baselines, but valid split
to make analyses. Both valid and test splits are divided into seen and un-
seen scenes. The valid/test splits have 820/1,533 episodes in seen scenes while
821/1528 episodes in unseen scenes.

Four metrics are used for evaluation. (1) Success Rate (SR). Rate of accom-
plished tasks with success. (2) Goal Condition (GC). Rate of achieved conditions
for goals. (3) Path Length Weighted SR (PLWSR). Weighing SR by the agent
trajectory length against expert trajectory length. (4) Path Length Weighted
GC (PLWGC). Applying the same weight on GC. SR and GC mainly reflect the
effectiveness of agents while PLW metrics reflect the efficiency of running steps.
All metrics are the higher the better.
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Table 1: Results in the test splits of ALFRED [44].

step-by-step Test Seen Test Unseen
instructions SR GC PLWSR PLWGC SR GC PLWSR PLWGC

Seq2Seq [44] " 4.0 9.4 2.0 6.3 3.9 7.0 0.1 4.3
MOCA [46] " 26.8 33.2 19.5 26.8 7.7 15.7 4.2 11.0
E.T. [41] " 38.4 45.4 27.9 34.9 8.6 18.6 4.1 11.5
LWIT [39] " 29.2 38.8 24.7 34.9 8.4 19.1 5.1 14.8
HiTUT [54] " 21.3 30.0 11.1 17.4 13.9 20.3 5.9 11.5
ABP [25] " 44.6 51.1 3.9 4.9 15.4 24.8 1.1 2.2
FILM [36] " 27.7 38.5 11.2 15.1 26.5 36.4 10.6 14.3
M-Track [47] " 24.8 33.3 13.9 19.5 16.3 22.6 7.7 13.2
LGS-RPA [37] " 40.1 48.7 21.3 29.0 35.4 45.2 15.7 22.8
Prompter [24] " 53.2 63.4 25.8 30.7 45.7 58.8 20.8 26.2
CAPEAM [26] " 51.8 60.5 21.6 25.9 46.1 57.3 19.5 24.1
DISCO (Ours) " 59.5 66.1 40.6 47.4 56.5 66.8 36.5 44.5

HiTUT [54] % 13.6 21.1 5.6 11.0 11.1 17.9 4.5 9.8
HLSM [5] % 25.1 35.8 6.7 11.5 16.3 27.2 4.3 8.5
FILM [36] % 25.8 36.2 10.4 14.2 24.5 34.8 9.7 13.1
LGS-RPA [37] % 33.0 41.7 16.7 24.5 27.8 38.6 12.9 20.0
EPA [33] % 40.0 44.1 2.6 3.5 36.1 39.6 2.9 3.9
Prompter [24] % 49.4 55.9 23.5 29.1 42.6 59.6 19.5 25.0
CAPEAM [26] % 47.4 54.4 19.0 23.8 43.7 54.6 17.6 22.8
DISCO (Ours) % 58.0 64.9 39.6 46.5 54.7 65.5 35.5 43.6

4.2 Baselines

We adopt competitive baselines reported on ALFRED to compare with our
method. They include Seq2Seq [44], MOCA [46], E.T. [41], LWIT [39], ABP [25],
M-Track [47], HiTUT [54], HLSM [5], FILM [36], LGS-RPA [37], EPA [33],
prompter [24], and CAPEAM [26]. All methods use RGB vision and language
instructions in test time. While step-by-step instructions can be omitted by some
methods as well as DISCO, we separate the comparison for fairness. By default,
DISCO only uses a high-level description of the goal.

4.3 Quantitative Comparisons

We report the quantitative results of DISCO and competitive baselines in test
splits of ALFRED in Tab. 1 for fair comparisons. We find our method outper-
forms the art by sizable improvements in all slots. Equipped with step-by-step
instructions, our method achieves 59.5% and 56.5% success rates in seen and un-
seen scenes, with substantial gains of 6.3% and 10.4% over the state-of-the-art
methods, showcasing the effectiveness of DISCO. The superiority is consistent
with other metrics. Integrating the path length into metrics, we achieve almost
1.57x and 1.75x performances than Prompter [24] on PLWSR metrics in seen
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Table 2: Ablation study.

Valid Seen Valid Unseen
SR GC SR GC

DISCO 57.3 63.9 55.0 65.5

+ step-by-step instr. 65.1 70.8 59.1 68.6
+ gt. lang. 70.5 75.5 64.1 71.9
+ gt. percep. 67.2 73.4 66.8 73.9
+ gt. percep. lang. 79.9 84.2 79.6 83.0

w.o. differentiable 47.4 54.0 42.7 52.3
w.o. interactive aff. 52.5 57.9 51.3 56.6
w.o. navigation aff. 48.1 56.1 46.0 54.8
w.o. coarse control 13.5 16.2 9.1 10.3
w.o. fine control 53.0 58.3 51.7 57.3

and unseen scenes, which means our agent accomplishes tasks using fewer steps
in execution. This strongly validates the efficiency. Besides, in terms of goal con-
dition metrics, we also have superior performances over baselines, namely 66.1%
and 66.8% in seen and unseen scenes respectively. Next, we omit step-by-step
instructions and challenge DISCO only using high-level goals. Under this setting,
our method achieves 58.0% and 54.7% success rates in seen and unseen scenes,
outperforming baselines by 8.6% and 11.0%. A bigger surprise is that DISCO
without step-by-step instructions outperforms the art with step-by-step instruc-
tions, where we achieve success rate gains of 4.8% and 8.6% in seen and unseen
scenes respectively. It proves we surpass all existing methods with non-trivial ad-
vancement in both efficiency and effectiveness. Overall, our method establishes
new state-of-the-art performances on ALFRED.

4.4 Ablation Study

We conduct comprehensive ablation studies on the valid splits of ALFRED to
explore the effects of components of DISCO. Results are reported in Tab. 2.
Increments of stronger multimodal inputs. We augment DISCO with
stronger instruction understanding and perception modules. Equipped with low-
level step-by-step instructions, DISCO achieves 65.1% and 59.1% success rates
in seen and unseen scenes. Ground-truth language parsing pushes the results to
70.5% and 64.1%. This uncovers the potential of stronger language models in
boosting embodied planning. Ground-truth perceptions further enhance perfor-
mances to 79.9% and 79.6% in seen and unseen scenes.
Differentiable representations. We replace differentiable representations with
widely-used cell representations [36]. Noticeable success rate drops of -9.9% and
-12.3% are observed in seen and unseen scenes. This is because our differentiable
representations provide soft semantics such as Eq. (1) and benefit acting. In
contrast, cell-based representations are binary and require hand-crafted rules to
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Action: Put Action: Open  ✓ Action: Put✓

openable = truew.o. affordance openable = false

Fig. 5: Qualitative case of affordance. Left: The agent fails to put the bowl into the
microwave without openable knowledge. Right: DISCO is aware of the openable affor-
dance property in microwave interaction.

fix inconsistent perceptions. Our differentiable representations balance historical
and current observations to alleviate the issue.
Affordance. We first remove interactive affordances to validate their effects. In
this test, the openable property and affordance-augmented localization are not
used. We achieve 52.5% and 51.3% SR in seen and unseen scenes, with drops of -
5.1% and -3.7%. Next, we replace the navigability affordance with point-obstacle-
based navigation methods. The performance drops become larger, namely -9.3%
and -9.0% SR in seen and unseen scenes respectively. These experiments validate
affordance knowledge is crucial for embodied applications.
Dual-level controls. We remove the dual-level controls and apply coarse or
fine control individually. Removing coarse control leads to a crash of our system,
with extremely low success rates. Besides, removing fine control leads to SR
performance drops of -4.3% and -3.3% in seen and unseen scenes respectively.
The finding suggests that coarse control plays its role in most lengthy moving
steps of irreplaceable significance. However, the fine control makes some local
refinement to facilitate interactions.

4.5 Qualitative Results

We provide qualitative cases to reveal some running facts about DISCO.
Affordance. We demonstrate the use of affordance in Fig. 5. Prior works use
manually defined rules or tests to help interact with openable receptacles. Our
affordance module can automatically detect the opening state and facilitate act-
ing. Without the affordance knowledge, the agent cannot place the bowl into the
microwave properly.
Dual-level control. Our control policy is illustrated in Fig. 6. DISCO executes
map-based coarse actions to approach the object first. However, the object tar-
get is usually not interactable after the coarse stage. They may be attributed
to state change expansion, view direction, position offset, and more diversified
reasons. To this end, we apply neural fine action controls for short-horizon self-
adjustment to flexibly address the trouble. We provide more qualitative results
in the supplementary material.
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MoveBack MoveBack Open Cabinet

Map-based 
coarse control

Neural 
fine control

The cabinet is not 
immediately 

openable because of 
the collision 

between the agent 
and the opening 

expansion.

RotateLeft MoveBack Cool Cup

Neural 
fine control

The agent can not 
operate the fridge 
because of the 
incorrect view 
direction.

Map-based 
coarse control

Fig. 6: Qualitative running cases. DISCO applies map-based coarse actions followed
by neural fine actions. The agent may suffer from the opening collision (upper) or
incorrect view direction (bottom) after the coarse navigation. Fine actions perform
self-adjustment to facilitate interactions. More cases are in the supplementary material.

5 Conclusion

We introduce DISCO to perform mobile manipulation tasks in this work. It
learns differentiable scene representations of rich semantics in objects and affor-
dances in online exploration. The scene representations retrieve target semantics
and facilitate map-based navigation planning. We propose dual-level coarse-to-
fine action controls, which leverage a global scene map to coarsely approach the
navigation target followed by neural fine actions to boost object interaction. We
leverage language models to plan primitive tasks and integrate DISCO into an
Embodied Instruction Following application. In extensive experiments, DISCO
achieves new state-of-the-art results on ALFRED.
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