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S1 COCO-UniHuman Dataset Statistics

Fig. S1: Statistics of the COCO-UniHuman benchmark. (a) The gender distribution of
COCO-UniHuman is biased towards male. (b) The age distribution ranges from [1, 84]
and is biased towards young adults, since images are from public Internet repositories.

In Fig. S1, we show statistics of our proposed COCO-UniHuman dataset.
The plots show the distribution of the gender and the apparent age. We find
gender and age biases existed in the widely used COCO dataset. The occurrence
of men is significantly higher than women in COCO dataset. More specifically,
male to female ratio is about 65:35. In addition, the dataset has an unbalanced
age distribution. The apparent age distribution ranges from [1, 84], and it is
mainly concentrated between the ages of 25 and 35. Analyzing and addressing
the gender and age bias in the computer vision system can also be an important
topic in the AI community. Future work could also use our benchmark dataset
to comprehensively measure and analyze such biases, but it is out of the scope
of this paper.
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S2 COCO-UniHuman Dataset Annotation

Obtaining the reliable apparent age is challenging even for human perception.
The apparent age will be influenced not only by the real age, but also by other
biological and sociological factors of “aging”. Therefore, there are significant vari-
ations on appearance among people of the same age. In this work, we propose
the body-based and two-stage annotation strategy to improve the age annota-
tion quality. We also conduct some experiments to show the effectiveness of the
proposed age annotation strategy.

S2.1 Body-based vs face-based annotation strategies.

In this study, we design experiments to compare three different annotation strate-
gies. (1) face-based without face alignment, where the annotation is based on
the cropped face image, (2) face-based with face alignment, where face cropping
and face alignment pre-processing [57] is applied before annotation, (3) body-
based, where the annotation is based on the cropped body image. We randomly
selected 500 sample person images, and applied the aforementioned 3 strategies
to process the data individually, and obtained 3 data sets. We also randomly
divided 30 well-trained annotators into three groups of 10 annotators each. Each
data set was labeled by one group of annotators. Each annotator was asked to
independently give votes of apparent age for the whole data set. As a result,
for each body or face image, we have 10 votes. We take the average of the 10
votes as the ground-truth age annotation, and calculate the Age-5 and Age-10
consistency separately. Age-n consistency is defined as:

1

K ×N

∑
1≤i≤N
1≤j≤K

I{|xi,j − x∗
i | ≤ n} × 100%, (1)

where N = 500 is the total number of images, and K = 10 is the number of
votes for each image. xi,j is the j-th vote for the i-th image, while x∗

i means the
ground-truth age annotation for the i-th image.

Table S1: Comparisons of age annotation strategies.

Annotation Strategy Age-5 Age-10
face w/o alignment 75.3 93.5

face w/ alignment [57] 78.2 96.5
body 80.9 98.1

From Table S1, we find that the body-based age annotation is better than the
face-based age annotation, indicating that the whole-body image contains richer
visual cues for age estimation. Interestingly, we also find that face alignment will
help improve the age estimation consistency even for human annotators.
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S2.2 Two-stage vs one-stage annotation strategies.

In this study, we design experiments to compare the two-stage and one-stage an-
notation strategies. For one-stage annotation, we directly annotate the apparent
age of the subject. For two-stage annotation, we first annotate the age group
and then label the apparent age based on the age group. Table S2, shows that
two-stage annotation strategy improves the annotation consistency.

Table S2: Effect of two-stage age annotation.

Annotation Strategy Age-5 Age-10
One-stage age annotation 80.9 98.1
Two-stage age annotation 82.1 98.5

S3 More Experimental Analysis

Multi-task co-learning can mitigate over-fitting. From Fig. S2, we ob-
serve that training task-specific models on “Person” category only will easily
lead to over-fitting problem, the performance decreases with increasing number
of epochs. Specifically, in this experiment, we compare the common 1x, 2x, and
4x training settings for RCNN-based methods (i.e. Faster-RCNN, Mask RCNN),
and compare 50-epoch and 100-epoch settings for DETR-based methods (i.e.
DINO, Mask DINO, and our HQNet). The models are trained using MMDe-
tection [4] with suggested hyper-parameters. We report the Average Precision
(AP) for both human detection (solid lines) and the human instance segmenta-
tion (dashed lines) on COCO-UniHuman val set. Interestingly, we find that our
presented multi-task co-learning (HQNet) can mitigate the over-fitting problem,
and the performance consistently improves with the increasing training epochs,
demonstrating good scalability.

S3.1 General class models vs person-specific models

In Table S3, we compare general 80-class models and person-specific models on
COCO-UniHuman val set. We find that person-specific models achieve slightly
better performance than the general 80-class models for human analysis. The
asterisk * denotes models trained to handle general 80 classes. All models are
evaluated on “Person” category without Small person. As shown in previous
section, training on “Person” category only may lead to over-fitting problem. In
the experiments, we report the best result for these baseline models. Specifically,
Faster R-CNN is trained for 1x, Mask R-CNN for 2x. More details can be found
in the section of “Details about Baseline Models” below.
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Fig. S2: Results of human detection (solid lines) and segmentation (dashed lines) with
different training schedules on COCO-UniHuman val set. For RCNN-based models,
we choose 1x, 2x, and 4x training settings. For DETR-based models, we use 50-epoch
and 100-epoch training settings.

Table S3: Comparison of general 80 class models and person-specific models on the
COCO-UniHuman val set. We report AP for the “Person” category without Small
category person. “R” is ResNet [13], and “FPN” is feature pyramid network [23]. The
asterisk * denotes models trained to handle general 80 classes.

Model Backbone Det. Seg.

AP APM APL AP APM APL

Faster R-CNN∗ R-50 63.0 59.8 68.1 ✗ ✗ ✗

Faster R-CNN R-50 65.3 61.5 71.2 ✗ ✗ ✗

Mask R-CNN∗ R-50-FPN 64.1 60.5 69.6 56.3 50.1 63.9
Mask R-CNN R-50-FPN 66.7 62.3 73.1 58.4 51.8 66.2

S3.2 Effect of HumanQuery-Instance Matching

In Table S4, we quantitatively analyze the effect of HumanQuery-Instance (HQ-
Ins) Matching on COCO-UniHuman val set using the ResNet-50 backbone. Note
that we use the standard 100-epoch training setting in the experiment. We report
AP for ‘Det’, ‘Seg’, ‘Kpt’, ‘Gener’, and ‘Age’, which represent detection, keypoint
estimation, instance segmentation, gender and age estimation respectively. We
show the effectiveness of our proposed HumanQuery-Instance Matching in mak-
ing the optimization of multi-task HCP learning more consistent and achieving
better balance of multiple human-centric analysis tasks.

S3.3 Qualitative Results

In Fig. S3 and Fig. S4, we show some qualitative results of HQNet with ResNet-
50 backbone. In Fig. S3, we show some qualitative results on COCO-UniHuman
val dataset for human detection, human pose estimation, human instance seg-
mentation and human attribute recognition, and human mesh estimation. The
model can recognize the gender and age of different people In Fig. S4, we vi-
sualize the results of human detection and tracking (same color for same id),
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Table S4: Effect of HumanQuery-Instance Matching. Experiments are conducted on
COCO-UniHuman val set using the ResNet-50 backbone with 100-epoch training set-
ting. We report AP for the “Person” category without Small category person.

Matching Det. Seg. Pose (Kpt.) Cls. (Gender) Cls. (Age)

Box Pose Mask AP APM APL AP APM APL AP APM APL AP APM APL AP APM APL

✓ 76.2 71.4 82.4 66.1 59.1 74.2 66.8 61.0 75.0 52.1 37.3 60.7 54.0 41.2 62.0
✓ ✓ 74.4 70.2 80.1 65.5 58.5 73.2 69.0 63.9 76.4 54.4 39.9 62.7 55.9 42.0 63.9
✓ ✓ ✓ 74.9 70.4 80.7 65.8 58.7 73.9 69.3 63.8 77.3 53.8 39.7 61.2 56.0 42.5 63.3

Fig. S3: Qualitative results on COCO-UniHuman val dataset. Our HQNet achieves
accurate human detection, human pose estimation, human instance segmentation, hu-
man attribute recognition and human mesh estimation simultaneously.

human pose estimation, human instance segmentation, gender estimation, age
estimation and mesh estimation. As introduced in the section of “Unseen-task
generalization” in the main paper, we directly apply our HQNet on multiple ob-
ject tracking on the challenging PoseTrack21 [10] dataset, where our models are
trained only on the COCO-UniHuman image-based dataset without explicitly
tuned for multi-object tracking (MOT) on video-based dataset like PoseTrack21.
Our learned Human Query, which encodes both spatial and visual cues, can serve
as good embedding features to distinguish different human instances. Therefore,
our human tracking is robust to heavy occlusion, and the id can recover from
occlusions. Our HQNet makes a comprehensive all-in-one human analysis sys-
tem that can achieve multiple functions: multiple object tracking with human
pose estimation, human instance segmentation, human attribute recognition and
human mesh estimation.

S3.4 Attention Visualization

In Fig. S5, we visualize the sampling locations of deformable attention for dif-
ferent HCP models. We show the results of the last decoder layer in HQNet-
ResNet50. Each sampling point is marked as a red-filled circle. The left results
are from the model trained for detection and segmentation (MD+S). The middle
ones are from the model trained for detection and pose (MD+P ). And the right
ones are from the model trained for detection, segmentation, pose and attribute
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Fig. S4: Qualitative results on PoseTrack21 val video dataset. Our HQNet makes
a comprehensive human analysis system that can achieve multiple functions: multiple
object tracking with human pose estimation, human instance segmentation, and human
attribute recognition. Our HQNet is only trained on the COCO-UniHuman image-
based dataset without finetuning on the PoseTrack21 video-based dataset.

(MD+P+S+C). With the segmentation task, we notice that some of the sam-
pling points of MD+S are distributed near the boundary of the human body,
and some are distributed in the background to capture more context informa-
tion. The sampling points of MD+P have higher probability to distribute inside
the human body and some of the points are located closer to the defined human
body keypoints, especially the face, arms, and legs. MD+P+S+C combines the
characteristics of MD+S and MD+P .

S3.5 Failure Case Analysis

We have analyzed the main cases where our approach fails in the COCO-UniHuman
val set. Fig. S6 shows an overview of common failure cases. In highly crowded
and occluded scenes, where people are overlapping, the method tends to miss
some targets. Occlusion can also lead to pose estimation errors. There will be



You Only Learn One Query 7

Fig. S5: Visualization of deformable attention sampling points. The results are from
models trained for different HCP tasks. Left: detection and segmentation. Middle:
detection and pose. Right: detection, pose, segmentation and attribute.

high keypoint localization errors on non-typical poses (e.g . upside-down cases).
Due to age/gender bias in the dataset, the method may have some erroneous
predictions on human attributes. Statues and toys also frequently lead to false
positive errors. Most of these issues could be mitigated by adding related data
for model training. For example, negative examples could help the network dis-
tinguish between humans and other humanoid figures. Adding occluded keypoint
annotations could help predict body parts more accurately in occluded scenes.

S4 More Implementation Details

S4.1 Loss Functions

In this work, we jointly train multiple human-centric perception (HCP) tasks, in-
cluding human detection, human instance segmentation, human pose estimation
human attribute (gender and age) recognition and human mesh estimation.

For human detection, we follow DINO [52] to apply focal loss [24] for clas-
sification Lfocal

cls and detection loss (L1 regression loss Lreg
det and GIOU loss [37]

Lgiou
det ). For human pose estimation, we follow PETR [38] to use focal loss for clas-

sifying valid and invalid human instances Lfocal
kpt , L1 keypoint regression loss Lreg

kpt,
OKS loss Loks

kpt , and auxiliary heatmap loss Lhm
kpt. For segmentation loss, we use

binary cross-entropy loss Lbce
seg and dice loss Ldice

seg . For attribute recognition, we
have binary cross-entropy loss for gender estimation Lbce

gender and mean-variance
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Fig. S6: Common failure cases: (a) missing detection in crowded scenes, (b) false pose
detection in occluded scenes, (c) rare pose or appearance, (d) inaccurate or biased age
estimation, (e) false positives on statues or toys.

loss [33] for age estimation Lmean
age and Lvar

age. For mesh estimation, we use L1
regression loss for pose estimation Lreg

pose, shape estimation Lreg
shape and the 3D

joints regressed from the body model Lreg
3d .

Formally, the overall loss function can be formulated as a linear combination
of these sub-task loss functions:

L = λfocal
cls Lfocal

cls + λreg
detL

reg
det + λgiou

det Lgiou
det

+ λfocal
2d Lfocal

2d + λreg
2d Lreg

2d + λoks
2d Loks

2d + λhm
2d Lhm

2d

+ λreg
poseL

reg
pose + λreg

shapeL
reg
shape + λreg

3d Lreg
3d

+ λbce
segL

bce
seg + λdice

seg Ldice
seg

+ λbce
genderL

bce
gender + λmean

age Lmean
age + λvar

ageL
var
age, ,

where λs are corresponding loss weights. Detailed settings for the loss weights
can be found in Table S5.

S4.2 Details about Training

We follow the setting of DINO [52] to augment the input image by random crop,
random flip, and random resize. Specifically, we randomly resize the input image
to have its shorter side between 480 and 800 pixels and its longer side less or
equal to 1333. The models are trained with AdamW optimizer [17] with base
learning rate of 1 × 10−4, momentum of 0.9 and weight decay of 1 × 10−4. For
all experiments, the models are trained for 100 epochs with a total batch size of
16 and the initial learning rate is decayed at 80th epoch by a factor of 0.1. We
use 16 Tesla V100 GPUs for model training.

In the experiments, we report results of three different backbones: the ResNet-
50 backbone is pre-trained on ImageNet-1K dataset, Swin-L backbone is pre-
trained on ImageNet-22K dataset, and ViT-L backbone whose pre-trained weights
are from [42]. Unlike DINO and Mask DINO which also pre-train models on
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Table S5: Loss weights for training our models.

Detection

λfocal
cls 1.0

λreg
det 5.0

λgiou
det 2.0

Pose

λfocal
kpt 1.0

λreg
kpt 50.0

λoks
kpt 1.5

λhm
kpt 4.0

λreg
pose 5.0

λreg
shape 10.0

λreg
3d 10.0

Segmentation
λbce
seg 8.0

λdice
seg 5.0

Attribute

λbce
gender 1.0

λmean
age 0.002

λvar
age 0.01

Objects365 [60], we only use COCO-UniHuman data for training without Ob-
jects365 dataset. For all backbones, we use 4 scales of feature maps feeding to
the encoder and an additional high-resolution feature map for mask prediction.
In contrast, DINO and MaskDINO use 5 scales for Swin-L models. Following
the common practice in DETR-like models [19,52], we use a 6-layer Transformer
encoder and a 6-layer Transformer decoder and 256 as the hidden feature di-
mension. We use 300 queries and 100 CDN pairs for training. Following [61],
we use independent auxiliary heads to refine the multi-task predictions at each
decoder layer.

S4.3 Details about Inference

During inference, the input image is resized to have its shorter side being 800
and longer side at most 1333. All reported numbers are obtained without model
ensemble or test-time augmentations (e.g . flip test and multi-scale test).

S5 Details about Baseline Models

Details about human detection baselines. For human detection, we com-
pare several baseline approaches, i.e. Faster-RCNN [36], IterDETR [58] and
DINO [52]. Note that Faster-RCNN and DINO are originally trained to handle
general 80 classes (marked with * in Table S3). For fair comparisons, we use



10 S. Jin et al.

MMDetection [4] to re-train and evaluate them on “Person” category using the
default experimental setting. Note that MMDetection re-implementation can be
a little bit better than the original implementation.

Details about human pose estimation baselines. For human pose es-
timation, we compare with several representative top-down methods (SBL [48],
HRNet [40], Swin [28], ViTPose [50] and PRTR [20]), bottom-up approaches
(HrHRNet [6], DEKR [11], and SWAHR [29]) and single-stage approaches (FC-
Pose [30], InsPose [39], PETR [38] and CID [45]). Note that the results of
Swin (Swin-L), ViTPose (ViT-L) and CID (R-50-FPN) are from MMPose [8],
and other results are from their original papers. Top-down methods generally
yield superior performance, but often rely on a separate human detector, incur-
ring redundant computational costs. Specifically, SBL, HRNet, Swin and ViT-
Pose use the same person detector provided by [48], which is a strong Faster-
RCNN [36] based detector with detection AP 56.4 for the “Person” category
on the COCO’2017 val set. PRTR applies a DETR-based person detector for
human detection, which achieves 50.2 AP for the whole “Person” category on
the COCO’2017 val set. While PRTR introduces an end-to-end variant (E2E-
PRTR) optimizing detection and pose jointly, it lags behind separately trained
top-down approaches. For pose estimation, the input resolution for SBL, HRNet,
and Swin is set as 256× 192, while the input resolution for PRTR is 384× 288.
Bottom-up methods learn instance-agnostic keypoints and then cluster them into
corresponding individuals. HrHRNet, DEKR, and SWAHR adopt the strong
HRNet-w32 [40] backbone network with an input resolution of 512×512. Single-
stage approaches directly predict human body keypoints in a single stage. FC-
Pose, InsPose and PETR adopt R-50 [13] backbone network. The input images
are resized to have their shorter sides being 800 and their longer sides less or
equal to 1333. For CID, we report both the results of R-50-FPN and HRNet-w32
backbones. The input resolution of CID is 512× 512.

Details about human instance segmentation baselines. For human
instance segmentation, we contrast HQNet with state-of-the-art general and
human-specific instance segmentation methods. Mask R-CNN [12] is an end-
to-end top-down approach that optimizes object detection and instance segmen-
tation jointly. Given our one-stage pipeline, we also compare against one-stage
methods , including PolarMask [49], MEInst [54], YOLACT [3], and CondInst [44].
Results of PolarMask, MEInst, YOLACT, CondInst are from [56], which are ob-
tained by re-training and evaluating the models on COCO “Person” category
only. PolarMask encodes the instance mask with coordinates, while MEInst en-
codes the mask into a compact representation vector. YOLACT and CondInst
use a series of global prototypes and linear coefficients to represent instance
masks. Instead we learn instance-aware Human Query to decouple each human
instance.

Details about gender and age estimation baselines. Multi-person gen-
der and age estimation remains under-explored in the literature. We establish
baselines using StrongBL [15] and Mask R-CNN [12]. StrongBL is a top-down
approach which requires an off-the-shelf human detector. For the detection part,
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we use a pre-trained Mask RCNN to produce human detection results. And for
attribute part, we follow official settings to retrain StrongBL on the COCO-
UniHuman dataset. The gender and age models use ResNet50 as the backbone
with input resolution 256 × 192. Mask R-CNN is an end-to-end top-down ap-
proach, modified with gender or age branches and retrained using MMDetection
with default training settings.

Details about mesh estimation baseline. For human mesh estimation,
we compare HQNet with state-of-the-art one-stage monocular method ROMP [41],
and two-stage method HMR [16] and HMR+ [34]. Following official settings, we
train these models on COCO-UniHuman with ResNet50 backbone. As two-stage
models require human bbox as the input, in the experiment, we use GT bbox
for comparisons.

S6 Discussion about Unifying HCP Tasks

S6.1 General network architecture design

There are some attempts to design general network architecture for unifying
human-centric perception tasks. Some works propose to design network back-
bones for HCP tasks. Both CNN-based (e.g . HRNet [46]) and Transformer-based
backbone networks (e.g . TCFormer [51] are proposed for general human-centric
visual tasks. Other works focus on designing network heads to unify different
HCP tasks. For example, UniHead [22] designs a novel perception head with uni-
fied keypoint representations that can be used in different HCP tasks. Point-Set
Anchors [47] designs different point-set anchors to provide task-specific initial-
ization for different HCP tasks. Unlike these methods, which employ separate
task-specific models for different HCP tasks, we consolidate diverse HCP tasks
within a single network.

S6.2 Pre-training on HCP tasks

There are also works [5, 14, 42] on pre-training on diverse human-centric tasks
with large-scale data. HCMoCo [14] introduces a versatile multi-modal (RGB-
D) pre-training framework for single-person pose estimation and segmentation.
SOLIDER [5] presents a self-supervised learning framework to learn a general
human representation with more semantic information. HumanBench [42] builds
a large-scale human-centric pre-training dataset and introduces the projector-
assisted pre-training method with hierarchical weight sharing. More recently,
UniHCP [7] presents a unified vision transformer model to perform multitask
pre-training at scale. It employs task-specific queries for attending to relevant
features, but tackles one task at a time. Unlike ours, our approach simultaneously
solves multiple HCP tasks in a single forward pass. Our proposed method is dif-
ferent from this pre-training based approach. First, these methods mainly focus
on the pre-training stage, and require fine-tuning for the optimal performance
on specific down-stream tasks. Second, these approaches require large-scale joint
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training on multiple human-centric perception datasets. This makes it unfair to
directly compare with models that train on one specific dataset. In addition,
large-scale model training is extremely costly. For example, training of UniHCP
requires more than 10,000 GPU hours. Third, these methods are designed for
single-person human analysis (or top-down human analysis). In comparison, our
approach solves multiple HCP tasks in a single-stage multi-task manner.

S6.3 Co-learning on HCP tasks

Many works have investigated the correlations between pairs of HCP tasks [25,
31,32,43,53]. For example, [43] explore to integrate fine-grained person attribute
learning into the pipeline of pedestrian detection. Mask-RCNN [12] extends
Faster-RCNN by adding extra keypoint localization or segmentation branch to
handle pose estimation and instance segmentation respectively. Pose2Seg [55]
presents a top-down approach for pose-based human instance segmentation. It
uses previously generated poses as input instead of the region proposals to ex-
tract features for better alignment and performs the down-stream instance seg-
mentation task. PersonLab [35] adopts a bottom-up scheme and solve pose es-
timation and instance segmentation by applying a greedy decoding process for
human grouping. We propose a single-stage model that learns a general uni-
fied representation to handle all representative human-centric perception tasks
simultaneously.

S7 Discussion about Human Attribute Recognition

Visual recognition of human attributes is an important research topic in com-
puter vision. Among all the human attributes, gender and age are arguably the
most popular and representative, which is also our main focus.

S7.1 Dataset

Human attribute recognition datasets can be classified into two categories, i.e. fa-
cial attribute recognition datasets and pedestrian attribute recognition datasets.
Most existing attribute recognition datasets only provide center cropped face
(facial attribute recognition) or body (for pedestrian attribute recognition) im-
ages, making it not suitable for developing and evaluating multi-person attribute
recognition algorithms. In comparison, our proposed COCO-UniHuman pre-
serves the original high resolution image and densely annotates attributes for
each human instances. One exception is WIDER-Attr [21], which also provides
the original images. However, the number of images is relatively small. We hope
our dataset can serve as a good alternative benchmark dataset for multi-person
human attribute recognition.

Age estimation datasets can be categorized into three groups, i.e. age group
classification, real age estimation, and apparent age estimation. To our best
knowledge, public large-scale pedestrian attribute datasets (e.g . WIDER-Attr [21],
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PETA [9], Market1501-Attr [26, 59], RAP-2.0 [18] and PA-100K [27]) only have
coarse age group annotations. Facial attribute datasets may also have fine-
grained apparent (e.g . APPA-REAL [2]) or real (e.g . MegaAge [57]) age an-
notations. Apparent age estimation focuses on how old a subject “looks like”,
instead of how old a subject “really is”. It is considered to be a more practical
setting for visual analysis. Our proposed dataset is the first large scale in-the-
wild dataset for body-based apparent age estimation. Body-based apparent age
estimation is promising especially when the facial image is not captured clear
enough (e.g . captured in a distance). However, body-based apparent age estima-
tion is under-explored in literature due to lack of dataset. We hope our presented
COCO-UniHuman dataset can promote related research.

S7.2 Method

Human attribute recognition focuses on assigning a set of semantic attributes
(e.g . gender and age) to each human instance. Typical approaches include global
image based [1, 15], local parts based [21], and visual attention based [27] ap-
proaches. Most of them focus on single-human (or top-down) analysis with-
out consider the relationship among different human instances. In comparison,
we introduce a single-stage multi-person human attribute (i.e. gender and age)
recognition approach.

S8 Limitations and Future Work

While our work focuses on RGB image based HCP tasks, tasks about video
data or multi-modality data (e.g . IR and Depth) also hold significant potential.
We encourage future research to explore more comprehensive multi-task human-
centric perception.
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