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Abstract. Human-centric perception (e.g . detection, segmentation, pose
estimation, and attribute analysis) is a long-standing problem for com-
puter vision. This paper introduces a unified and versatile framework
(HQNet) for single-stage multi-person multi-task human-centric percep-
tion (HCP). Our approach centers on learning a unified human query rep-
resentation, denoted as Human Query, which captures intricate instance-
level features for individual persons and disentangles complex multi-
person scenarios. Although different HCP tasks have been well-studied
individually, single-stage multi-task learning of HCP tasks has not been
fully exploited in the literature due to the absence of a comprehensive
benchmark dataset. To address this gap, we propose COCO-UniHuman
benchmark to enable model development and comprehensive evaluation.
Experimental results demonstrate the proposed method’s state-of-the-
art performance among multi-task HCP models and its competitive per-
formance compared to task-specific HCP models. Moreover, our experi-
ments underscore Human Query’s adaptability to new HCP tasks, thus
demonstrating its robust generalization capability. Codes and data are
available at https://github.com/lishuhuai527/COCO-UniHuman.
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1 Introduction

Human-centric perception (e.g . pedestrian detection, 2D keypoint estimation,
3D mesh recovery, human segmentation and attribute recognition) have at-
tracted increasing research attention owing to their widespread industrial ap-
plications such as sports analysis, virtual reality, and augmented reality.

The task of single-stage multi-person multi-task human-centric perception
(HCP) has not been fully exploited in the literature due to the absence of a
representative benchmark dataset. Consequently, previous studies [11] resorted
to training models on various datasets for each HCP task, which can intro-
duce certain limitations. Firstly, there is inherent scale variance across different
⋆ Equal contribution. � Corresponding authors.
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Fig. 1: Multi-person human-centric perception tasks can be categorized into 4 groups:
classification, detection, segmentation and pose estimation.

datasets. For example, human detection datasets [43] consist of scene images
with multiple interacting people, while attribute recognition datasets [46] typi-
cally contain images with a single cropped person. This hampers the development
of single-stage multi-task algorithms that can comprehensively address various
HCP tasks as a unified problem. Secondly, single-task datasets are often de-
signed for specific application scenarios, resulting in strong dataset biases across
different datasets. For example, some datasets [23] are captured in controlled
lab environments, while some [46] are captured from a surveillance viewpoint.
Naively training models on a combination of these datasets inevitably introduces
dataset biases and hinders performance in real-world, unconstrained scenarios.
Although there are separate benchmarks for individual HCP tasks, a comprehen-
sive benchmark to simultaneously evaluate multiple HCP tasks is still lacking.
To address this problem, we introduce a large-scale benchmark dataset called
COCO-UniHuman, specifically designed for unified human-centric perceptions.
As shown in Figure 1, most popular HCP tasks can be grouped into four funda-
mental categories: classification, detection, segmentation, and pose estimation.
The COCO-UniHuman dataset extends COCO dataset by extensively annotat-
ing gender and age labels for each person instance. It encompasses all these four
categories, covering 7 diverse HCP tasks (marked with check marks in Figure 1).

Prior works on multi-person multi-task HCP have predominantly employed a
multi-stage approach. These approaches typically involve employing a human de-
tector to detect human instances, followed by task-specific models for each indi-
vidual human perception task such as keypoint estimation and instance segmen-
tation. However, these approaches exhibit three significant drawbacks. Firstly,
they suffer from the issue of early commitment: the performance of the whole
pipeline highly relies on body detection, and there is no recourse to recovery if
the body detector fails. Secondly, the run-time is proportional to the number
of individuals present in the image, making them computationally expensive for
real-time applications. In contrast, single-stage methods estimate all required
properties for human-centric analysis in a single pass, resulting in improved effi-
ciency. Thirdly, these approaches overlook the potential inter-task synergy. Dif-



You Only Learn One Query 3

ferent HCP tasks are highly correlated as they share a common understanding
of human body structure. In this work, we develop a simple, straightforward and
versatile baseline framework, called HQNet, for single-stage multi-task HCP. It
unifies various distinct human-centric tasks, including pedetrian detection, hu-
man segmentation, 2D human keypoint estimation, 3D human mesh recovery,
and human attribute analysis (specifically gender and age).

Different HCP tasks have their own relevant features of diverse granular-
ity to focus on. For instance, pedestrian detection emphasizes global semantic
features; attribute recognition necessitates both global and local semantic cues;
person segmentation relies on fine-grained semantic features; and pose estima-
tion require fine-grained semantic and localization information. In this paper, we
propose to learn unified all-in-one query representations, termed Human Query,
to encode instance-specific features of diverse granularity from multiple perspec-
tives. Our work is inspired by DETR-based methods [8, 35, 45, 82, 93], which
employ learnable query embeddings to represent objects and infer the relations
of the objects and the image features. This study expands upon these works by
learning versatile instance-level query representations for general human-centric
perceptions. In addition, we design HumanQuery-Instance Matching (HQ-Ins
Matching) and Gender-aided human Model Selection (GaMS) mechanisms to
further exploit the interactions among different HCP tasks and enhance the
performance of multi-task HCP.

We highlight several noteworthy characteristics of HQNet. (1) Flexibility:
HQNet can readily integrate with diverse backbone networks, such as ResNet [20],
Swin [47] and ViT [15]. (2) Scalibility: the weight-sharing backbone, trans-
former encoder, and decoder in HQNet enables seamless integration with mul-
tiple tasks, with minimal overhead from each task-specific head, thus demon-
strating remarkable scalability. (3) Transferability: Experiments demonstrate
strong transferability of the learned Human Query to novel HCP tasks, such as
face detection and multi-object tracking.

Our work makes the following key contributions: (1) We introduce the COCO-
UniHuman benchmark, a large-scale dataset that comprehensively covers all rep-
resentative HCP tasks, i.e. classification (gender and age estimation), detection
(body and face detection), segmentation, and pose estimation (2D keypoint and
3D mesh recovery). (2) We develop a simple yet effective baseline called HQNet,
unifying multiple distinctive HCP tasks in a single-stage multi-task manner.
The key idea is to learn unified all-in-one query representations, termed Human
Query, which encode instance-specific features of diverse granularity from various
perspectives. Additionally, we design HumanQuery-Instance (HQ-Ins) Matching
and Gender-aided human Model Selection (GaMS) mechanisms to improve the
performance of multi-task HCP. (3) Our approach achieves state-of-the-art re-
sults on different HCP tasks, demonstrating the strong representation capability
of the learnt Human Query. Furthermore, experiments show the strong transfer-
ability of the learned Human Query to novel HCP tasks, such as face detection
and multi-object tracking. We hope our work can shed light on future research
on developing single-stage multi-person multi-task HCP algorithms.



4 S. Jin et al.

Table 1: Overview of representative HCP datasets. “#Img”, “#Inst”, and “#ID” mean
the number of total images, instances and identities respectively. “Crop” indicates
whether the images are cropped for “face” or “body”. * means head box annotation.
“group:n” means age classification with n groups, “real” means real age estimation, and
“appa” means apparent age estimation.

Dataset #Img #Inst #ID Crop BodyBox FaceBox BodyKpt BodyMask Gender Age Mesh
Caltech [14] 250K 350K 2.3K ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

CityPersons [85] 5K 32K 32K ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

CrowdHuman [59] 24K 552K 552K ✗ ✓ * ✗ ✗ ✗ ✗ ✗

MPII [5] 25K 40K - ✗ ✓ * ✓ ✗ ✗ ✗ ✗

PoseTrack [4] 23K 153K - ✗ ✓ * ✓ ✗ ✗ ✗ ✗

CIHP [18] 38K 129K 129K ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

MHP [37] 5K 15K 15K ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

CelebA [48] 200K 200K 10K face ✗ ✗ ✗ ✗ ✓ group:4 ✗

APPA-REAL [2] 7.5K 7.5K 7.5K face ✗ ✗ ✗ ✗ ✓ appa & real ✗

MegaAge [90] 40K 40K 40K face ✗ ✗ ✗ ✗ ✓ real ✗

WIDER-Attr [39] 13K 57K 57K ✗ ✓ ✗ ✗ ✗ ✓ group:6 ✗

PETA [12] 19K 19K 8.7K body ✗ ✗ ✗ ✗ ✓ group:4 ✗

PA-100K [46] 100K 100K - body ✗ ✗ ✗ ✗ ✓ group:3 ✗

OCHuman [86] 5K 13K 13K ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗

COCO [43] 200K 273K 273K ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗

COCO-WholeBody [28] 200K 273K 273K ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

COCO-UniHuman 200K 273K 273K ✗ ✓ ✓ ✓ ✓ ✓ appa ✓

2 Related Works

2.1 Human-Centric Perception Tasks and Datasets

Approaches to multi-person human-centric perception (HCP) can be categorized
into top-down, bottom-up, and single-stage methods. Top-down methods fol-
low a detect-then-analyze approach. They first localize human instances, and
then perform single person analysis. Top-down approaches can be divided into
two types: those using separate pre-trained detectors and task-specific percep-
tion models [25, 32, 42, 62, 69, 75, 81], and those jointly learning detection and
perception modules [3, 19]. Bottom-up methods learn instance-agnostic key-
points/masks and cluster them using integer linear programming [22, 26, 33],
heuristic greedy parsing [7, 56], embedding clustering [34, 51], or learnable clus-
tering [27]. Single-stage methods directly predict keypoints or masks for each
individual, with different representations for 2D keypoint estimation (coordinate-
based [53,66,71,78], heatmap-based [61,68], or hybrid [17,50,92]), 3D mesh re-
covery [41, 63] and segmentation (contour-based [74] or mask-based [6]). While
existing approaches focus on individual HCP tasks, we aim to unify HCP by
learning a single model that handles multiple tasks simultaneously, enabling a
comprehensive understanding of humans. As shown in Table 1, there are task-
specific datasets separately annotated for different HCP tasks, including pedes-
trian detection [14, 59, 85, 88], keypoint estimation [4, 5], segmentation [18, 37],
and attribute recognition [46, 90]. Datasets for multiple HCP tasks also exist.
COCO [43] offers thorough annotations: body box, keypoints, and segmentation
mask. COCO-WholeBody [28,76] provides dense annotations of face/hand boxes
and 133 whole-body keypoints. Our COCO-UniHuman dataset further extends
COCO-WholeBody featuring extensive gender, age and mesh annotations.
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2.2 Unified Methods for HCP

General network architecture for different HCP tasks. Some works de-
sign general network backbones, including CNN-based [69] and Transformer-
based backbones [80]. Others unify HCP tasks with novel perception heads, such
as UniHead [40] and UniFS [29]. Unlike these methods, which employ separate
task-specific models, we consolidate diverse HCP tasks within a single network.
Pre-training on HCP tasks. There are also works [9,21,64] on pre-training on
diverse human-centric tasks with large-scale data. More recently, UniHCP [11]
presents a unified vision transformer model to perform multitask pre-training at
scale. It employs task-specific queries for attending to relevant features, but tack-
les one task at a time. Unlike ours, our approach simultaneously solves multiple
HCP tasks in a single forward pass. Our approach contrasts with these pre-
training based methods by avoiding pre-training, minimizing fine-tuning, and
circumventing resource-intensive multi-dataset training. Unlike them, we handle
multiple HCP tasks concurrently in a single-stage, multi-task manner, diverg-
ing from their single-person focus. Co-learning on HCP tasks. Many works
have investigated the correlations between pairs of HCP tasks [44,52,54,65,83].
We propose a single-stage model that learns a general unified representation to
handle all representative human-centric perception tasks simultaneously.

2.3 Object-Centric Representation Learning

DETR [8] pioneers learnable object queries to represent objects and interact with
image features. Deformable DETR [93] introduces deformable attention modules
to focus on key sampling points, enhancing convergence speed. DAB-DETR [45]
treats each positional query as a dynamic 4D anchor box, updated across de-
coder layers. DN-DETR [35] employs denoising training for faster convergence.
Recently, DINO [82] amalgamates these techniques, introducing a mixed query
selection and look-forward-twice strategy to expedite and stabilize training. Our
work is inspired by DETR-based methods. Especially we build upon DINO and
extend it to develop a versatile framework for single-stage multi-task HCP, uni-
fying multiple distinct human-centric tasks.

3 COCO-UniHuman Dataset

COCO-UniHuman v1 dataset is the first large-scale dataset, which provides an-
notations for all four representative HCP tasks in multi-person scenarios. Build-
ing upon COCO [30,43] dataset, we have enriched the annotations by including
gender, age, 3D body mesh information for each individual.

3.1 Data Annotation

Human Attribute Annotation. To ensure accurate annotations, we employ
trained annotators to manually label the gender and apparent age for each hu-
man instance in the dataset. We discard images full of non-human objects, and
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exclude all Small category persons that are hardly attribute-recognizable. Gen-
der annotation. For each valid human instance, we adopt a body-based anno-
tation approach. Using the provided human bounding boxes, we crop the body
images and request annotators to label the gender. To maintain data quality,
we conduct quality inspections and manual corrections throughout the labeling
process. Age annotation. To enhance the quality of annotation, we employ a
two-stage strategy based on body-based annotation. Similar to gender annota-
tion, age annotation is also performed on cropped body images. We implement
a coarse-to-fine two-stage annotation strategy, considering age group annota-
tion to be comparatively easier than apparent age annotation [2]. In the first
stage, age groups are annotated. Following [39], we divide the age ranges into
six groups, i.e. “baby”, “kid”, “teen”, “young”, “middle aged”, and “elderly”. For
each cropped person image, we request a group of 10 annotators to indepen-
dently and repeatedly label the age groups (6-category classification task). We
take the mode of the 10 votes as the ground-truth age group. In the second
stage, the apparent age is annotated. Given the age group as a prior, a group
of 10 annotators independently and repeatedly annotate the apparent age. Con-
sequently, we obtain 10 votes for each human instance. We remove the outliers
and take the average as the final ground-truth apparent age. As a summary,
the dataset contains over 1M apparent votes. Experiments validate the effec-
tiveness of the body-based annotation strategy and the two-stage annotation
strategy (see Supplementary). Mesh Annotation. We follow [30] to apply Ex-
emplar Fine-Tuning (EFT) method with the gender neutral model to generate
3D pseudo-ground truth SMPL parameters. To ensure data quality, we only re-
tain instances with at least 12 keypoint annotations where all limbs are visible
and filter out low-quality data manually.

3.2 Data Uniqueness

The newly introduced dataset possesses several noteworthy properties in compar-
ison to existing HCP datasets. (1) Comprehensiveness: This is the first large-
scale multi-person HCP dataset that encompasses all four basic HCP tasks, i.e.
classification, detection, segmentation, keypoint localization, and 3D body mesh
recovery in multi-person scenarios. It facilitates the development and evaluation
of single-stage multi-person multi-task HCP algorithms. (2) Large scale and
high diversity: With over 200,000 images and 273,000 identities, this dataset
exhibits significant variations in terms of lighting conditions, image resolutions,
human poses, and indoor/outdoor environments. (3) Multi-person attribute
recognition: Unlike most existing human attribute recognition datasets that
solely provide single-person center cropped images, our proposed dataset offers
a valuable benchmark for multi-person attribute recognition in challenging sce-
narios. (4) Body-based apparent age estimation: While previous research
has primarily focused on predicting a person’s age based on facial images, our
dataset emphasizes the utilization of richer visual cues derived from whole-body
images. Incorporating body-based visual cues such as skin elasticity, body pos-
ture, and body height proves beneficial for estimating a person’s age, particularly
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Fig. 2: Overview of HQNet. HQNet unifies various representative HCP tasks in a single
network by learning shared Human Query.

in situations where the facial image lacks clarity (e.g . captured from a distance).
Notably, existing large-scale pedestrian attribute datasets [12] typically only of-
fer coarse age group annotations, while facial attribute datasets [2] often provide
fine-grained apparent or real age annotations. Our proposed dataset bridges this
gap and serves as the pioneering large-scale dataset for body-based apparent age
estimation in the wild. (5) Enhanced human representation: The extended
human attribute labels and 3D human mesh information provide additional de-
scriptive information about individuals beyond the existing labels. By leveraging
these information, models can learn improved representations of humans, conse-
quently enhancing the performance of other HCP tasks.

4 Method

4.1 Overview

This study endeavors to develop a single-stage framework that supports a wide
range of human-centric perception (HCP) tasks. The key is to learn a compre-
hensive human representation, which can be universally employed across various
HCP tasks. To achieve this, we employ a query-based methodology and investi-
gate the feasibility of representing each human instance as a single shared query.
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Unlike previous task-specific HCP models that may incorporate specialized de-
signs tailored to specific tasks (e.g . “mask-enhanced anchor box initialization” in
Mask DINO [36]), our approach aims to handle various human-centric analysis
tasks in a unified manner. To maximize knowledge sharing among various HCP
tasks, we attempt to share most weights across different HCP tasks.

As illustrated in Figure 2, our framework consists of four key components: a
backbone network, a Transformer encoder, a task-shared Transformer decoder
and task-specific heads. The backbone network, such as ResNet [20], takes an
image as input and produces multi-scale features. These features, along with
corresponding positional embeddings, are then passed through the Transformer
encoder to enhance the feature representation. We use the mixed query selection
technique to select initial anchor boxes as positional queries for the Transformer
decoder. Following DINO [82], we only initialize the positional queries but do not
initialize content queries. Unlike previous approaches that employ task-specific
Transformer decoders, we propose to use a task-shared decoder for all HCP
tasks. The Transformer decoder incorporates the deformable attention [93] to
refine the queries across decoder layers. We refer to the refined content queries
as “Human Query” as they encode diverse information pertaining to human
instances. Finally, the Human Queries are fed into each light-weight task-specific
head for final prediction.

4.2 Task-Shared Transformer Decoder

Queries in DETR-like models are formed by two parts: positional queries and
content queries. Each positional query is formulated as a 4D anchor box, encod-
ing the center x-y coordinates, width and height of the box, respectively. Our
content query, denoted as Human Query, encapsulates various features (local
and global appearance features, as well as coarse- and fine-grained localization
features) specific to each instance. To enhance training stability and acceleration,
we employ Contrastive DeNoising (CDN) as introduced in DINO [82]. Notably,
we observe that incorporating auxiliary DeNoise losses for other tasks (e.g . seg-
mentation and pose) does not yield significant improvements. Consequently, we
only apply DN losses for human detection.

HumanQuery-Instance Matching. To ensure consistent and unique pre-
dictions for each ground-truth instance across all HCP tasks, i.e. classifica-
tion (Cls.), detection (Det.), pose (Pose.), and segmentation (Seg.), we em-
ploy HumanQuery-Instance (HQ-Ins) Matching. λclsLcls+λdetLdet+λsegLseg+
λposeLpose, where λ are loss weights. Details can be found in Supplementary.

4.3 Task-Specific Heads

To ensure scalability, we categorize HCP tasks into three groups and design
specific implementation paradigms for each category. Coordinate prediction
tasks (e.g . object detection and keypoint estimation) share common reference
points with bounding box prediction and directly regress the normalized off-
sets of each point. Dense prediction tasks (e.g . instance segmentation and
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human parsing) follow the design of Mask DINO [36], which involves construct-
ing a high-resolution pixel embedding map by integrating features from both
the backbone and the Transformer encoder. By performing a dot-product oper-
ation between the content query embedding and the pixel embedding map, an
instance-aware pixel embedding map is generated, facilitating pixel-level classi-
fication. Classification tasks (e.g . determining if an instance is human, gender
and age estimation) directly map the Human Query to the classification predic-
tion results, as the Human Query inherently encodes the positional information.

To minimize the overhead of incorporating new tasks, we employ lightweight
task-specific heads. Human detection head. A 3-layer multi-layer perceptron
(MLP) with a hidden dimension of d is utilized to predict the normalized center
x-y coordinates, height, and width of the bounding box w.r.t. the input image.
Additionally, a linear projection layer (FC) is employed to predict the class label
(human or non-human). 2D keypoint estimation head. Following the coordi-
nate prediction paradigm, the learned Human Query is fed into a pose regression
head (MLP) to regress the relative pose offsets w.r.t. the shared reference points
of the detection head. A confidence prediction head (FC) is used to predict con-
fidence score of having visible keypoints. Following PETR [60], joint decoder
layers are employed to refine body poses by leveraging structured relations be-
tween body keypoints. An auxiliary heatmap branch is used to aid training and
discarded during testing. Human instance segmentation head. A 3-layer
MLP is used to process the instance-aware pixel embedding map and output a
one-channel mask, which is then upsampled to match the original input image
size. Human attribute head. The gender estimation head and the age esti-
mation head operate in parallel. Both heads consist of two-layer MLPs. Gender
estimation involves binary classification, while age estimation is formulated as an
85-class ([1, 85]) classification with softmax expected value [58] estimation. 3D
mesh recovery head. Two 3-layer MLPs with the same hidden dimension are
used to predict the pose and shape parameters respectively. These parameters
are then fed into a SMPL body model to generate the 3D body meshes.

Gender-aided human Model Selection (GaMS). There are three versions
of SMPL models: male, female and neutral. Previous works usually use the neu-
tral model because of the lack of gender annotation. COCO-UniHuman has both
gender and 3D mesh annotations. To improve the performance of 3D mesh, we
employ Gender-aided human Model Selection (GaMS) which selects different
SMPL models by gender labels during the training and the inference stage.

5 Experiments

5.1 Dataset and Evaluation Metric

COCO-UniHuman Dataset. Our model training exclusively employs COCO-
UniHuman train data (in addition to ImageNet pre-training). We follow DINO [82]
for augmentation and adopt the 100-epoch training schedule. Model evaluation
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Table 2: Comparisons with task-specific and multi-task models on the COCO-
UniHuman val set. We report AP for the “Person” category without Small category
person. * denotes models trained to handle general 80 classes. † denotes flip testing.
We compare with ♢ top-down, ♡ bottom-up, ⋆ one-stage approaches.

Model Backbone Det. Seg. Pose (Kpt.) Cls. (Gender) Cls. (Age)

AP APM APL AP APM APL AP APM APL AP APM APL AP APM APL

Faster R-CNN [57] R-50 65.3 61.5 71.2 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

IterDETR [91] R-50 71.8 66.0 78.9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DINO [82] R-50 73.3 68.1 79.9 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

♢ Mask R-CNN [19] R-50-FPN 66.7 62.3 73.1 58.4 51.8 66.2 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

⋆ PolarMask [74] R-50-FPN ✗ ✗ ✗ 45.1 38.5 57.1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

⋆ YOLACT [6] R-50-FPN ✗ ✗ ✗ 47.4 40.1 61.2 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

⋆ MEInst [84] R-50-FPN ✗ ✗ ✗ 49.3 42.3 57.6 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

⋆ CondInst [67] R-50-FPN ✗ ✗ ✗ 54.8 43.3 69.0 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

⋆ Mask DINO [36] R-50 72.3 66.5 79.5 64.8 57.3 73.4 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

♢ SBL† [73] R-50 ✗ ✗ ✗ ✗ ✗ ✗ 70.4 67.1 77.2 ✗ ✗ ✗ ✗ ✗ ✗

♢ Swin† [47] Swin-L ✗ ✗ ✗ ✗ ✗ ✗ 74.3 70.6 81.2 ✗ ✗ ✗ ✗ ✗ ✗

♢ HRNet† [62] HRNet-32 ✗ ✗ ✗ ✗ ✗ ✗ 74.4 70.8 81.0 ✗ ✗ ✗ ✗ ✗ ✗

♢ ViTPose† [77] ViT-L ✗ ✗ ✗ ✗ ✗ ✗ 78.2 74.5 85.4 ✗ ✗ ✗ ✗ ✗ ✗

♢ PRTR† [38] R-50 ✗ ✗ ✗ ✗ ✗ ✗ 68.2 63.2 76.2 ✗ ✗ ✗ ✗ ✗ ✗

♡ HrHRNet† [10] HRNet-w32 ✗ ✗ ✗ ✗ ✗ ✗ 67.1 61.5 76.1 ✗ ✗ ✗ ✗ ✗ ✗

♡ DEKR† [17] HRNet-w32 ✗ ✗ ✗ ✗ ✗ ✗ 68.0 62.1 77.7 ✗ ✗ ✗ ✗ ✗ ✗

♡ SWAHR† [49] HRNet-w32 ✗ ✗ ✗ ✗ ✗ ✗ 68.9 63.0 77.4 ✗ ✗ ✗ ✗ ✗ ✗

⋆ CID† [68] R-50-FPN ✗ ✗ ✗ ✗ ✗ ✗ 52.0 48.6 58.0 ✗ ✗ ✗ ✗ ✗ ✗

⋆ CID† [68] HRNet-w32 ✗ ✗ ✗ ✗ ✗ ✗ 69.8 64.0 78.9 ✗ ✗ ✗ ✗ ✗ ✗

⋆ FCPose [50] R-50 ✗ ✗ ✗ ✗ ✗ ✗ 63.0 59.1 70.3 ✗ ✗ ✗ ✗ ✗ ✗

⋆ InsPose [61] R-50 ✗ ✗ ✗ ✗ ✗ ✗ 65.2 60.6 72.2 ✗ ✗ ✗ ✗ ✗ ✗

⋆ PETR [60] R-50 ✗ ✗ ✗ ✗ ✗ ✗ 68.8 62.7 77.7 ✗ ✗ ✗ ✗ ✗ ✗

♢ StrongBL [24] R-50 - - - ✗ ✗ ✗ ✗ ✗ ✗ 46.4 35.2 53.2 ✗ ✗ ✗

♢ Mask R-CNN [19] R-50 66.3 61.9 72.8 ✗ ✗ ✗ ✗ ✗ ✗ 46.7 36.3 52.8 ✗ ✗ ✗

♢ StrongBL [24] R-50 - - - ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 42.3 31.9 48.3
♢ Mask R-CNN [19] R-50 66.3 62.1 72.5 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 37.4 27.9 43.3

♢ Pose2Seg [86] R-50-FPN ✗ ✗ ✗ 55.5 49.8 67.0 59.9 - - ✗ ✗ ✗ ✗ ✗ ✗

♡ MultiPoseNet [1] R-50 - 58.0 68.1 - - - 62.3 57.7 70.4 ✗ ✗ ✗ ✗ ✗ ✗

♡ PersonLab [56] R-152 ✗ ✗ ✗ - 48.3 59.5 66.5 62.3 73.2 ✗ ✗ ✗ ✗ ✗ ✗

⋆ CenterNet [92] Hourglass - - - ✗ ✗ ✗ 64.0 59.4 72.1 ✗ ✗ ✗ ✗ ✗ ✗

⋆ LSNet-5 [87] DLA-34 ✗ ✗ ✗ 56.2 44.2 71.0 - - - ✗ ✗ ✗ ✗ ✗ ✗

⋆ UniHead∗ [40] R-50-FPN 67.3 62.6 74.4 38.6 37.2 42.2 57.5 55.3 61.9 ✗ ✗ ✗ ✗ ✗ ✗

⋆ HQNet (D+S) R-50 73.0 68.0 79.4 63.6 57.6 72.1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

⋆ HQNet (D+S+P) R-50 74.5 70.3 80.1 65.7 58.7 73.8 69.5 64.4 77.0 ✗ ✗ ✗ ✗ ✗ ✗

⋆ HQNet (D+S+P+C) R-50 74.9 70.4 80.7 65.8 58.7 73.9 69.3 63.8 77.3 56.0 42.5 63.3 53.8 39.7 61.2

⋆ HQNet Swin-L 77.3 73.3 82.7 68.1 60.9 75.9 72.6 67.4 80.1 57.9 43.1 65.8 56.2 41.5 63.9
⋆ HQNet ViT-L 78.0 73.6 83.7 68.6 61.4 76.5 75.3 69.8 83.5 58.0 44.7 65.0 58.0 40.9 66.7

takes place on COCO-UniHuman val set (2693 images). Due to limitations of
the COCO test-dev evaluation server, which lacks support for “Person” cate-
gory evaluation and attribute recognition, we mainly report results on the val
set. The evaluation is based on the standard COCO metrics including Average
Precision (AP), APM for medium-sized persons and APL for large-sized persons.
Following [86,87], we exclude the Small category persons during evaluation due
to the lack of annotations in COCO. For attribute recognition, we also use AP
with Age-10 metric for evaluation, where the age estimation is considered correct
if the prediction error is no larger than 10. For human mesh recovery, we eval-
uate pose accuracy using MPJPE (Mean Per Joint Position Error) w.r.t. root
relative poses and PA-MPJPE (Procrustes-Aligned MPJPE), which is MPJPE
calculated after rigid alignment of predicted pose with the ground truth.
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Table 3: Results of 3D human mesh recovery on the COCO-UniHuman val set.
HQNets are jointly trained with all HCP tasks (D+S+P+C). ↓ means lower is better.

Model Backbone Bbox Pose (Mesh.)
MPJPE ↓ PA-MPJPE ↓

♢ HMR [32] R-50 GT 109.62 72.03
♢ HMR+ [55] R-50 GT 78.06 50.36
⋆ ROMP [63] R-50 - 119.52 72.27

⋆ HQNet w/o GaSM R-50 - 87.00 54.92
⋆ HQNet R-50 - 84.74 50.80

⋆ HQNet ViT-L - 76.31 48.26

OCHuman Dataset [86] is a large benchmark that focuses on heavily oc-
cluded humans. It contains no training samples and is intended solely for eval-
uation purposes. Following [86], we train models on the COCO train set and
evaluate models on OCHuman val set (4731 images) and test set (8110 images).

5.2 Results on COCO-UniHuman Dataset

We compare our method to task-specific and multi-task HCP models on the
COCO-UniHuman dataset in Table 2 and Table 3. Our models outperform multi-
task HCP models and achieves very competitive results against task-specific HCP
models. Details about the baselines can be found in Supplementary. “D”, “S”, “P”,
“C” mean model training with Detection (Det.), Segmentation (Seg.), Pose and
Classification (Cls.) task respectively.

Comparison with task-specific HCP models. For human detection,
we compare three baseline approaches, i.e. Faster-RCNN [57], IterDETR [91]
and DINO [82]. For human instance segmentation, we contrast HQNet with
state-of-the-art general and human-specific instance segmentation methods, in-
cluding Mask R-CNN [19], PolarMask [74], MEInst [84], YOLACT [6], and
CondInst [67]. For human pose estimation, we compare with several represen-
tative top-down methods (SBL [73], HRNet [62], Swin [47], ViTPose [77] and
PRTR [38]), bottom-up approaches (HrHRNet [10], DEKR [17], and SWAHR [49])
and single-stage approaches (FCPose [50], InsPose [61], PETR [60] and CID [68]).
For gender and age estimation, we establish baselines using StrongBL [24] and
Mask R-CNN [19]. For mesh, we compare with HMR [32], HMR+ [55] and
ROMP [63]. Our approach achieves very competitive performance compared to
other task-specific HCP models when using the R-50 backbone. Moreover, with
stronger backbones such as Swin-L and ViT-L, we achieve SOTA among single-
stage approaches.

Comparison with multi-task HCP methods. Pose2Seg [86] is a two-
stage human pose-based instance segmentation approach. It uses a standalone
keypoint detector for pose estimation and employs human skeleton features for
top-down instance segmentation guidance. MultiPoseNet [1] and PersonLab [56]
follow bottom-up strategies. CenterNet [92], LSNet [87], and UniHead [40]1

1 UniHead trains separate models for different HCP tasks.
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Table 4: Comparison with state-of-the-art models on the OCHuman dataset. † denotes
flip testing. We compare with ♢ top-down, ♡ bottom-up, ⋆ one-stage approaches.

Model Backbone
OCHuman Val OCHuman Test

Det. Seg. Pose (Kpt.) Det. Seg. Pose (Kpt.)

♢ Mask R-CNN [19] R-50-FPN - 16.3 ✗ - 16.9 ✗

♢ SBL† [73] R-50 ✗ ✗ 37.8 ✗ ✗ 30.4
♢ Pose2Seg [86] R-50-FPN ✗ 22.2 28.5 ✗ 23.8 30.3
♡ AE† [51] Hourglass ✗ ✗ 32.1 ✗ ✗ 29.5
♡ HGG† [27] Hourglass ✗ ✗ 35.6 ✗ ✗ 34.8
♡ DEKR† [17] HRNet-w32 ✗ ✗ 37.9 ✗ ✗ 36.5
♡ HrHRNet† [10] HRNet-w32 ✗ ✗ 40.0 ✗ ✗ 39.4
⋆ YOLACT [6] R-101-FPN ✗ 13.2 ✗ ✗ 13.5 ✗

⋆ CondInst [67] R-50-FPN ✗ 20.3 ✗ ✗ 20.1 ✗

⋆ LSNet-5 [87] DLA-34 ✗ 25.0 ✗ ✗ 24.9 ✗

⋆ LOGO-CAP† [78] HRNet-w32 ✗ ✗ 39.0 ✗ ✗ 38.1
⋆ CID† [68] R-50-FPN ✗ ✗ 29.2 ✗ ✗ 28.3
⋆ CID† [68] HRNet-w32 ✗ ✗ 44.9 ✗ ✗ 44.0
⋆ HQNet (Ours) R-50 30.6 31.5 40.3 29.5 31.1 40.0
⋆ HQNet (Ours) ViT-L 36.9 39.9 46.8 35.8 38.8 45.6

are single-stage alternatives. Our R-50 model achieves superior performance in
multi-task HCP, without bells and whistles.

Effect of multi-task co-learning. In Table 2, we also compare with dif-
ferent variants of HQNet for various task composition (i.e. D, S, P, C). We
observed that co-learning with multiple human-centric tasks leads to improved
overall performance. This enhancement can be attributed to the inter-task syn-
ergy that arises from jointly training different HCP tasks.

5.3 Results on the OCHuman Dataset

To verify the performance of HQNet in challenging crowded scenarios, we com-
pare it with recent works on OCHuman dataset [86], which is a crowded scene
benchmark for human detection, segmentation, and pose estimation in Table 4.
We show that our model outperforms previous methods under the same ResNet50
backbone network by a large margin. For instance, it outperforms SBL by 9.6
keypoint AP and CondInst by 11.0 segmentation AP on test set. It even achieves
superior performance than HrHRNet (40.3 vs 40.0) and LOGO-CAP (40.3 vs
39.0) even with a much smaller backbone (ResNet-50 vs. HRNet-w32). With a
stronger backbone, i.e. ViT-L, our HQNet sets new state-of-the-art results on
detection (35.8 AP), segmentation (38.8 AP), and pose estimation (45.6 AP).

5.4 Generalize to New HCP Tasks

Finetuning evaluation. Similar to linear probing in image classification, we
freeze our backbone and transformer encoder (from Table 2) and finetune other
parts to evaluate the generalization ability of HQNet on a new HCP task, i.e.
face detection. In Table 5, we compare our approach with Faster R-CNN [57]
and ZoomNet [28]. Our HQNet can not only better exploit the inherent multi-
level structure of the human body, but also preserve the efficiency of single-stage
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Table 5: Finetuning
evaluation on novel
face detection tasks.
Face detection results
are reported on COCO-
UniHuman val dataset.

Method Face detection
AP AR

Faster RCNN [57] 43.9 71.2
ZoomNet [28] 58.2 72.8
HQNet (R-50) 68.4 83.2

Table 6: Unseen-task
evaluation on Pose-
Track21 [13]. ‘FT’ means
fine-tuning on PoseTrack21.
Our models are evaluated
without training on MOT.

Method FT IDF1 MOTA
TRMOT [70] ✓ 57.3 47.2
FairMOT [89] ✓ 63.2 56.3
HQNet (D) ✗ 62.4 48.6
HQNet (D+S) ✗ 63.3 49.5
HQNet (R-50) ✗ 64.6 51.1
HQNet (ViT-L) ✗ 69.1 57.0

Table 7: Robustness to
domain shift. All models
are evaluated on Human-
Art [31] val set without
training on Human-Art.

Method Det. Kpt.
Faster R-CNN [57] + HRNet [62] 12.0 22.2
YOLOX [16] + ViTPose [77] 14.4 28.7
HigherHRNet [10] - 34.6
ED-Pose [79] - 37.5
HQNet (Swin-L) 15.8 43.0
HQNet (ViT-L) 18.7 52.2

detection. It outperforms Faster R-CNN (68.4 AP vs 43.9 AP) and ZoomNet
(68.4 AP vs 58.2 AP) by a large margin.

Unseen-task generalization. We evaluate the generalization ability of our
approach through an unseen task evaluation, specifically multiple object tracking
(MOT) on the PoseTrack21 dataset [13]. Our models are trained solely on the
COCO-UniHuman image-based dataset without explicit tuning for MOT. We
hypothesize that our learned human query embeddings, which encode instance-
specific features of diverse granularity, can serve as strong cues for distinguishing
different objects. We utilized DeepSORT [72] and used the learned Human Query
as re-identification features for association. In Table 6, we compare our results
with two state-of-the-art single-network MOT methods that were pretrained
on COCO and fine-tuned on PoseTrack21. Despite not explicitly being trained
for MOT, our HQNet (R-50) achieves highly competitive results (64.6 IDF1
and 51.1 MOTA). This demonstrates the generalization ability of our learned
Human Query. HQNet (D) and HQNet (D+S) refers to HQNet trained solely on
the detection (D) and segmentation (S) tasks respectively, and we observed that
co-training on multiple HCP tasks improved the quality of the query embeddings
(64.6 IDF1 vs. 62.4 IDF1). Furthermore, by employing a stronger ViT backbone,
our approach achieves state-of-the-art performance.

5.5 Robustness to Domain Shift

HumanArt [31] contains images from both natural and artificial (e.g . cartoon
and painting) scenarios, which can be used for evaluating the robustness to
domain shift. In Table 7, we conduct a system-level cross-domain evaluation by
directly evaluating all models on Human-Art val set without any finetuning. We
observe that all models, particularly two-stage models, experienced a decline in
performance when a domain gap was present. However, our approach maintained
competitive performance, showcasing its resilience to the domain gap.
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Fig. 3: Computation cost analysis
validates the efficiency of HQNet.

Fig. 4: Effect of HumanQuery-Instance
(HQ-Ins) Matching.

5.6 More Analysis

Computation cost analysis. In Fig 3, we report the number of parameters of
our Res50-based HQNet model variants of different task composition. In HQNet,
multiple tasks share the computation cost of the backbone, transformer encoder
and decoder. The overhead of each task-specific head is negligible, showing good
scalability of HQNet in terms of increasing the number of tasks. It is noteworthy
that our model is efficient and its cost is comparable to the task-specific HCP
models (e.g . MaskDINO [36]).

Effect of Gender-aided human Model Selection (GaMS) In Table 3,
we analyze the effect of Gender-aided human Model Selection (GaMS). We find
that incorporating the obtained gender information can assist in selecting proper
3D model of the human body, resulting in more accurate human mesh recovery.

Effect of HQ-Ins Matching. “w/o HQ-Ins Matching” means using detec-
tion loss only for bipartite matching [82]. “w/ HQ-Ins Matching” means compre-
hensively using detection, pose, and segmentation loss for bipartite matching. As
shown in Fig. 4, with detection only matching [82], there may be some erroneous
cases when one person’s pose is matched to another person. HQ-Ins Matching
avoids such errors by comprehensively considering multiple tasks as a whole.
More quantitative evaluation can be found in Supplementary.

6 Conclusion

In this work, we present a unified solution towards single-stage multi-task human-
centric perception, called HQNet. The core idea is to learn a unified query
representation that encodes local and global appearance features, coarse and
fine-grained localization features for each instance. To facilitate model training
and evaluation, we introduce a large-scale benchmark, termed COCO-UniHuman
benchmark, to unify different representative HCP tasks. We extensively compare
our proposed method with several state-of-the-art task-specific and multi-task
approaches, and show the effectiveness of our proposed method.
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