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The supplementary material is structured into three main sections. First, it
expands on the details of the methodology in Appendix A. Second, Appendix B
delves into additional details regarding the datasets and the implementations. Fi-
nally, Appendix C presents supplementary experimental results, including more
quantitative and qualitative analyses, and additional ablation studies.

A Network and Training Details

A.1 Network Structure

Our semi-supervised learning framework has compatibility with a variety of
image restoration networks. We adopt MSBDN [17] as our backbone due to
its balanced performance and rapid inference speed in our main study. MS-
BDN is originally an image dehazing network based on U-Net [34] architec-
ture, which shows effectiveness in all-in-one adverse weather image restora-
tion [5]. Three components comprise MSBDN, with an encoder, decoder, and
in-between feature restoration module. The intermediate feature maps are of
strides 1/1, 1/2, 1/4, 1/8, 1/16 regarding the input image, with downsampling
operations in the encoder and upsampling operations in the decoder. Several
boosting and fusion techniques are proposed to enhance the image restoration
capability. Please refer to MSBDN [17] for more details. Moreover, our proposed
framework is also compatible with more advanced image restoration networks,
e.g ., Restormer [51] and NAFNet [3]. We provide additional evidence for im-
proving Restormer to restore real adverse weather images in Appendix C.10.

A.2 Description-Assisted Semantic Enhancement

In our approach, we employ vision-language models (VLMs) to provide a nat-
ural language description of the adverse weather image, encompassing rich se-
mantic information about the scene and adverse weather conditions. Negative
⋆ Corresponding author (huxiaowei@pjlab.org.cn)
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A clear day in the city, with a couple strolling down a sidewalk. The couple 
walks under the shade of a tree, surrounded by two street lamps. The sky is 
bright and free of any weather disturbances.

On a hazy day, a couple takes a leisurely walk down a sidewalk. The hazy sky 
creates a soft, dreamy atmosphere, and the couple seems to enjoy their 
peaceful stroll despite the slightly murky weather. Two street lamps add a 
touch of warmth and coziness to the scene.

A woman walks down a dry city street on a clear day with an umbrella. The 
street is lined with poles and trees, with cars parked along the side. There is 
no rain, and the woman walks comfortably.

A woman walks down a wet city street on a rainy day, holding an umbrella. 
The street, lined with poles, trees, and parked cars, glows under the rain. The 
wet street emphasizes the ongoing rain.

A person walks down a snow-covered street on a clear winter day, wearing a 
black coat and a white mask. The heavy snowfall creates a bright and festive 
atmosphere. They carry a handbag, suggesting they are out and about despite 
the chilly weather.

In a snowy scene, a figure dressed in black and wearing a white mask walks 
down a snow-covered street. Heavy snowfall creates a wintery ambiance. The 
person's attire and the snow on the ground imply that the temperature is 
freezing, and they take precautions to protect themselves from the snow.!!"#!$%&

Fig.A: Examples of positive descriptions dpos and negative descriptions dneg.

descriptions dneg pertain to the degraded images affected by adverse weather,
while positive descriptions dpos relate to their corresponding restored states. To
achieve this, large VLMs, e.g ., LLaVA, are utilized to generate dneg. Afterward,
we prompt LLMs, e.g ., Llama, to produce dpos. During implementation, LLaVA-
v1.5 [23] and Llama 2 [37] are used for the description generation and conversion,
respectively. We show examples of generated dpos and dneg in Fig. A.

A.3 VLM-based Visibility Assessment VLM-Vis

We employ a VLM-based image visibility assessment method to refine pseudo la-
bels and evaluate restoration performance. For the VLM-Vis score computation,
we utilize VLM experts, i.e., a diverse ensemble of N VLM models [9,23,24,35,
48]. For each image, we compute the VLM-based visibility score rvlmj for a given
VLM j, following the procedure delineated in the method section. Recognizing
that each VLM may yield scores within a distinct range, we standardize these by
computing the minimum, rvlmminj

, and maximum rvlmmaxj
, score statistics across the

dataset for each respective VLM. The final normalized visibility score, VLM-Vis,
for an image is then determined using the following formula:

VLM-Vis =
1

N

∑N

j=1

rvlmj − rvlmminj

rvlmmaxj
− rvlmminj

. (1)
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Fig. B: Examples of the collected real rain and snow images.

B Datasets and Implementation Details

B.1 Dataset Details

Real data. We explore the real data to enhance image restoration performance
across diverse adverse weather conditions in real-world settings. For the haze,
we use the unannotated real-world hazy images (URHI) set of RESIDE [18],
since it covers various haze levels and background scenes. We filter out the low-
resolution images and retain the ones with noticeable haze effects, resulting in
around 2,300 images. For the rain and snow categories, we choose to manually
collect the real images to cover a wide range of scene and artifact levels since
there exist limited real datasets with only narrow scene coverage [20] (i.e., rain)
or no suitable data available (i.e., snow). Several searching keywords are first
designed for image retrieval on the Internet, e.g ., heavy rain, rainfall, and rain in
<place>, where <place> is the name of countries or cities. Then, we manually
examine the retrieved images and keep only the images with legible rain and
snow artifacts. In such a way, we build the real rain and snow datasets with
diverse scenes and artifact levels of around 2,400 and 2,000 images, respectively.
Note that these real images are also used to train the weather prompts together
with the DF2K (DIV2K [36] and Flickr2K [21]) dataset. We show examples of
the collected real rain and snow images in Fig. B.

Synthetic data. Following [38, 54], the (pseudo-)synthetic datasets [18, 19, 27,
32,40,54] are utilized in our semi-supervised learning as labeled data. Outdoor-
Rain [19] is a synthetic rain dataset considering rain streaks and rain veiling
effects. RainDrop [32] is for raindrop removal, capturing photos through glass
with or without sprayed water. SPA [40, 54] is a pseudo-synthetic dataset that
takes real rain images for the degraded ones, and the ground-truth counterparts
are approximated by processing the rainy video to select the pixels without
rain streaks. However, the obtained ground truth is pseudo-clear due to the
approximation and is not effective for the removal of the rain veiling (haze)
effect, which is common in heavy rain situations. OTS is the outdoor train-
ing set of RESIDE [18], which synthesizes the hazy image I based on the esti-
mated depth maps d of the clear input J and the atmospheric scattering model:
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Table A: Quantitative comparisons for rain and haze situations using B-FEN [44] and
FADE [10]. Bold and underline indicate the best and second best, respectively.

Method Restormer
[51]

TransWeather
[38]

TKL
[5]

WeatherDiff
[29]

WGWS-Net
[54]

MWDT
[30]

PromptIR
[31]

DA-CLIP
[28]

Our
method

B-FEN ↑ 0.330 0.329 0.332 0.329 0.354 0.325 0.330 0.327 0.360
FADE ↓ 2.520 2.584 1.474 2.568 1.293 0.978 1.721 1.518 1.120

I(x) = J(x)t(x) + A(1 − t(x)), t(x) = e−βd(x), with haze amount variations β
and environmental light variations A. Snow100K [27] is a synthetic snow dataset,
which simulates the snowflakes using PhotoShop.

B.2 Other Implementation Details

We utilize existing deraining [4,7,14,15], dehazing [45,53], desnowing [11], general
image restoration [51], and all-in-one adverse weather image restoration [5,28–31,
38,54] methods to produce the restoration results. The pseudo-label initialization
is achieved using the VLM-based image assessment methods and majority voting
among VLM experts, with image quality also considered.

During training, the learning rate is set to 1e − 4, and the cosine annealing
schedule is adopted. Cropped regions (224×224) or (256×256) from images are
used as patches for training.

C Additional Experimental Results

C.1 More Quantitative Results

In addition to the image quality assessment metrics and the proposed visibility
assessment metric, VLM-Vis, detailed in the main text, we include further quan-
titative comparisons in our analysis. These comparisons utilize two additional
metrics: B-FEN [44] and FADE [10]. B-FEN [44] is a neural network-based model
that predicts the quality of images after deraining, which has been trained on
a database of images assessed for deraining quality with mean opinion scores
(MOS). On the other hand, FADE [10] estimates the visibility within foggy im-
ages by analyzing their statistical characteristics.

The comparative results are presented in Table A. As observed, our method
outperforms others in terms of the B-FEN score, indicating superior deraining
image quality. While our method achieves the second-best FADE score, narrowly
trailing behind the MWDT [30] approach, it is important to note that MWDT
tends to over-enhance the images, leading to notable color distortion. Further-
more, as reported in the main text, our method demonstrates the highest image
quality assessment scores, and obtains a preference among users, suggesting an
optimal balance between technical performance and visual appeal.

Furthermore, we evaluate PSNR and SSIM on paired “real” datasets [1,2,52]
for comparisons; see Table B. Our method performs the best on most metrics.
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Table B: Quantitative comparisons on paired O-HAZE [1], GT-RAIN [2], and Weath-
erStream [52] datasets using PSNR and SSIM.

Method Restormer
[51]

TransWeather
[38]

TKL
[5]

WeatherDiff
[29]

WGWS-Net
[54]

MWDT
[30]

PromptIR
[31]

DA-CLIP
[28]

Our
method

O-HAZE 18.07 14.71 18.77 17.48 16.54 15.32 18.20 17.48 19.20
0.661 0.587 0.688 0.636 0.657 0.631 0.655 0.636 0.693

GT-RAIN 19.89 20.01 19.65 19.52 20.19 18.74 21.01 19.52 20.88
0.696 0.682 0.664 0.686 0.690 0.675 0.704 0.653 0.704

Weather-
Stream

20.30 20.63 20.13 20.35 20.82 18.31 21.86 19.85 21.11
0.776 0.773 0.762 0.774 0.780 0.743 0.784 0.758 0.788

Table C: Comparisons on high-level vision tasks. Object detection results (mAP) for
restored images are evaluated on the RIS [20] and RTTS [18] datasets.

Method Restormer
[51]

TransWeather
[38]

TKL
[5]

WeatherDiff
[29]

WGWS-Net
[54]

MWDT
[30]

PromptIR
[31]

DA-CLIP
[28]

Our
method

mAP (RIS) 0.218 0.201 0.204 0.213 0.175 0.216 0.212 0.219 0.231
mAP (RTTS) 0.504 0.472 0.506 0.491 0.497 0.525 0.513 0.511 0.532

Note that PSNR and SSIM are inadequate for assessing image restoration, as
high scores may not align with good visual outcomes. Also, real images claimed
in these datasets represent only a narrow slice of variability, and models trained
on such datasets still struggle with real-world data, as shown in Fig. I.

C.2 More Qualitative Results

More visual comparisons on real images are shown in Figs. K to P. Our method
effectively eliminates most weather-related artifacts, maintains the integrity of
the image content, and yields visually pleasing restoration outcomes that are
applicable to diverse real-world scenarios.

C.3 Downstream Applications

In this section, we evaluate the performance of our proposed method against oth-
ers on high-level computer vision tasks, e.g ., object detection, under challenging
weather conditions. For these experiments, we leverage two real adverse weather
benchmark datasets with ground-truth annotations, RIS [20] and RTTS [18], for
evaluation under rain and haze conditions, respectively. Specifically, RIS is the
rain in surveillance set of the MPID [20] dataset, which provides images with
rain veiling effects and includes annotated bounding boxes for object detection.
RTTS is the real-world task-driven testing set of the well-known haze evaluation
dataset, RESIDE [18]. A RetinaNet [22] model is employed for the evaluation
of object detection performance. The detection model is applied to images that
have been restored using various image restoration methods, and the resulting
detection metrics are compared.
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Input MWDT [30] PromptIR [31] DA-CLIP [28] Our method

Fig. C: Visual comparisons on high-level vision tasks. Images are from RTTS [18] (first
three rows) and RIS [20] (last two rows). Our method benefits object detection with
fewer false negatives by providing clearer images with more visible regions.

Quantitative and visual results are presented in Table C and Fig. C, re-
spectively. The results indicate that images restored using our method largely
enhance the performance of high-level vision tasks, demonstrating a marked
improvement over competing methods. Additionally, we conduct ablation exper-
iments on our baseline model without semantic regularization, yielding mean
Average Precision (mAP) scores of 0.217 for RIS [20] and 0.524 for RTTS [18],
which is lower than the model trained with our full semi-supervised learning
approach. These results underscore the contribution of semantic regularization
to enhancing our model’s performance in both image restoration and associated
high-level vision tasks. Experiments on these datasets validate the efficacy of
our approach in enhancing the robustness of vision systems under real adverse
weather conditions by exploring the semantics in the images. Notably, the di-
minished performance observed on the RIS dataset can be attributed to factors
beyond adverse weather, such as image blur and compression artifacts. Address-
ing these additional challenges to optimize image quality for high-level vision
tasks is a direction for our future research.

C.4 Efficiency Comparison

Table D reports the inference FLOPs and runtimes (input size of 256×256) on a
TITAN RTX GPU. Training time (estimated on two A40 GPUs) is also shown.
Note that our method does not increase the backbone’s inference time.
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Table D: Inference and training efficiency comparisons.

Method TransWeather WeatherDiff WGWS-Net MWDT PromptIR DA-CLIP Our method

FLOPs 4.7G 126.9T 71.0G 47.4G 172.7G 13.3T 19.6G
Inference 0.01s 17.56s 0.06s 0.05s 0.12s 3.77s 0.02s
Training 7h 90h 56h 71h 87h 105h 176h

Table E: Quantitative comparisons with methods using unlabeled data.

NIMA ↑ MUSIQ ↑ CLIP-IQA ↑ LIQE ↑ Q-Align ↑ VLM-Vis ↑

SS-IRR [42] 5.125 56.99 0.383 2.397 3.322 0.334
DerainCycleGAN [43] 5.024 54.30 0.400 2.239 3.399 0.340

MOSS [15] 5.102 56.32 0.416 2.382 3.503 0.347
MUSS [14] 5.020 55.93 0.408 2.353 3.506 0.348

D4 [49] 5.073 54.82 0.405 2.163 3.169 0.344
NLCL [49] 5.069 57.43 0.363 2.152 3.253 0.330

Our method 5.084 59.34 0.456 2.640 3.574 0.387

C.5 Discussion on Utilizing Unlabeled Data

Leveraging the unlabeled data through semi-supervised or unsupervised learn-
ing boosts performance, particularly when the labeled data is limited or exhibits
domain discrepancies. Existing works tackling adverse weather image restora-
tion employ several strategies, such as Mean Teacher [14, 15, 26], cycle consis-
tency [6, 8, 25, 43, 47], adversarial learning [46, 49, 50], and distribution regu-
larization [42]. Some of them further incorporate disentanglement techniques
tailored to address specific weather conditions. Note that the use of real unla-
beled data extends benefits to other low-level vision tasks, including underwater
image restoration [16]. However, these methods require specific imaging proper-
ties for the physical layer extraction and feature disentanglement, such as the
rain [25,42,49] and haze [26,46,47] layers, which may not be readily adaptable to
more complex all-in-one weather scenarios. Furthermore, certain studies mainly
focus on utilizing unlabeled data to improve the performance of synthetic evalu-
ations rather than addressing real-world scenarios [15,26]. In contrast, our semi-
supervised learning framework is not confined to any specific weather condition.
Instead, it capitalizes on the generalization capabilities of vision-language mod-
els for image clearness assessment and semantics regularization. This method is
thus more versatile and better suited to a broad spectrum of complex and varied
adverse weather conditions.

The quantitative comparisons with methods leveraging unlabeled data are
shown in Table E. Results show that our method performs the best on most
metrics. Further, we compare our method with a semi-supervised learning de-
raining method, MOSS [15], in Fig. D. Our method demonstrates superior per-
formance in addressing rain streaks and substantially improves visibility under
heavy rain conditions. Furthermore, our approach extends its applicability to a
broader range of weather conditions, not limited to rain.
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Input MOSS [15] Our method

Fig.D: Visual comparisons with a semi-supervised deraning method.
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Fig. E: Visual comparisons of the proposed weather prompt learning Lwpl with GANs.
Three rows are the input, the results using GAN [41], and the results using Lwpl.

C.6 Analysis on the Weather Prompt Learning

This section delves into a thorough analysis of the proposed weather prompt
learning loss, denoted as Lwpl. We initiate our discussion by comparing Lwpl

with conventional adversarial learning approaches. Subsequently, we perform an
in-depth implementation analysis of Lwpl.

We compare our proposed weather prompt learning approach with conven-
tional adversarial learning techniques, applying both methods to the set of im-
ages in clear, rain, haze, and snow conditions. The adversarial learning experi-
ments leverage a U-Net-based discriminator, as detailed by Wang et al . [41]. The
visual outcomes of this comparative study are illustrated in Fig. E. We observe
that the adversarial approach, represented by GAN, displays limited capability
in eliminating weather-induced distortions—this is particularly evident in im-
ages compromised by haze. We hypothesize that GANs struggle to initialize the
notion of clarity within heavily degraded regions due to the inherent complex-
ity of distinguishing between weather effects and image content. Conversely, the
proposed weather prompt learning benefits from the expansive knowledge em-
bedded in the large pre-trained vision-language model, which provides a more
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Input ViT-B/32
wo/ pos

ViT-B/32
w/ pos

ViT-L/14
wo/ pos

ViT-L/14
w/ pos

RN101
wo/ pos

RN101
w/ pos

Fig. F: Visual analysis of the pseudo-labels for the weather prompt learning with
different CLIP [33] image encoders and position embedding strategies. Please zoom in
for a better comparison.

nuanced understanding of favorable and adverse weather conditions. Hence, it
translates to superior performance in weather artifact mitigation.

Besides, we have shown that the proposed weather prompt learning loss Lwpl

effectively mitigates weather-related artifacts and enhances visual visibility in
the processed images. Yet, in our preliminary experiments involving Lwpl, we
identified several key factors that significantly influence both the training process
and the final restoration outcomes. These factors include the image encoder and
the position embedding in the CLIP [33] model.

To demonstrate this, we employ several typical CLIP image encoders, such
as ViT-B/32, ViT-L/14, and RN101, in monitoring the updated pseudo-labels.
Our investigation is partly inspired by the findings from CLIP-IQA [39], which
suggest that position embedding can influence image quality. To understand
these effects, we examine variants both with and without position embedding.

As depicted in Fig. F, the choice of image encoder and position embed-
ding strategy significantly impacts the visual quality of the pseudo-labels, con-
sequently affecting the performance of the resulting restoration models. Our
observations reveal that position embedding is particularly crucial for image en-
coders based on ViT [12]. Image encoders with position embedding are prone
to generating strip-like noise, which manifests differently between ViT-B and
ViT-L. Conversely, removing the position embedding mitigates such noise but
can lead to severe color distortion. On the other hand, image encoders based on
ResNet [13] seem less affected by these factors and consistently produce higher
image quality, with fewer noise and color artifacts. Given these findings, we se-
lected RN101 as the CLIP image encoder for our experiments. Further research
is expected to uncover the intrinsic reasons within the CLIP model that lead to
these behaviors in image manipulation.
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Input VLM VLM experts Input VLM VLM experts

Fig.G: Visual comparisons of pseudo-label selection by VLM and experts of VLMs.

Input Initial Round 1 Round 2 Round 3 Round 4

Fig.H: Visual examples of pseudo-labels during training.

C.7 Impact of the VLM Experts

To counter potential biases that a single VLM might have towards certain im-
age appearances, we employ a diverse ensemble of VLMs, each with different
architectures and parameters, to serve as experts for image quality assessment.
LLaVA-v1.5 [23] is the primary VLM used during training to assess image vis-
ibility. As previously shown, LLaVA-v1.5 is adept at selecting pseudo-labels
with minimal weather-related artifacts, thereby improving the overall restoration
performance. However, it occasionally encounters challenges with pseudo-label
selection. To address this, we choose multiple VLMs as experts to refine the
pseudo-labeling process. This panel includes LLaVA-v1.5 [23], LLaVA-v1.6 [24],
mPLUG-Owl2 [48], InternVL [9], and Emu2 [35]. They collaborate during the
pseudo-label initialization and update. As evident in Fig. G, the collective in-
sights of these VLM experts help rectify the selections made by a single VLM,
leading to enhanced training efficacy.

C.8 Training Progress

Figure H and Table F show how pseudo-labels improve progressively at each
training round, continuously increasing in quality. The better pseudo-labels lead
to improved overall training outcomes in turn.

C.9 Influence on Training Data

WeatherStream [52] attempted to compile a dataset of real degenerated im-
ages with corresponding ground truth for adverse weather image restoration.
Nonetheless, this dataset was marred by low image quality issues, e.g ., com-
pression artifacts and low resolution, primarily due to its reliance on compressed
YouTube sources. Besides, the ground truth collected in this dataset is generated
using some heuristics, i.e., not the authentic, clear ones. We conduct experiments
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Table F: Psdueo-label improvement with training.

Input Initial Round 1 Round 2 Round 3 Round 4

MUSIQ ↑ 49.25 51.81 53.20 53.68 54.03 54.26
CLIP-IQA ↑ 0.547 0.621 0.642 0.657 0.665 0.670
VLM-Vis ↑ 0.280 0.308 0.322 0.334 0.341 0.346

Table G: Comparisons of training using WeatherStream [52] data.

NIMA ↑ MUSIQ ↑ CLIP-IQA ↑ LIQE ↑ Q-Align ↑ VLM-Vis ↑

WeatherStream 4.809 50.67 0.333 1.764 3.099 0.321
Our method 5.084 59.34 0.456 2.640 3.574 0.387

to validate the effectiveness of models trained using our method in restoring im-
ages affected by real adverse weather conditions compared to models trained on
the WeatherStream dataset.

Table G and Figure I present the quantitative and the qualitative results,
respectively. The model trained with the WeatherStream dataset is observed to
frequently introduce significant noises, resulting in substantial degradation of im-
age quality. Meanwhile, this model falls short of efficiently eliminating weather-
related artifacts. This issue can be traced back to the inherent shortcomings of
the WeatherStream ground truth collection process, which includes the use of
unclear and noisy images for ground truth and the limitation to static scenes
without dynamic elements. In contrast, our method advances the restoration
of images under adverse weather by effectively leveraging unlabeled real-world
data. It is a more practical solution for this problem and ensures that the restored
images are clearer and more aesthetically pleasing.

C.10 More Advanced Backbone Network

Our proposed framework is also compatible with more advanced image restora-
tion networks. This section briefly presents visual results for utilizing a more
advanced network, Restormer [51], as the image restoration backbone.

As illustrated in Fig. J, the Restormer model, when trained using our method,
significantly improves visibility in conditions of adverse weather relative to the
baseline. Enhancing the granularity of image details by incorporating more pow-
erful architectures is a direction for future research.
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Fig. I: Visual comparisons of training using WeatherStream [52] data. The top parts
are the input images, the middle parts are results from models trained using Weather-
Stream, and the bottom parts are the results of our method.
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Fig. J: Visual comparisons of Restormer [51] using our semi-supervised learning. The
last two rows are results from models trained without or with our method.



Supplementary Material 13

Input TransWeather [38] WeatherDiff [29] WGWS-Net [54]

MWDT [30] PromptIR [31] DA-CLIP [28] Our method

Fig.K: Visual comparisons on real-world images #1.
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Input TransWeather [38] WeatherDiff [29] WGWS-Net [54]

MWDT [30] PromptIR [31] DA-CLIP [28] Our method

Fig. L: Visual comparisons on real-world images #2.
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Input TransWeather [38] WeatherDiff [29] WGWS-Net [54]

MWDT [30] PromptIR [31] DA-CLIP [28] Our method

Fig.M: Visual comparisons on real-world images #3.
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Input TransWeather [38] WeatherDiff [29] WGWS-Net [54]

MWDT [30] PromptIR [31] DA-CLIP [28] Our method

Fig.N: Visual comparisons on real-world images #4.
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Input TransWeather [38] WeatherDiff [29] WGWS-Net [54]

MWDT [30] PromptIR [31] DA-CLIP [28] Our method

Fig.O: Visual comparisons on real-world images #5.
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Input TransWeather [38] WeatherDiff [29] WGWS-Net [54]

MWDT [30] PromptIR [31] DA-CLIP [28] Our method

Fig. P: Visual comparisons on real-world images #6.
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