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Abstract. Facial affective behavior analysis (FABA) is crucial for un-
derstanding human mental states from images. However, traditional ap-
proaches primarily deploy models to discriminate among discrete emo-
tion categories, and lack the fine granularity and reasoning capability
for complex facial behaviors. The advent of Multi-modal Large Lan-
guage Models (MLLMs) has been proven successful in general visual
understanding tasks. However, directly harnessing MLLMs for FABA is
challenging due to the scarcity of datasets and benchmarks, neglecting
facial prior knowledge, and low training efficiency. To address these chal-
lenges, we introduce (i) an instruction-following dataset for two FABA
tasks, i.e., facial emotion and action unit recognition, (ii) a bench-
mark FABA-Bench with a new metric considering both recognition and
generation ability, and (iii) a new MLLM EmoLA as a strong base-
line to the community. Our initiative on the dataset and benchmarks
reveal the nature and rationale of facial affective behaviors, i.e., fine-
grained facial movement, interpretability, and reasoning. Moreover, to
build an effective and efficient FABA MLLM, we introduce a facial prior
expert module with face structure knowledge and a low-rank adapta-
tion module into pre-trained MLLM. We conduct extensive experiments
on FABA-Bench and four commonly-used FABA datasets. The results
demonstrate that the proposed facial prior expert can boost the perfor-
mance and EmoLA achieves the best results on our FABA-Bench. On
commonly-used FABA datasets, EmoLA is competitive rivaling task-
specific state-of-the-art models. The dataset and codes are available:
https://johnx69.github.io/FABA/.

Keywords: Facial affective behavior analysis · Emotion recognition ·
AU recognition · Multi-modal large language model

1 Introduction

Facial affective behavior analysis (FABA) [44, 81] such as facial emotion recog-
nition (FER) [53,73], and action unit recognition (AUR) [25], aims to recognize

https://johnx69.github.io/FABA/
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Please describe the action units in this face.

Based on the image you've provided, here's an analysis of the likely Action Units
(AUs) according to the Facial Action Coding System (FACS):
1. AU1 (Inner Brow Raiser): This AU is indicated by the raising of the inner portions
of the eyebrows, often seen in expressions of surprise or fear.
2. AU2 (Outer Brow Raiser): This involves the raising of the outer parts of the
eyebrows, which further intensifies the look of surprise.
3. AU5 (Upper Lid Raiser): The upper eyelids are raised, making the eyes appear wide
open, a common feature in expressions of shock or surprise.
4. AU25 (Lips Part): The lips are parted, typical in expressions of surprise and shock,
enhancing the overall impact of the facial expression.
These AUs together typically contribute to an expression that clearly communicates surprise,
with elements that might suggest shock or awe.

Please describe the emotion in this face.

AU label: AU1, AU2, AU5, AU25

Emotion label:  surprise

The emotion expressed by the face in the image seems to be one of surprise, possibly mixed
with a hint of confusion or concern. The wide-open eyes, raised eyebrows, and open
mouth are classic indicators of someone who is taken aback or startled by something
unexpected. This kind of expression often occurs in response to a sudden or surprising event
that may also provoke a bit of disbelief or alarm.

AU1
AU2

AU5

AU25

Fig. 1: An illustration of FABA-Instruct annotations. FABA-Instruct can provide fine-
grained emotion and AU descriptions, which not only include the reasoning process
about the facial movements but also present the inference to the emotion. Furthermore,
compared to traditional category labels, FABA-Instruct has more abundant expressions
to describe complex, nuanced, exaggerated, and undefined affective behaviors.

facial expressions and movements, which are critical to understanding an indi-
vidual’s emotional states and intentions [31]. FABA has emerged as a burgeon-
ing field with potential across multiple domains. For example, in psychology,
FABA can aid therapists by offering real-time insights into a patient’s unspoken
emotions through facial expression analysis, thereby enhancing therapeutic out-
comes [89]. In education, it improves e-learning experiences by adjusting content
delivery based on students’ facial cues, indicating engagement or confusion [93].

Despite promising progress being made, most of the existing FABA ap-
proaches [62, 85, 96, 109] are based on discriminative models, which treat FER
or AUR as a multi-class or multi-label classification task. Such approaches tend
to induce shortcomings like coarse-grained emotional descriptions, inability to
describe complex emotions, and lack of reasoning ability. Those limitations hin-
der the applications of FABA, for instance, in providing nuanced feedback to
therapists about a patient’s emotional nuances in psychology, or in accurately
adapting educational content based on subtle student reactions in e-learning en-
vironments. To counteract these drawbacks, we are motivated by the success
of recent multi-modal large language models (MLLMs) [113, 129], because of
their evidenced ability to describe and reason over fine-grained and complex vi-
sual cues by instruction tuning after large-scale pre-training [69]. In practice,
MLLMs transform the discriminative task into a sequence-to-sequence genera-
tive one [12, 15] based on large language models (LLMs) [41, 107, 108]. MLLMs
have shown great capability on various visual understanding tasks such as visual
question answering [68,69,144], captioning [50,51], grounding [10,126], segmen-
tation [46], etc.
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However, there exist three major challenges in FABA tasks when deploy-
ing MLLMs. (1) There is no suitable FABA dataset for MLLMs to perform
instruction tuning. Existing FABA datasets have either coarse-grained annota-
tions [27, 45, 52, 54, 82, 134, 135] or limited emotion descriptions [72] for video
clips, since it’s labor-intensive and expensive to manually annotate large-scale
fine-grained FABA descriptions especially for AUR task. (2) There is an in-
creasing number of MLLMs, how to select suitable MLLMs for FABA remains
unknown. Existing metrics for evaluating MLLMs are language-oriented, without
specific consideration of language usage in FABA tasks. (3) Furthermore, image
features from vision encoders like CLIP [90] of current MLLMs struggle to cap-
ture facial structure information such as facial landmarks, leaving the impact of
facial priors on FABA tasks unexplored. Fine-tuning the entire model hosting
billions of parameters for these features leads to prohibitive computational costs.

To solve these challenges, we propose an instruction-following FABA dataset
“FABA-Instruct”. It includes 19K in-the-wild aligned face images with 30K fine-
grained emotion and AU annotations using GPT4V enabling instruction tuning
(Fig. 1). Based on this dataset, we propose a new benchmark “FABA-Bench” for
evaluating both the visual recognition and text generation performance of various
MLLMs on FABA tasks. Moreover, we introduce an efficient MLLM “EmoLA”
for FABA tasks by incorporating a low-rank adaptation method and a facial prior
expert to a pre-trained MLLM like LLaVA-1.5 [68]. Specifically, to obtain the
facial prior knowledge, we utilize a pre-trained face alignment encoder to extract
the facial landmark features, which are complementary to the vision encoder. To
mitigate the computational cost, the LoRA [38] method is adopted in training
such that only the parameter residual is learned through low-rank matrices. In
this paper, we take the earliest trial of the FABA tasks with instruction tuning
over MLLMs, which shed light on both FABA and MLLMs research community.
Our contributions are summarized in three-folds:

– Instruction-following FABA data. To our best knowledge, this is the
first FABA dataset that enables instruction tuning. It reveals new aspects of
FABA research topics and it will continuously bring the benefits of MLLMs
to the FABA community.

– Instruction-following FABA benchmark. To evaluate the recognition
and reasoning ability of different models on instruction-following FABA
tasks, we introduce the FABA-Bench benchmark with a unique metric, i.e.,
REGE, allowing for both recognition and generation capability.

– MLLM-based FABA architecture . To efficiently train on FABA tasks
and utilize the facial prior knowledge, we introduce the EmoLA model which
involves tuning LoRA on a pre-trained MLLM and incorporating a facial
prior expert. We demonstrate the effectiveness of EmoLA on FABA-Instruct
and four traditional FABA datasets. The results show that EmoLA achieves
the best performance on FABA-Instruct and SOTA-comparable or even bet-
ter results on the traditional FABA datasets.
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2 Related work

2.1 Facial affective behavior analysis

Psychology perspective. According to psychology research [31], two mecha-
nisms can be utilized to model facial affective behaviors, i.e., emotion categories,
and dimensional theory. According to Izard [39] and Ekman [26], the basic emo-
tions can be categorized into one of the several prototypes. Ekman [25] also pro-
posed to decompose the macroscopic affective behaviors into fine-grained Action
Units (AUs) from the anatomical perspective. However, such discrete emotion
representations may be not sufficient to capture complex and fine-grained emo-
tions. Dimensional theory describes the continuous emotions from the Euclidean
space perspective. Russel adopted two dimensions: arousal and valence [92] to
represent pleasantness and degree of feelings. Although the dimensional theory
allows for a more nuanced understanding of emotions, it is challenging to measure
and recognize for humans. We argue that human-generated descriptions offer a
superior way of characterizing facial affective behaviors (see Fig. 3 and Fig. 4),
which not only capture the complexity and subtlety of affective behaviors but
are also more accessible and quantifiable for humans.
Methodology perspective. To better recognize the affective behaviors, cur-
rent research mainly focuses on deep-learning-based techniques. These approaches
can be categorized into three streams according to the task types, i.e., facial
emotion recognition [7, 61, 101, 114, 131, 138], action unit recognition [5, 18, 40,
59, 99, 106,123,125,133] and valance-arousal regression [60, 83, 95, 141]. Existing
methods focus on capturing the fine-grained facial movement via attention mech-
anism [109,114,115,118,121,137], improving generalization ability by introducing
auxiliary information like facial landmarks [85,106] or extra data [59,84], explor-
ing the relationship among emotions or AUs [49, 97, 139], exploiting pre-trained
model like self-supervised learning [5,60,63,103,117], and probing semantic infor-
mation of affective behaviors [123] using CLIP [24,90]. However, these methods
are mainly discriminative-based, which fail to generate fine-grained descriptions.
By contrast, our method can generate detailed descriptions based on the prior
knowledge from MLLM and the facial prior expert.

2.2 Multi-modal LLMs and efficient LLM adaptation

Multi-modal LLMs. Multi-modal LLMs are getting popular in multi-modal
content understanding [10, 23, 65, 110, 116]. They are built on top of LLMs [2,
14, 16, 41, 107, 132], and transform visual (videos and images) and text data
into a sequence of tokens as input, resulting in generative modeling of down-
stream multi-modal understanding tasks by next token prediction. Specific to the
image-based MLLMs, image tokens are typically encoded by CLIP vision trans-
former [24, 90]. Then, one of the major challenges in MLLM is how to project
image token features into the language domain to better utilize the instruction-
following capability of LLMs. In literature, Flamingo [1] is an early work that
uses cross-attention to build the interaction between images and text tokens.
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Table 1: Existing FABA datasets.

Datasets AU Emotion Annotation In-the wild

RAF-DB [54] ✘ ✓ category ✘

CK+ [76] ✘ ✓ category ✘

MMI [86] ✘ ✓ category ✘

SFEW [42] ✘ ✓ category ✓

AffectNet [83] ✘ ✓ category ✓

MAFW [72] ✘ ✓ category & short text ✓

DFEW [42] ✘ ✓ category ✓

FERV39K [111] ✘ ✓ category ✓

FER2013 [30] ✘ ✓ category ✓

DISFA [82] ✓ ✘ category ✘

GFT [29] ✓ ✘ category ✘

CASME-II [122] ✓ ✓ category ✘

BP4D [135] ✓ ✓ category ✘

EmotioNet [27] ✓ ✓ category ✓

AffWild2 [45] ✓ ✓ category ✓

FABA-Instruct ✓ ✓ instruction & description ✓

Table 2: FABA-Instruct statistics.

Statistics Value

Total images 19877
Emotion training samples 19474
Emotion testing samples 403
Emotion description average length 50.47
AU training samples 15838
AU testing samples 325
AU description average length 207.35

Training TestGPT-4V

FABA-Instruct

Face images

Instructions

Annotator

Modify

Fig. 2: FABA-Instruct annotation.

This design is followed by recent MLLMs [3, 13, 48, 102]. Based on the cross-
attention mechanism, Q-Former [50] was proved to be a superior visual-text
projector and inspires recent line of MLLM research [6, 19,57,144]. Recently, in
contrast to the attention-based projector, LLaVA series [68,69] propose to use a
simple MLP as the projector and resort to the LLMs to handle the visual-text
interaction. In this paper, based on LLaVA-1.5 [68], we developed an MLLM for
affective behavior analysis and benchmarked multiple MLLM baselines.
Efficient LLM adaptation. Though most existing multimodal LLMs show
impressive performance on general visual-language tasks, how to adapt them
to downstream applications is still challenging [119], especially with limited in-
structional annotation data and computing resources. This raises the surge of
research on parameter-efficient fine-tuning (PEFT) [37], which avoids fine-tuning
the entire LLM in training. According to [119], existing PEFT methods can be
categorized into addictive [34,37,47,56,66,67,78,88,91], partial [32,104,120,128],
reparametrized [21, 38, 71, 130], hybrid [8, 34, 43, 80], and unified fine-tuning [36,
98,112,127]. In this paper, we are interested in the re-parameterized fine-tuning
as it gains increasing research attention. In this line, LoRA [38] is a pioneer-
ing work, which is inspired by the fact that modal weight adaptation has a
low intrinsic rank. In training, LoRA keeps most LLM parameters frozen while
only optimizing the low-rank factorized matrices of dense layers’ residual. In
our work, we empirically found the effectiveness of LoRA on the adaptation of
MLLMs toward affective behavior analysis tasks.

3 Dataset and Benchmark

3.1 Instruction-following FABA dataset

In this section, we will present our instruction-following FABA dataset FABA-
Instruct with two different FABA tasks, i.e., emotion recognition and AU recog-
nition. Our dataset is different from existing FABA datasets w.r.t. tasks, an-
notation types, and the variety of images, which is presented in Tab. 1. This
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The emotion depicted on the face in the image appears
to be a complex one, often characterized as a mixture
of sadness and discomfort, potentially with an
element of a forced smile. The downturned eyebrows,
elevated cheeks, and the slight pulling up of the lip
corners suggest a pained expression that could be
associated with crying or distress, yet there is an
attempt to smile. This could indicate a social smile or
an attempt to mask one's true feelings.

The person in the image appears to have a neutral
expression with a slight hint of a smile. There is
relaxed composure around the eyes and mouth,
suggesting a calm or content state. The eyes are
engaged and there is a mild pleasantness to the
overall demeanor.

The person in the image appears to be showing an
exaggerated expression of discomfort or unease.
Their eyes are wide open, which can suggest surprise,
shock, or fear, while their mouth is turned downward
in a pronounced frown, which often indicates sadness
or displeasure. The overall expression could be
interpreted as a humorous display of distaste or
dissatisfaction.

The person in the image appears to have a concerned
or worried expression. The slightly furrowed brows
and the tension around the mouth, along with wide-
open eyes, suggest a sense of anxiety or
apprehension.

Combination of emotions

Undefined emotion

Exaggerated emotion

Degree of emotion

Fig. 3: Emotion description analysis. Emotion descriptions can express comprehensive
emotion types like compositional emotions, exaggerated emotions, the degree of emo-
tions, and undefined emotions, etc. In contrast, emotion categories struggle to capture
such complex and nuanced emotional states.

table illustrates that most of previous FABA datasets are either task-specific
[29,30,42,54,72,76,82,83,86,111,135], or laboratory collected [29,76,82,86,135].
More importantly, none of these FABA datasets have instruction-following an-
notations. FABA-Instruct is the inaugural dataset to offer instruction-following
annotations of both AU and emotion, specifically for in-the-wild face images.
Data construction. The overall annotation pipeline is shown in Fig. 2. Specif-
ically, we use 100 carefully designed templates as the instructions for querying
GPT-4V [74, 105] on the emotions and AUs in the face. For instance, the tem-
plates for querying emotion are like “What is the emotion in this face?”, “What
are the action units present in this face?”. More details about these templates
are in the Appendix. FABA-Instruct statistics are shown in Tab. 2. For the face
images, we randomly sample 19,474 and 403 face images from the training and
testing set of AffectNet [83] as the training and testing face images, respectively.
AffectNet is a large-scale in-the-wild facial expression database, which crawls
from the Internet by querying three search engines. We align and crop these face
images using the Dlib library6.

However, some of the annotations for these face images cannot be obtained
due to the low resolution and occlusion issues, especially for the AU annotations.
As a result, after filtering out the useless annotations, we obtain 19,474 and
15,835 instructions in terms of emotions and AUs, respectively. Moreover, since
some of the annotations are inaccurate or inexact, we carefully check and revise
each annotation for the test sets of two tasks.
Emotion description analysis. Existing emotion datasets like RAF-DB [54],
AffectNet [83], CK+ [76], FER2013 [30], MMI [86], SFEW [22], mainly adopt
the seven emotion categories, i.e., happiness, sadness, anger, fear, disgust,
surprise, neutral. However, we argue that classifying emotions into one of
the several discrete emotion categories is limited in practice since emotions are

6 http://dlib.net/

http://dlib.net/
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The facial action units (AUs) visible in this image suggest a variety of facial muscle movements. Here's a breakdown:
- AU4: Brow Lowerer - The person's brows are drawn together, causing vertical lines to appear between the eyebrows, which is
indicative of a frown or a scowl.
- AU6: Cheek Raiser - The muscles around the eye appear to be contracting, creating a small squint which can indicate a smile or a
similar expression.
- AU7: Lid Tightener - The tightening around the eyes can be seen, which often accompanies AU6.
- AU12: Lip Corner Puller - The corners of the mouth are drawn back towards the ears which is the primary indicator of a smile.
- AU23: Lip Tightener - The lips appear tight and stretched across the face.
- AU25: Lips part - The lips are parted, which may be due to the facial expression of the smile or speaking.
- AU26: Jaw Drop - The jaw is lowered, contributing to the open mouth appearance.
The overall configuration of these facial action units seems to create an intense or exaggerated expression, which could be associated
with strong emotions such as excitement, aggression, or intense joy.

In this image, we can analyze the facial expression by looking at the action units (AUs), which are part of the Facial Action Coding
System (FACS):
- AU6: Cheek Raiser – There is evidence of the orbicularis oculi muscle contracting, which produces crow's feet and causes the
cheeks to move upwards. This is often associated with expressions of happiness or genuine smiles.
- AU12: Lip Corner Puller – The lip corners are pulled upwards, which is a characteristic of smiling.
- AU25: Lips Part – The lips are slightly parted, which can happen naturally during a relaxed, happy facial expression.
Based on these AUs, the expression can be interpreted as a happy or content one, commonly associated with a genuine smile (also
known as a Duchenne smile). This type of smile typically involves both the muscles around the eyes and the mouth, which are
activated in this facial expression.

Fig. 4: AU description analysis. AU descriptions give not only the AU labels, but also
provide explanations on the cause (which muscle movement) and effect (which emotion
it will lead to) w.r.t. each AU, and the relationship between current AU and other AUs
or emotions.

subjective [4], complex [25], continuous [70], and contextual [33]. For instance,
as shown in Fig. 3, it is inaccurate to classify the compositional expression,
sadness with a forced smile, into one of the emotion categories. For some
exaggerated emotions, e.g ., making a mouth, the actual emotion is unknown
from the face image and it is not reasonable to classify the emotion according
to its superficial facial movements. Also, discrete emotions cannot express the
degree of emotion, and it is inexact to classify the girl’s face as either happy
or neutral. Furthermore, since emotions are complex, basic emotions cannot
cover undefined emotions like worry, skeptical, etc. By contrast, the emotion
descriptions can address these issues due to their expressive nature.
Action Unit description analysis. The annotations from traditional AUR
datasets, e.g ., BP4D [135], DISFA [82], EmotioNet [27], GFT [29], mainly adopt
a string of binary vector to denote whether each AU is activated or not. However,
the representation capability of this way is limited. It cannot indicate the degree
of AU’s activation and cannot provide any explanations and analysis for the
prediction. For instance, in Fig. 4, merely stating that AU6 (cheek raiser) is
activated cannot depict the degree of cheek muscle raising. In contrast, the AU
descriptions can provide more reasoning cues like “small squint” or “crow’s
feet”, which can capture the activated degree of AU6. Furthermore, descriptions
can also show the inference ability by providing the relationship between current
AU and other AUs or emotions, e.g ., “indicative of a frown or a scowl”,
“associated with strong emotions”. Such descriptions can not only provide
more nuances but also improve the interpretability [11,58] of the model.

3.2 Instruction-following FABA benchmark

Evaluation. Given the fact that our FABA-Instruct uses free-form textual de-
scriptions to represent emotions and AUs, its model evaluation stands distinct
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Happy
happy
pleasant

relax
smile

joy

Neutral

neutral
clam
mild
solemn
thoughtful

Surprise

surprise
startled
puzzled
astonished
wonder

Sadness

sadness
cry
distress
discomfort
somber

Fear

fear
shock
anxiety
worry
panic

Disgust

disgust
distaste

disdain
contempt

discomfort

Anger

anger
annoyed

stern
mad

furious

Fig. 5: The synonyms of emotions for classifying the text.
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AU Distribution

(a) AU distribution.

30.5%
22.3%

15.2%

14.6% 12.6%

3.36% 1.4%

neutral: 5945
happiness: 4346
anger: 2954
surprise: 2850
sadness: 2446
fear: 654
disgust: 272

Emotion Distribution

(b) Emotion distribution.

Emotion AU

(c) Word clouds.

Fig. 6: The distribution of FABA-Instruct on AU (a) and emotion (b) tasks, and the
word clouds (c). We extract the emotion labels using the synonyms of each emotion.

from the traditional FABA tasks and Natural Language Generation (NLG) [28]
tasks. Specifically, for one thing, the traditional NLG metrics such as BLEU [87]
or ROUGE [64] scores mainly concentrate on the coherence and fluency of the
generative text, ignoring the FABA relevant consideration in the evaluation. For
another, existing FABA metrics, e.g ., accuracy or F1 score, focus only on the
recognition performance of the model, lacking the evaluation on textual aspects
of the model such as the reasoning and explanation. To compensate for the draw-
backs of these two metrics, we introduce a new metric REGE to evaluate the
REcognition and GEneration performance of models on our FABA-Instruct.

Our REGE score is defined to consider both text generation and image
recognition aspects of FABA models. For text generation, we choose to use the
ROUGE score, which is a generally used metric in NLG by comparing the over-
lap of n-grams, word sequences, and word pairs between the generated texts and
the reference ones. For recognition, we adopt the recognition accuracy for the
multi-class performance of facial emotion recognition, and the F1 score for the
multi-label performance of AU recognition. Denote the recognition performance
as Sre and the generation metric as Sge, our REGE metric is computed by taking
their sum: Srege = Sre + Sge.
Calculation of Sre. For the FER task, we propose to classify a face image into
one of the aforementioned seven basic emotion categories. In order to classify the
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description, we manually select some synonyms from the training descriptions for
each emotion category (see Fig. 5), and the emotion distribution of the training
descriptions is shown in Fig. 6b. In practice, since the descriptions incorporate
negative sentences, we first deleted these sentences. After that, we count the
frequency of emotion synonyms in the sentences and treat the emotion with the
highest count as the emotion label for this description. After obtaining these
emotion labels of texts, we can calculate the accuracy score to evaluate the
recognition performance on the FER task.

Similarly, for the AUR task, we propose to classify a face image into one or
multiple AU categories. We show the distribution of AUs in Fig. 6a. Following
existing literature [27, 135], we choose 12 AUs for evaluation. Subsequently, we
can calculate the F1 scores to represent the recognition performance for AUR.

4 EmoLA: An Instruction-tuned MLLM for FABA

In this Section, we introduce a novel MLLM designed for FABA tasks. The
overall framework of EmoLA is illustrated in Fig. 7. Its important components
include two image experts (a visual and a facial prior expert), a language expert
(a tokenizer with the word embedding) and a language decoder (LLM) with
a LoRA module. Specifically, a face image XV is encoded by a visual expert
known as a pre-trained CLIP-L/14 [90] with a two-layer Multi-Layer Perceptron
(MLP), which generates the visual embedding tokens Hv. Similarly, for the input
instruction XQ, the language expert can provide the language tokens Hq.

Vi
su

al
 e

xp
er

t

Prior Encoder

Prior Projector

Describe the emotion in this face. 

Description

Instruction

Word Embedding
& Tokenizer

Large Language Model LoRA

Pr
io

r e
xp

er
t

Trainable Frozen

Vision Projector

Vision Encoder

Fig. 7: EmoLA architecture.

Notably, the visual to-
kens Hv may fail to cap-
ture the facial structure
information since CLIP
is trained with general
image-text pairs rather
than FABA datasets, which
may make the visual ex-
pert focus more on gen-
eral semantic information
and overlook task-specific
features. Hence, we suggest employing an extra facial prior encoder fp(·), trained
on facial-related datasets, to better capture the facial prior knowledge and en-
hance the recognition ability for face images. Specifically, we adopt a pretrained
facial landmark detector from Insightface7 to extract the landmark feature.
Other face priors, such as recognition features [20], parsing, etc., can also be con-
sidered. We leave exploring these additional priors as future work for EmoLA.
Therefore, the prior feature extracted by fp can be expressed as: ZP = fp(XV ).
After obtaining ZP , we utilize the MLP gθ(·) to project the facial prior feature
ZP to the token embedding space:

Hp = gθ(ZP ), (1)
7 https://github.com/deepinsight/insightface/tree/master

https://github.com/deepinsight/insightface/tree/master
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where Hp is the facial prior token. This token can provide prior knowledge of
face structure, which may be ignored by the visual expert.

After obtaining the visual embedding tokens Hv, facial prior token Hp and
the language embedding tokens Hq, we concatenate them together and feed
them into the LLM decoder. Here we use Vicuna [14] as the LLM decoder. As
shown in Fig. 7, the visual encoder, prior encoder, word embedding and the
LLM decoder are frozen. Except for the prior encoder fp(·), the initial weights
of the other modules come from a pretrained MLLM. In this paper, we utilize
the LLaVA-1.5 [68] as the backbone model. In order to train efficiently without
tuning the entire MLLM, we propose to tune an extra LoRA module hϕ(·), a
visual projector hγ(·), and the prior projector gθ(·). Compared to finetuning the
entire LLM, tuning LoRA reduces both memory and computation costs during
training without inducing additional expenses for inference. Our experiments
demonstrate the effectiveness of such a design in Tab. 7. As a result, the overall
parameters to be optimized are Θ = {θ, γ, ϕ}. We optimize these parameters
following the auto-regressive way, and the likelihood of the generated description
XA conditioned on image XV , prior facial feature ZP and instructions XQ is
given by:

p (XA|XV , ZP , XQ) =

L∏
i=1

pΘ (xi|XV , ZP , XQ, XA,<i), (2)

where L is the length of the token sequence, xi is the current token that needs
to be predicted. XA,<i are the previous answer tokens.

5 Experiments
Table 3: Comparison on RAF-DB.

Methods Accuracy (%)

RAN [109] 86.9
MA-Net [142] 87.22

EfficientFace [143] 88.36
RUL [136] 88.98
DAN [115] 89.70
EAC [137] 90.35

APViT [121] 91.98
POSTER [79] 92.05

EmoLA (Ours.) 92.05

Implementation details. We initialize all
the frozen weights of EmoLA with LLaVA-
1.5 7b [68], and we only tune the prior pro-
jector and LoRA during the training stage.
We train our EmoLA for one epoch opti-
mized by AdamW with an initial learning
rate of 1e-4 for all the datasets. The rank
of LoRA is set to 128. We conduct all the
experiments on 8 A6000 GPUs.
Database and protocols. We perform
experiments on four traditional FER and
AUR datasets, including one emotion
dataset (RAF-DB [54]) and three AU datasets (BP4D [135], DISFA [82] and
GFT [29]). We turn the annotations of these datasets into instruction-following
ones by adding instructions. Instead of predicting the class index or binary vec-
tors in discriminative models, our EmoLA directly outputs the corresponding
emotions (i.e., “Happy”) or AU labels (i.e., “AU1, AU4”). We adopt accuracy
and F1 score to evaluate the recognition performance for FER and AUR tasks,
respectively. More details about these datasets can be found in the Appendix.
For BP4D and DISFA, following [59,85,96], we also perform a subject-exclusive
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Table 4: F1 score (in %) of 8 AUs on DISFA. All the results are from original papers.

Method/AU 1 2 4 6 9 12 25 26 Avg.

DRML [140] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
EAC-Net [55] 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
DSIN [17] 42.4 39.0 68.1 28.6 46.8 70.8 90.4 42.2 53.6
SRERL [49] 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
LP-Net [85] 29.9 24.7 72.7 46.8 49.6 72.9 93.8 65.0 56.9
CMS [94] 40.2 44.3 53.2 57.1 50.3 73.5 81.1 59.7 57.4
ARL [97] 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7
SEV-Net [123] 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8
HMP-PS [100] 38.0 45.9 65.2 50.9 50.8 76.0 93.3 67.6 61.0
ATCM [40] 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
ReCoT [59] 51.3 36.2 66.8 50.1 52.4 78.8 95.3 69.7 62.6
JÂA-Net [96] 62.4 60.7 67.1 41.1 45.1 73.5 90.9 67.4 63.5
PIAP [106] 50.2 51.8 71.9 50.6 54.5 79.7 94.1 57.2 63.8
GraphAU (R-50) [77] 54.6 47.1 72.9 54.0 55.7 76.7 91.1 53.0 63.1
EmoLA (Ours.) 50.5 56.9 83.5 55.2 43.1 80.1 91.6 60.0 65.1

3-fold cross-validation. For GFT and RAF-FB, we train and test according to
the original dataset division protocol.

We also perform experiments on our FABA-Instruct dataset w.r.t. FER and
AUR tasks. We compare with other MLLMs using our SEGE metric (Sec. 3.2).
We train and test all the models according to our dataset division protocol.

5.1 Comparison on traditional FER and AUR datasets

Comparison on traditional FER datasets. We conduct a comparative ex-
periment with the latest state-of-the-art (SOTA) methods on RAF-DB, as pre-
sented in Tab. 3. Our EmoLA achieves the best results compared with previous
SOTA methods. The results demonstrate the significant potential of MLLMs in
addressing the FER problem. It is worth noting that most of these methods are
specifically tailored for FER tasks, while our EmoLA is easy to adapt to other
tasks (e.g ., AUR) due to the high flexibility brought by instruction tuning.
Comparison on traditional AUR datasets. Tab. 5, Tab. 4 and Tab. 6 show
the comparison results of EmoLA with other SOTA methods on AUR datasets. It
can be observed that EmoLA outperforms all the other SOTA methods on DISFA
and GFT datasets, achieving a 1.3% improvement over PIAP [106] on DISFA,
and a 3.5% increase over EmoCo [103] on GFT. Additionally, it closely competes
with ReCoT on BP4D, with a marginal gap of only 0.6%. The gap stems from
the benefits of the consistency regularization and co-training in ReCoT to the
BP4D dataset. We can observe that EmoLA excels in multi-label classification
tasks, potentially due to its strategy of exclusively predicting the positive labels,
thereby mitigating the imbalanced issue caused by negative labels.

5.2 Comparison on FABA-Bench

We compare with current MLLMs, i.e., LLaVA-1.5 [68], MiniGPT4-V2 [9], Shikra
[10], and mPLUG-Owl2 [124], on our FABA-Bench in Tab. 7. These baselines
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Table 5: F1 score (in %) of 12 AUs on BP4D. The results with * are taken from [59].
All the other results are taken directly from their original papers.

Method/AU 1 2 4 6 7 10 12 14 15 17 23 24 Avg.

DRML [140] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3
EAC-Net [55] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
DSIN [17] 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9
CMS [94] 49.1 44.1 50.3 79.2 74.7 80.9 88.3 63.9 44.4 60.3 41.4 51.2 60.6
LP-Net [49] 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0
ARL [97] 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1
JÂA-Net* [96] 47.2 41.6 49.1 77.2 77.5 82.9 85.8 63.4 50.8 62.5 47.2 52.7 61.5
SRERL [49] 46.9 45.3 55.6 77.1 78.4 83.5 87.6 60.6 52.2 63.9 47.1 53.3 62.9
HMP-PS [100] 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4
SEV-Net [123] 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9
PIAP [106] 54.2 47.1 54.0 79.0 78.2 86.3 89.5 66.1 49.7 63.2 49.9 52.0 64.1
ATCM [40] 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
GraphAU (R-50) [77] 53.7 46.9 59.0 78.5 80.0 84.4 87.8 67.3 52.5 63.2 50.6 52.4 64.7
ReCoT* [59] 51.5 47.8 58.9 79.2 80.2 84.9 88.4 61.6 53.3 64.6 51.8 55.4 64.8
EmoLA (Ours.) 57.4 52.4 61.0 78.1 77.8 81.9 89.5 60.5 49.3 64.9 46.0 52.4 64.2

Table 6: F1 score (in %) results of 10 AUs on GFT. The results with * are taken
from [103]. The others are taken directly from original papers. “ft” stands for finetune.

Method/AU 1 2 4 6 10 12 14 15 23 24 Avg.

EACNet [55] 15.5 56.6 0.1 81.0 76.1 84.0 0.1 38.5 57.8 51.2 46.1
TCAE [63] 43.9 49.5 6.3 71.0 76.2 79.5 10.7 28.5 34.5 41.7 44.2
ARL [97] 51.9 45.9 13.7 79.2 75.5 82.8 0.1 44.9 59.2 47.5 50.1
MoCo (ft)* [35] 45.3 48.2 20.3 80.7 78.8 78.1 22.6 46.0 53.9 50.3 52.4
Temporal Ranking (ft)* [75] 58.8 56.8 33.2 72.5 76.2 80.8 19.9 46.8 55.2 47.3 54.7
JÂANet [96] 46.5 49.3 19.2 79.0 75.0 84.8 44.1 33.5 54.9 50.7 53.7
EmoCo [103] 65.9 55.9 40.7 83.1 75.1 81.4 21.3 48.5 58.0 56.5 58.6
EmoLA (Ours.) 69.8 59.1 52.8 85.3 73.0 85.3 32.3 47.6 63.1 52.2 62.1

mainly employ Vicuna [14] as LLM decoder and incorporate instruction tuning.
We reproduce all the baselines using their open-sourced codes. For fair compar-
ison, all the models are trained for 1 epoch and train on two tasks individually.
Except for our EmoLA, all the other baselines are finetuned based on the pre-
trained MLLMs. More details about baselines can refer to the Appendix.

It is noteworthy that EmoLA achieves the best results in two tasks with fewer
tuning parameters compared to other MLLMs. EmoLA finetunes merely 10% of
the parameters compared to LLaVA-1.5, yet it achieves better performance on
FABA-Bench, which can be attributed to two aspects. For one thing, EmoLA
only finetunes LoRA which is much more efficient than tuning the entire LLM
decoder. For another, EmoLA incorporates a facial prior expert to extract the
facial structure knowledge. This feature compensates for the information over-
looked by the visual encoder in FABA tasks. Moreover, we can also see that
due to the strong capability of LLM, the language generation ability of Shikra,
LLaVA-1.5 and EmoLA is comparable, making it unreasonable to evaluate these
models merely based on the NLG metrics. Our metric, REGE, accounts for both
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Table 7: Comparison on FABA-bench. All the baselines are reproduced by their open-
sourced codes. Sre in emotion and AU tasks stands for accuracy and average F1 scores,
respectively. Sge and Srege are ROUGE and our REGE score. All scores are in %.

Methods
Emotion AU

Sre Sge Srege 1 2 4 5 6 10 12 17 24 25 26 43 Sre Sge Srege

MiniGPT4-v2 [9] 58.2 19.6 77.8 47.9 35.5 42.3 32.7 29.2 6.6 10.3 0.0 2.5 0.1 0.0 0.0 17.9 19.9 37.8
mPLUG-Owl2 [124] 53.6 28.4 82.0 72.3 17.5 75.2 54.2 75.6 0.0 13.0 0.0 0.0 3.9 18.2 0.0 27.5 28.2 55.7

Shikra [10] 62.5 32.1 94.6 70.6 33.9 76.6 63.3 57.8 43.4 58.0 53.0 54.1 68.5 42.4 0.0 51.8 34.8 86.6
LLaVA-1.5 [68] 62.3 31.6 93.9 74.2 32.7 76.5 67.9 63.6 41.0 61.0 53.4 54.1 67.5 43.5 50.0 57.1 34.3 91.4
EmoLA (Ours.) 64.5 31.7 96.2 72.8 37.3 79.9 67.3 69.9 41.7 63.6 56.8 55.6 73.4 56.8 0.0 56.3 35.2 91.5

the recognition and generation abilities of MLLMs in FABA, offering a more
comprehensive evaluation of their performance.

5.3 Ablation study
We explore the effectiveness of the facial landmark token in Tab. 8, and the
tuning strategies in Tab. 9. More ablations can be found in Appendix, e.g ., multi-
task training, the position of the prior token, etc. Fig. 8 shows the capability of
EmoLA on FABA tasks, with additional examples available in the Appendix.

Table 8: Influence of prior token. Hv

and Hp indicate visual tokens and the
facial prior token, respectively.

Tokens Emotion AU
Hv Hp Sre Sge Sre Sge

✓ 41.2 29.9 40.5 33.7
✓ 62.5 32.1 55.3 34.8
✓ ✓ 64.5 31.7 56.3 35.2

Effectiveness of prior token. As shown
in Tab. 8, if we input only the facial prior
token Hp to EmoLA without visual to-
kens, there will be a significant decline in
recognition performance. However, thanks
to the powerful capability of LLM decoder,
the generalization ability does not suffer
greatly. Furthermore, even with just a sin-
gle token fed into the decoder, the model
retains a certain level of recognition capability. This demonstrates that the land-
mark prior contains representative features for FABA tasks.

Compared to merely inputting the prior token Hp, incorporating visual to-
kens Hv will enhance the recognition performance since these visual tokens carry
more detailed face information. Incorporating both visual tokens and prior to-
kens leads to further improvements with eligible performance dropping in text
generation. This suggests that the face prior token supplies complementary infor-
mation of visual tokens. We suppose this additional information includes facial
structure details introduced by landmark facial prior extractor.
Influence of tuning strategy. We also investigate the impact of tuning strate-
gies on two modules requiring optimization, hϕ and gθ, as shown in Tab. 9. When
only the prior projector gθ is fine-tuned, with all other parameters kept frozen,
we observe that while the overall recognition performance is relatively low, it
still surpasses that achieved by using only a single prior token. This suggests
the effectiveness of tuning the prior projector gθ, since the parameters of gθ only
take a small portion of the entire parameters.
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Please describe the action units in this face.

The image shows a child with a facial expression that includes several facial action units (AUs) as defined by the Facial
Action Coding System (FACS). Here are the AUs that appear to be present:
1. AU4: Brow Lowerer – The eyebrows are drawn together and downward, which is indicative of a frown or a look
of concentration or displeasure.
2. AU9: Nose Wrinkler – The wrinkles on the bridge of the nose suggest that the nose is being wrinkled.
3. AU10: Upper Lip Raiser – The upper lip is raised, exposing the upper teeth, which is often associated with
expressions of disgust or contempt.
4. AU25: Lips Part – The lips are parted, which can be associated with various expressions, including surprise or the
beginning of speaking.
5. AU26: Jaw Drop – The jaw appears to be dropped open, which can be part of an expression of surprise or shock.
The overall expression seems to convey a strong emotion, possibly disgust or disdain, but without additional context,
it's difficult to determine the exact emotional state. Facial expressions are complex and can be interpreted in different
ways depending on the context and the individual's unique expressions.

AU4

AU9

AU26

AU10
AU25

The person in the image appears to have a serious or intense expression. The eyebrows are slightly furrowed, and
the mouth is set in a straight line, which could suggest concentration, determination, or a hint of disapproval.
There is no clear smile or frown, so it's not a definitive expression of happiness or sadness, but rather a more neutral,
focused demeanor.

Please describe the emotion in this face.

Fig. 8: An example of EmoLA’s capability on FABA tasks.

Table 9: Influence of the tuning
strategy. hϕ+hγ and gθ indicate the
LoRA module with visual projector
and the prior projector, respectively.

Modules Emotion AU
hϕ + hγ gθ Sre Sge Sre Sge

✓ 44.9 29.6 47.7 34.0
✓ 63.0 32.1 55.6 34.9
✓ ✓ 64.5 31.7 56.3 35.2

We also tried exclusively tuning LoRA
with visual projector hϕ + hγ while keep-
ing other parameters frozen. This is differ-
ent from merely inputting the visual tokens
Hv since it also includes a prior token Hp

generated by the randomly initialized prior
projector gθ. The results indicate that tun-
ing hϕ+hγ significantly improves the perfor-
mance by better aligning the output of the
LLM. It can also be observed that the per-
formance slightly exceeds that achieved using only the visual tokens, which also
emphasizes the value of the prior token. Again, the efficacy is further augmented
by simultaneously fine-tuning both hθ + hγ and the prior projector gθ.

6 Conclusion
In this paper, to address the challenges raised in FABA tasks when employing
MLLMs, we proposed an instruction-following FABA dataset FABA-Instruct by
means of GPT4. Based on this dataset, we introduced a benchmark FABA-
Bench to comprehensively evaluate the FABA models on instruction-following
data. Furthermore, we presented an instruction-tuned MLLM EmoLA for FABA,
which is efficient and effective by tuning LoRA on a pre-trained MLLM and
incorporating a facial prior expert. Extensive experiments across four traditional
FABA datasets and our FABA-Bench demonstrate the effectiveness of EmoLA.
In the future, we intend to broaden our method to additional facial-related tasks,
e.g ., face detection, face generation, etc. Moreover, incorporating other facial
prior features holds the potential for performance improvement. Expanding our
EmoLA from 2D face images to video streams also presents a promising avenue
for future research.
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