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Abstract. The reasoning segmentation task, which demands a nuanced
comprehension of intricate queries to accurately pinpoint object regions,
is attracting increasing attention. However, Multi-modal Large Language
Models (MLLM) often find it difficult to accurately localize the objects
described in complex reasoning contexts. We believe that the act of rea-
soning segmentation should mirror the cognitive stages of human visual
search, where each step is a progressive refinement of thought toward the
final object. Thus we introduce the Chains of Reasoning and Segmenting
(CoReS) and find this top-down visual hierarchy indeed enhances the
visual search process. Specifically, we propose a dual-chain structure
that generates multi-modal, chain-like outputs to aid the segmentation
process. Furthermore, to steer the MLLM’s outputs into this intended
hierarchy, we incorporate in-context inputs as guidance. Extensive ex-
periments demonstrate the superior performance of our CoReS, which
surpasses the state-of-the-art method by 6.5% on the ReasonSeg dataset.

Keywords: Reasoning Segmentation · Multi-Modal · Chain-of-Thought

1 Introduction

Recently, multi-modal large language models (MLLM) have gained increasing
recognition for their powerful capabilities in various tasks. By utilizing the knowl-
edge repository contained in MLLM, humans can demand more complex multi-
modal tasks than ever before. Among them, inference-based segmentation tasks
can achieve more intelligent fine-grained understanding by combining traditional
visual tasks with the reasoning process.

Currently, there are mainly two ways to handle this task: one is to equip
MLLM with a segmentation decoder, and the other is to use LLM to output
⋆ Corresponding author.
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It appears on 

[LOC]

It is [SEG]

Chain-of-Reasoning

In-Context 
Input

Chain-of-Segmenting

[SEG]LISA

CoReS
(Ours)

Dogs have keen sense of smell, which is why they can be used as drug-sniffing dogs.
Which part in the picture gives dogs this characteristic? Please output segmentation mask.

Step 1
[ITEM]

Step 2
[SEG]

MLLM

MLLM Focus on here, 
find the nose
of this dog…

Firstly we should 
find the front part 
of the dog’s face…

Fig. 1: Comparison between our CoReS and LISA. UP: the process of LISA, DOWN:
the diagram of CoReS. Given textual and visual inputs, LISA directly uses the [SEG]
token output by MLLM to generate a mask. On the contrary, our CoReS involves
breaking down the task of “finding the part that gives dogs keen sense of smell” into a
logical chain such as “first find the front part of the dog’s face, then focus on this specific
area, search for the nose of the dog.” It can be observed that LISA incorrectly segments
the dog’s eyes, which are similarly round, dark, and important in sensory perception.
In contrast, through in-context input and dual-chain structure, CoReS achieves the
segmentation of the nose of the dog correctly.

the mask in text form directly. For example, LISA [19] equips SAM [15] de-
coder for LLaVA [26] and constructs an inference segment database for training.
VistaLLM [37] directly uses LLM to generate text-formatted segmentation masks
and designs an adaptive sampling algorithm to optimize the masks.

The existing MLLM can effectively segment objects at the object level but
struggles to differentiate objects referred to in reasoning text accurately. As
shown in Fig.1, when segmenting "part gives dogs sense of smell," the reasoning
process directly searches for nose-like items that are round, dark, and important
in sensory perception. Since the eyes of the dog have similar characteristics,
LISA erroneously segments them as the object. The semantic similarity of such
instances presents a substantial challenge to MLLM’s ability to accurately local-
ize and segment complex reasoning tasks.

How can we complete complex reasoning segmentation tasks? From the way
humans handle similar tasks, we gain inspiration. The brain realizes object
localization and searching typically in a top-down, targeted manner, where each
step is a progressive refinement of thought toward the final object. Specifically,
it is guided by pre-existing knowledge including a broad understanding of the
typical positions of objects in the scene. Then a detailed analysis and synthesis
of the specific item is followed to gradually approach the precise segmentation of
objects. For example, when asked to find “the wedding token usually exchanged
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by the groom and the bride” in a picture, people draw upon their knowledge to
presuppose that we should focus on the fingers where rings are usually worn.
Therefore, people first identify the typical location of the hand, and then narrow
the field of view to locate and segment the ring in the local area of the hand.

This top-down hierarchical structure can effectively help improve segmenta-
tion. Considering the disparities between modalities, how can we build such
a visual logical hierarchy for multi-modal reasoning segmentation? Drawing
inspiration from LLM’s chain of thought, we propose the Chain of Reasoning
and Segmentation (CoReS), a multi-modal chain of thought for fine-grained
tasks, to establish such a unified visual hierarchy. As is shown in Fig.1, it is
a dual-chain structure aimed at decoupling the hierarchical thinking process.
Specifically, the reasoning chain is reflected in the output of MLLM, injecting
semantic information for different logical levels into different tokens in the chain.
The segmentation chain utilizes the logic of the reasoning chain to iteratively
optimize the segmentation results.

Since MLLM cannot actively extract outputs conforming to this top-down hi-
erarchy without guidance, we propose adding extra in-context inputs for MLLM.
This involves providing randomly sampled textual examples that indicate the
desired chain-like rules of output. Although unrelated to the user’s query input,
these text-formed question-answer pairs contain the anticipated chain-like out-
put rules. MLLM reads and transfers these rules to the output of multi-modal
tasks, implicitly guiding the generation of the reasoning chain.

Our contributions can be summarized as follows:

– We propose CoReS, a multi-modal chain of thought. It provides a more
accurate visual search for multi-modal fine-grained tasks through a top-down
chain-like visual hierarchy.

– To form a chain-like multi-modal process, we propose a dual-chain structure,
integrating both modalities in the same visual hierarchy. Moreover, to lead
MLLM to generate such a hierarchy actively, we provide guidance through
in-context input. With these randomly sampled text-based question-answer
pairs, MLLM learns the chain-like rule and transfers it to multi-modal tasks.

– Extensive experiments demonstrate the effectiveness of our proposed method,
which achieves state-of-the-art accuracy on ReasonSeg benchmarks.

2 Related Work

2.1 Interactive Segmentation

Traditional segmentation tasks use single images as input, requiring the segmen-
tation of objects belonging to a set of predefined categories [2,4,6,10–12,20,28,
31,34,39,40,42,43,50,53,56–58,60]. These tasks are straightforward, with simple
images, and distinct objects. Existing methods have already achieved impressive
results in this area [5, 14, 23, 48]. To meet the demands of more complex task
requirements, the field of segmentation research is gradually evolving from purely
visual to multi-modal approaches.
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One extension is the open-vocabulary segmentation task, which involves
segmenting objects specified by class names that do not belong to a fixed set
of categories [49]. Such tasks often employ visual language models like CLIP as
a bridge between modalities [9, 24]. To facilitate more convenient interaction,
the referring segmentation task [13,33] enables interaction with human language
rather than the semantic category list, aiming to leverage explicit text description
to segment the target object.

To expand the diversity of interaction methods, existing works [16, 61, 62]
design a variety of prompting methods including points, boxes, scribbles, noise
masks, and so on. Kirillov.et.al [16] introduced SAM, trained with billions of
high-quality masks, supporting bounding boxes and points as prompts while
demonstrating exceptional segmentation quality. X-Decoder [61] and SEEM [62]
further support various human interaction methods. Recently, Lai. et.al proposes
LISA [19], simply integrated the MLLM with SAM [16] to tackle the reasoning
segmentation task and enhance existing visual segments with self-reasoning abil-
ities. Although LISA inherits the excellent abilities of large language models in
text reasoning, its performance in segmentation, especially for hard-to-perceive
part objects, is not satisfactory.

2.2 Multi-modal Large Language Model

The multi-modal large language models integrate the LLM [3, 7, 44] and vision
encoder [38, 41] to transfer the reasoning ability and huge world knowledge for
the vision tasks. Flamingo [1] proposes a cross-attention structure to integrate
visual information into the nlp contexts, enabling visual in-context learning.
Several works (such as BLIP-2 [22], mPLUG-OWL [52] Otter [21], LLaVA [26],
MiniGPT-4 [59], FROMAGe [17] and so on) leverage the visual encoder and
projection module (such as linear projection, Qformer, Casual Qformer and so
on) to translate the visual features and directly feed them into the LLM along
with the NLP token embeddings.

Recently, the use of MLLMs is no longer limited to understanding tasks,
and there has been an attempt to utilize them for fine-grained visual tasks,
such as grounding and segmentation. Kosmos-2 [35] constructs large-scale data
of grounded image-text pairs, attempting to infuse grounding capabilities into
LLMs. DetGPT [36] bridges the fixed MLLM and open-vocabulary detector.
GPT4RoI [54] introduces RoI visual features as input and trains the model on
region-text pairs. LISA [19] integrates SAM [15] as a segmentation decoder into
MLLMs and proposes the reasoning segmentation task. VistaLLM [37] proposes
a unified framework for MLLMs with single and multiple visual scene inputs and
introduces an adaptive sampling algorithm to refine the NLP format mask of the
MLLM’s output. In this paper, we design a novel chain-of-thought manner to
enable MLLM to realize fine-grained reasoning tasks.
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2.3 Chain of Thoughts

CoT, as a convenient and efficient method for enhancing complex reasoning in
large language models (LLMs) [46], has significantly improved their performance
in generating rationales and inferring accurate answers in numerous domains,
including commonsense and arithmetic. Existing CoT prompting for LLMs is
primarily used in inference and can be categorized into two major paradigms:
Zero-shot-CoT and Few-shot-CoT. Zero-shot-CoT [18] directly leverages a single
prompt like “Let’s think step by step” to generate reasoning chains. Few-shot-
CoT [46] uses reasoning demonstrations one by one as the prompt information.

For MLLMs, due to limitations in model size and performance, directly
employing these two kinds of CoT in inference does not lead to an effective
enhancement. Therefore, multi-modal CoT [55] typically acquires this ability by
fine-tuning the model on the constructed multi-modal CoT dataset. However,
leveraging vision information effectively and fusing visual features with text
representation in a multi-modal chain of thought (CoT) poses a significant chal-
lenge. Prior work [29] attempts to use image captions and incorporate them after
text input, but this approach results in substantial information loss of images.
To avoid the complexity of constructing extra multi-modal CoT dataset, KAM-
CoT [32] proposes a two-stage training process with knowledge graphs grounding
to generate effective rationales and answers for reducing the computational cost
and substantial hardware resources. Utilizing the concept of a thought chain,
V ∗ [47] combines LLM and MLLM to construct a visual search algorithm that
surpasses the performance of GPT-4V. As far as we know, the multi-modal
application of COT has been confined to visual understanding tasks like visual
question answering and has not extended to dense prediction tasks.

3 Method

In line with the process of human visual search, a top-down visual hierarchy
can aid the MLLM in progressively pinpointing objects referred to in reasoning
texts. Inspired by this concept, we introduce CoReS, which applies the idea
of the chain of thought from natural language processing to the execution of
fine-grained tasks in a multi-modal context. As illustrated in Fig.2, the core of
CoReS lies in its dual-modal, dual-chain structure, which consists of a chain-of-
reasoning and a chain-of-segmenting. In addition to this, the extra in-context
guidance plays a critical role in the formation of a chain-like hierarchy. Detailed
explanations of these two components are provided in Sec.3.1 and Sec.3.2.

3.1 Dual-Modal Dual-Chain

Chain-of-Reasoning: To achieve consistency between the modalities in the
multi-modal chain of thought, the output of MLLM needs to conform to the
top-down semantic logic required for fine-grained visual tasks.

To this end, we use the kind of response templates like “It appears on
[LOC]. It is [SEG].” By constraining the sentence structure of the MLLM



6 X. Bao et al.

Chain-of-
Segmen-ng

Mask Decoder

Mask Decoder🔥

Token Refiner

🔥

🔥

I t  a p p e a r s  o n  [ L O C ] .                                      I t  i s  [ S E G ] .   

Which kitchen appliance utilizes microwave 
radiation to heat or cook  food in this image? 
Please output the segmentation mask. 

MLLM

User InputIn-Context Input

Chain-of-
Reasoning

+🔥LoRA

USER: Can you segment the blade in this image? 
ASSISTANT: It typically appears on a knife or propeller.                           
                    It is the flat, cutting or propelling surface.

Prompt Encoder❄

Fig. 2: Overall architecture of CoReS. The input of MLLM consists of the user input
in gray and the extra in-context input in orange, which consists of question-answer
examples unrelated to the user query. MLLM generates output at the logical level of
chain-of-reasoning, where the token embeddings of [LOC] and [SEG] serve as prompt
inputs for different positions of the segmentation chain, guiding the chain to generate
segmentation results progressively. We exclude the visual feature input to the mask
decoder extracted by the extra vision backbone for conciseness here.

outputs, implicit constraints are imposed on the logical chain output H by
MLLM. Given the image Qimg and query input Qtext, this template of output
compels MLLM to incorporate different information at different positions of
the token, thus forming a semantic-level chain of reasoning. Specifically, MLLM
injects the information about the scene or item that the object most likely to
appear on into the [LOC] token while the information about the object itself is
injected into the [SEG] token of the following sentence.

We fine-tune MLLM using LoRA and employ cross-entropy loss for the
supervision of the chain of reasoning. The specific formula of LCoR is as follows.

LCoR = LCE(p(H|Qimg, Qtext), t). (1)

p(H|Qimg, Qtext) and t refer to output logits of MLLM and the token embedding
of our chain-like template, respectively. LCE is the cross-entropy loss.

Chain-of-Segmenting: Upon obtaining text-form outputs that align with the
visual hierarchy, the next task is to apply them as guidance for the visual modal.
Thus we propose the Chain-of-Segmenting, iteratively generating segmentation
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results in a unified hierarchical manner. Obtaining mask annotations for inter-
mediate logical layers is impractical due to the logic subjectivity, so MLLM with
world knowledge is used for a unified unsupervised representation. The scene-
level information injection of C1 is analyzed in the appendix.

During the hierarchical generation of segmentation, the segmentation result
from the previous level mt−1 serves as a cue. Since the [LOC] and mt−1 in
the first logical layer focus on common locations and do not entirely represent
inclusion relationships, we choose its logical form to serve as a soft mask prompt,
processed by the prompt encoder θ of the SAM framework.

Mt = θ(mt−1), t >= 1. (2)

Mt is the output of prompt encoder from the t-th logical level.
The implementation of text guidance follows the embedding-based approach

in LISA. From the last layer feature output by MLLM, the embedding (h0,
h1 ∈ R1×256) are extracted at positions of [LOC] and [SEG]. They serve as a
prompt in the text modality to guide the corresponding segmentation process.

To further enhance the inter-modal connections in a top-down hierarchy, we
propose to refine the token embedding of the reasoning chain with the help of the
visual output mt−1 from the previous logical level. Specifically, we use masked-
average-pooling (MAP) to create a prototype. This prototype corresponds to
the visual features activated at the current stage. We then use this prototype to
calibrate text tokens at the next logical level. This process allows for iterative
optimization of tokens generated in a single forward pass of the reasoning chain,
aligned with the hierarchy.

ĥt = R(β(ht), Fv(Qimg),m
t−1), t >= 1. (3)

ĥt is the refined token embedding from the t-th logical level while ht is the
unrefined one in the chain-of-reasoning. β is a multilayer perceptron (MLP) to
project output features. We employ the SAM image encoder Fv as the visual
backbone. R refers to the token refiner whose working function can be expressed
by the following formula.

R(h, i,m) = h+ CA(h,MAP (i,m)). (4)

CA and MAP refer to cross-attention and masked average pooling, respectively.
Subsequently, the extracted features of the query image Qimg are passed to

the mask generator γ as input. For brevity, the aforementioned process is omitted
in Fig.2. In summary, the generation process of the segmentation chain can be
expressed as follows.

mt = γ(Fv(Qimg),Mt, ĥt). (5)

where mt is the t-th level output in the segmenting chain. In the dual-level
setting of the segmentation chain, t = 0/1.

Parameters in the projection layer and mask decoder are set trainable, while
the SAM image encoder and prompt encoder are kept frozen to keep the gen-
eralization ability. For the segmentation chain, we only provide supervision for
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A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, 
detailed, and polite answers to the human's questions. To realize segmentation, the assistant guesses 
all possible object it typically appears on and its distinct appearance. 
USER: What is the dog paw in this image? Please output segmentation mask. 
ASSISTANT: Sure, it appears on the end of each leg. It is tough and cushioned with pads and claws.
USER: What part of a car is essential for motion and supports the vehicle's 

weight in this image? Please output the segmentation mask. 

Fig. 3: Examples of MLLM input. The brown section represents the system prompt
commonly used for MLLM. The green section is the in-context input proposed in this
paper, and the black section is the user input for questioning the image.

the final mask generated at the last level of the chain. We choose dice loss and
cross-entropy loss as the loss function, which can be represented as:

LCoS = λdLDICE(m
T ,Mgt) + λcLCE(m

T ,Mgt). (6)

where mT and Mgt are the predicted final mask and the ground truth, respec-
tively. In the dual-level setting of the segmentation chain, T = 1. The analysis
for the case when T > 1 can be found in Sec.4.4. The weights λd and λc are set
to 0.5 and 2.0 empirically.

As the following equation shows, the final loss is a weighted sum of the
textual loss from the chain-of-reasoning LCoR and the visual loss LCoS from the
chain-of-segmenting.

Ltotal = λRLCoR + λSLCoS . (7)

where the weights λR and λS are set to 0.5 empirically. The impact of these
weights can be found in the Appendix.

3.2 In-Context Guidance

The described hierarchical dual-chain structure progressively identifies the ob-
jects referred to in the reasoning text. However, if only sentence templates are
used as the supervisory signal, the MLLM cannot actively uncover and output
hierarchical logical relationships.

We thus propose a training paradigm involving in-context guidance to provide
logical cues to the output of MLLM. To present the required top-down output
logic rules to the MLLM, we introduce some contextually provided examples as
guidance, before the initial user input of image-query pairs, as depicted in Fig.3.

Specifically, we pre-construct a context library in a pure text format. This
process is to induce ChatGPT to generate more question-answer pairs with
several manually written examples. For the question part of the examples, we
utilize the same questioning format. For the sake of conciseness, CoReS does not
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include corresponding images and directly poses questions based on the name of
the segmented object. For the answer format, no special tokens are used in the
examples; instead, normal replies are given based on the logical aspects of where
the questioning object usually appears and its common features.

During each forward pass in CoReS, we randomly draw examples from the
context library to serve as in-context input. The reason we opt not to generate
query-specific textual prompts lies in the high computational and parameter
demands. The two-stage method requires forward passes through two different
MLLMs, which is quite inefficient.

Examples extracted in this manner are unrelated to the current query image
but implicitly embed the logic rules for output. As a rule provider, this in-context
input serves as a prompt for MLLM to inject specific information into specific
token positions. For instance, the token at the [LOC] position should be injected
with location-related information such as “a knife or propeller”, while the token
at the [SEG] position should be injected with information regarding “the flat,
cutting or propelling surface” of the object. In this way, MLLM extracts the
top-down rules from pure textual context and transfers it to the output for new
instances referred to by multi-modal queries.

Unlike in-context learning traditionally used solely to enhance the inference
performance, our in-context question-answer pairs also play a role in the training
process. Through this contextual prompting, CoReS teaches the model what
semantic logic to follow in generating answers during the tuning phase.

4 Experiments

4.1 Implementation Details

For training datasets, we follow LISA to utilize a combination of datasets for
semantic, referring, and reasoning segmentation while abandoning the use of the
visual-question-answering dataset. Related reasons and details can be found in
the appendix. For the test dataset, we conduct experiments on the ReasonSeg,
which comprises image-question pairs with reasoning difficulty and the ground
truth segmentation masks. For evaluation metrics, we use graph-averaged
Intersection-over-Union (gIoU), which is the most commonly used metric in
referring segmentation. The cumulative Intersection-over-Union (cIoU) is used
as an auxiliary indicator, despite its bias to large-area targets of images. We
conduct experiments in the Appendix to clarify this bias.

The multi-modal LLM, unless specifically indicated otherwise, refers to the
LLaVA-7B-v0. Moreover, we use SAM-ViT-H as the image backbone. Other
specific implementation details are presented in the Appendix.

4.2 Comparison with State-of-the-Arts

We compare the performance of CoReS with other methods on the ReasonSeg
dataset, as shown in Tab.1. Our approach improves by approximately 35%
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Table 1: Performance comparison between CoReS and other methods on ReasonSeg.
“ft” denotes using the reasoning segmentation dataset to fine-tune the model.

Method Text ReasonSeg ReasonSeg|test
Model val|overall short long overall

OVSeg [24] CLIP ViT-L 28.5 18.0 28.7 26.1
GRES [25] BERT 22.4 17.6 22.6 21.3
X-Decoder [61] UniCL 22.6 20.4 22.2 21.7
SEEM [62] UniCL 25.5 20.1 25.6 24.3

LISA [19] 44.4 37.6 36.6 36.8
CoReS 54.8 41.0 50.9 48.7
LISA(ft) 52.9 40.6 49.4 47.3
CoReS(ft)

LLaVA-7B

59.4 44.2 55.0 52.4

LISA(ft) 56.2 44.3 54.0 51.7
CoReS(ft) LLaVA-13B 61.8 49.7 58.3 55.9

LISA(ft) LLaVA- 65.0 55.4 63.2 61.3
CoReS(ft) -v1.5-13B 68.1 57.9 66.4 65.5

compared to the multi-modal grounding models that do not use LLM. Fur-
thermore, we also compare the performance of LISA, a baseline method that
similarly incorporates world knowledge by MLLM. This comparison with CoReS
is made using MLLM of different scales. Without fine-tuning the ReasonSeg
dataset, our method outperforms LISA by 10.4%, and this margin remains
6.5% after fine-tuning. It is worth noting that the un-tuned version of CoReS
outperforms the fine-tuned version of LISA by 1.9%. This demonstrates that
the performance improvement brought by CoReS does not rely on provided
training data but fundamentally leverages the potential of the MLLM more
efficiently. When using LLaVA-13B and LLaVA-v1.5-13B as MLLMs, CoReS
also outperforms LISA by a considerable margin. Achieving the same level of
improvement becomes more challenging on a higher-performing base than LISA,
thus the slight decrease in the magnitude of improvement is reasonable. Overall,
these significant performance improvements prove the efficacy of CoReS.

Qualitative results also prove the effectiveness of CoReS in Fig.4, Fig.5, and
the appendix. As shown in Fig.4, when facing complex reasoning problems,
LISA exhibits errors in grounding the exact instance referred by the reasoning
query, while CoReS achieves the correct answers. Fig.5 provides a more detailed
demonstration of the effects of the multi-modal chain of thought. Whether it is
complex reasoning, such as “moth evading predators,” or segmentation difficulties
caused by underwater reflections, CoReS gives the right mask. It is the chain-like
hierarchy that results in correct and fine-grained segmentation, which cannot be
achieved by LISA.
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What is something that protects the persons' heads
in this image? Please output segmentation mask.

In order to shape and carve hard materials, such as
wood or stone, what part of the tool in the picture
would be used to provide precise control and force?
Please output segmentation mask.

What is the place where the patient lies down to
receive examination in this image?
Please output segmentation mask.

Insects are often found on or near trees, where they
can find shelter and food. What part of the tree in this
picture could insects commonly be found on or
around? Please output segmentation mask.

Ground TruthLISA

Many people use bags to carry their belongings when
they go out. What part of the bag in the picture can be
used to carry the bag comfortably over the shoulder?
Please output segmentation mask.

What is a car with a color that is closer to lipstick
color in this image?
Please output segmentation mask.

In the picture, there is a legal requirement for vehicles
to display identifying information. What part of the
car is used to display this information?
Please output segmentation mask.

What is the stacked cookies in this image?
Please output segmentation mask.

LISA Ground Truth

LISA Ground Truth

LISA Ground Truth

LISA Ground Truth

LISA

CoReS

CoReS

CoReS

CoReS Ground TruthLISA Ground Truth

LISA

CoReS

CoReS

CoReS

CoReS Ground Truth

Fig. 4: Visual comparison of CoReS and LISA.

4.3 Comparison on other benchmarks

We also evaluate the performance of CoReS on the referring segmentation task,
as shown in Tab.2. As a degraded form of reasoning segmentation, the results
of the referring segmentation are compared on refCOCO, refCOCO+, and ref-
COCOg, and its performance is measured using cIoU. For general models, we
compare with X-Decoder and SEEM. For specialized models, we compare CoReS
with methods like PolyFormer. Without using their REC pretraining and mass
data from tasks like object detection and caption for targeted training, CoReS
still achieves competitive results, as shown in Tab.2. However, these methods
could not handle the ReasonSeg tasks that CoReS is designed for.

Compared to LISA, CoReS does not exhibit a significant improvement on
refCOCO and refCOCO+, whose average query lengths are 3.6 and 3.5, re-
spectively. However, on refCOCOg with an average query length of 8.4, our
method outperforms LISA by about 2%. We attribute this to the fact that
CoReS’s multi-modal chain of thought primarily enhances the performance under
complex and challenging queries. Therefore, the improvement is less significant
for simpler referential objects in the former two datasets, but more pronounced
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          Input         LISA          CoReS-C1               CoReS-C2             GT

Birds often need a place to rest or 
observe their surroundings. 
What part of a tree in the picture 
offers a suitable spot for birds 
to do so? 
Please output segmentation mask.

What is something that
protects the woman's eyes
from getting wet in this image?
Please output segmentation mask.

When celebrating birthdays, it is
common to have a cake with
decorations. What part of the cake
in the picture is typically used to
write birthday greetings or the
name of the person celebrating?
Please output segmentation mask.

Insects have various ways to
protect themselves from
predators.
What characteristics can a moth
use to deter potential threats?
Please output segmentation mask.

What is the person who appears 
to have already won in the battle 
in this image? 
Please output segmentation mask.

Fig. 5: Qualitative interpretation of the advantages of the multi-modal chain-of-
thought over LISA. From left to right are the input image, LISA result, CoReS first
logic layer segmentation result, CoReS final result, and ground truth mask.

Table 2: Performance comparison between CoReS and other methods on referring
segmentation datasets. The LISA and CoReS here refer to their LLaVA-7B-v0 version.
We use cIoU as the metric here. ‘S’ and ‘G’ refer to general/specialized types of models.
‘RS’ refers to the ability to handle reasoning segmentation tasks.

Method T RS refCOCO refCOCO+ refCOCOg
val testA testB val testA testB val(U) testU

MCN [30] S 62.4 64.2 59.7 50.6 55.0 44.7 49.2 49.4
VLT [8] S 67.5 70.5 65.2 56.3 61.0 50.1 55.0 57.7

CRIS [45] S 70.5 73.2 66.1 62.3 68.1 53.7 59.9 60.4
LAVT [51] S 72.7 75.8 68.8 62.1 68.4 55.1 61.2 62.1
ReLA [25] S 73.8 76.5 70.2 66.0 71.0 57.7 65.0 66.0

PolyFormer [27] S 74.8 76.6 71.1 67.6 72.9 59.3 67.8 69.1
X-Decoder [61] G - - - - - - 64.6 -

SEEM [62] G - - - - - - 65.7 -

LISA [19] G ✓ 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
CoReS G ✓ 76.0 78.6 72.5 65.1 70.0 58.6 69.0 70.7

for datasets involving more complex object references such as refCOCOg. This
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Table 3: Ablation studies on the key components of CoReS. “InC” and “CoR” refer
to the in-context input and the chain-of-reasoning. “CoS” and “CoS-R” denote the
chain-of-segmenting without and with the token refinement, respectively.

Components ReasonSeg
InC CoR CoS CoS-R gIoU cIoU

52.9 54.0
✓ 53.2 55.4

✓ 53.9 55.6
✓ 54.0 54.1

✓ ✓ 55.3 56.9
✓ ✓ 55.4 58.0

✓ ✓ 56.9 59.8
✓ ✓ 57.5 60.4

✓ ✓ ✓ 58.4 59.3
✓ ✓ ✓ 59.4 62.1

demonstrates that the proposed multi-modal chain of thought can indeed reduce
the difficulty of finding the referred instance by complex reasoning query, proving
the effectiveness of CoReS. We include performance results on other benchmarks
in the appendix.

4.4 Ablation Studies

Different design choices of CoReS. To demonstrate the effectiveness of our
proposed in-context input and the dual-chain-of-thought structure, we conduct
ablation experiments on the model design details mentioned for the CoReS in
Tab.3 and different design alternatives in the Appendix.

In the case of using chain-of-segmenting without chain-of-reasoning, we use
the same [SEG] embedding as the prompt input for each level, resulting in only
a 1.1% improvement in gIoU. This demonstrates that the improvement brought
by our method is not due to an increase in computational power. When using
chain-of-reasoning without the segmentation chain, to avoid information loss, we
take the average of the two token embeddings as the input for the mask decoder,
resulting in a 1.0% boost, demonstrating that the decomposition of thinking
levels can indeed reduce the difficulty and improve performance.

The CoS guided by CoR leads to a 4.6% performance increase, proving the
effective interaction and guidance between the two modalities through chain
thinking. By adding in-context input to the dual-chain structure, CoReS can
continue to gain a 1.9% improvement. This demonstrates that the strategy of in-
context training can provide prompts and guidance for the dual-chain structure.
Consistent with Sec.3, this proves that our practices are reasonable and reliable.

Different numbers of the in-context input. We conduct experiments
with different numbers of the in-context input to further explore their effect. As
shown in Tab.4, adding one in-context example can lead to a 1.9% improvement.
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However, as the number of examples continues to increase, performance improve-
ment is slightly decreased. This may be due to the limited quality of the context
library, which may not be conducive to the performance. In general, regardless
of the number of in-context examples added, compared to not using in-context
input, it always leads to improved results. This proves the effectiveness of the
logical guidance of in-context inputs.

Different logical levels. We also look into the effect of different logical
levels of the dual chain of thought. In Sec.3 and Tab.1-Tab.4, CoReS selects a
logical depth of 2, resulting in a 5.8% improvement in gIoU, where both the in-
context input and the dual-modal chain adhere to a two-level semantic structure
from [LOC] to [SEG].

Table 4: Ablation studies of different
numbers of the in-context input.

num ReasonSeg
gIoU cIoU

0 57.5 60.4
1 59.4 62.1
2 59.4 61.9
4 59.3 62.0

Table 5: Ablation studies of different
logical levels. [S], [P], and [L] refer to
the [SEG], [POS], and [LOS] token.

token ReasonSeg
gIoU cIoU

[S] 53.2 55.4
[L] + [S] 59.4 62.1

[L] + [P ] + [S] 59.7 60.8
Similarly, we test the performance of CoReS with a three-level semantic

hierarchy. For the corresponding levels, we heuristically select “commonly oc-
curring categories”, “specific locations in the image” and “intrinsic features”. The
template of the chain-of-reasoning, the mask proposal process, and the in-context
inputs are also adjusted accordingly to the three levels. The performance does
not increase much. We deem the reason to be that questions in ReasonSeg are
not so particularly complex that require three levels of thinking and grounding.
Furthermore, the specific content of each level of the three-level logic is heuristi-
cally, and its scientificity and reasonableness need to be considered. Besides, the
longer logic chains itself is associated with increased backpropagation difficulty
and slower convergence speed. However, overall, multi-level logic does bring a
significant improvement in performance compared to single-plane logic, which is
all consistent with the theoretical analysis in Sec.3.

5 Conclusion

We propose CoReS, a dual-modal chain-of-thought framework for fine-grained
reasoning tasks. Adopting a top-down logic for visual search, we propose a
dual-chain hierarchical structure that assists the MLLM in accurately localizing
objects referred to in reasoning texts. Additionally, the integration of in-context
inputs enables the MLLM to achieve rule transfer, guiding the generation of
chain-like outputs in multi-modal tasks. Experimental results confirm that our
approach yields a substantial improvement over state-of-the-art methods in rea-
soning segmentation tasks. We hope that CoReS will inspire future research on
a broader range of complex multi-modal tasks.
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