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Abstract. Recent years have seen significant advancements in image
restoration, largely attributed to the development of modern deep neural
networks, such as CNNs and Transformers. However, existing restoration
backbones often face the dilemma between global receptive fields and ef-
ficient computation, hindering their application in practice. Recently, the
Selective Structured State Space Model, especially the improved version
Mamba, has shown great potential for long-range dependency modeling
with linear complexity, which offers a way to resolve the above dilemma.
However, the standard Mamba still faces certain challenges in low-level
vision such as local pixel forgetting and channel redundancy. In this
work, we introduce a simple but effective baseline, named MambaIR,
which introduces both local enhancement and channel attention to im-
prove the vanilla Mamba. In this way, our MambaIR takes advantage of
the local pixel similarity and reduces the channel redundancy. Extensive
experiments demonstrate the superiority of our method, for example,
MambaIR outperforms SwinIR by up to 0.45dB on image SR, using sim-
ilar computational cost but with a global receptive field. Code is available
at https://github.com/csguoh/MambaIR.
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1 Introduction

Image restoration, aiming to reconstruct a high-quality image from a given low-
quality input, is a long-standing problem in computer vision and further has a
wide range of sub-problems such as super-resolution, image denoising, etc. With
the introduction of modern deep learning models such as CNNs [13,16,42,81,89]
and Transformers [8,10,12,40,41], state-of-the-art performance has continued to
be refreshed in the past few years.
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Fig. 1: The Effective Receptive Field (ERF) visualization [14, 46] for EDSR [42],
RCAN [88], SwinIR [41], HAT [10], and the proposed MambaIR. A larger ERF is in-
dicated by a more extensively distributed dark area. The proposed MambaIR achieves
a significant global effective receptive field.

To some extent, the increasing performance of deep restoration models largely
stems from the increasing network receptive field. First, a large receptive field
allows the network to capture information from a wider region, enabling it to
refer to more pixels to facilitate the reconstruction of the anchor pixel. Second,
with a larger receptive field, the restoration network can extract higher-level
patterns and structures in the image, which can be crucial for some structure
preservation tasks such as image denoising. Finally, Transformer-based restora-
tion methods which possess larger receptive fields experimentally outperform
CNN-based methods, and the recent work [10] also points out that activating
more pixels usually leads to better restoration results.

Despite possessing many attractive properties, it appears that there exists
an inherent choice dilemma between global receptive fields and efficient com-
putation for current image restoration backbones. For CNN-based restoration
networks [42, 89], although the effective receptive field is limited (as shown
in Fig. 1(a)), it is appropriate for resource-constrained device deployments due
to the favorable efficiency of convolution parallel operations. By contrast, the
Transformer-based image restoration methods usually set the number of to-
kens to the image resolution [8, 10, 41], therefore, despite the global receptive
field, directly using the standard Transformer [65] will come at an unaccept-
able quadratic computational complexity. Moreover, employing some efficient
attention techniques such as shifted window attention [45] for image restoration,
usually comes at the expense of a globally effective receptive field (as shown in
Fig. 1(b)), and does not intrinsically escape out of the trade-off between a global
receptive field and efficient computation.

Recently, structured state-space sequence models (S4), especially the im-
proved version Mamba, have emerged as an efficient and effective backbone for
constructing deep networks [18,22,24,52,62]. This development hints at a poten-
tial resolution to balancing global receptive field and computational efficiency in
image restoration. In detail, the discretized state space equations in Mamba can
be formalized into a recursive form and can model very long-range dependen-
cies when equipped with specially designed structured reparameterization [23].
This means that Mamba-based restoration networks can naturally activate more
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pixels, thus improving the reconstruction quality. Furthermore, the parallel scan
algorithm [22] renders Mamba to process each token in a parallel fashion, facili-
tating efficient training on modern hardware such as GPU. The above promising
properties motivate us to explore the potential of Mamba to achieve efficient
long-range modeling for image restoration networks.

However, the standard Mamba [22], which is designed for 1D sequential data
in NLP, is not a natural fit for image restoration scenarios. First, since Mamba
processes flattened 1D image sequences in a recursive manner, it can result in
spatially close pixels being found at very distant locations in the flattened se-
quences, resulting in the problem of local pixel forgetting. Second, due to the
requirement to memorize the long sequence dependencies, the number of hidden
states in the state space equations is typically large, which can lead to channel
redundancy, thus hindering the learning of critical channel representations.

To address the above challenges, we introduce MambaIR, a simple but very
effective benchmark model, to adapt Mamba for image restoration. MambaIR is
formulated with three principal stages. Specifically, the 1)Shallow Feature Ex-
traction stage employs a simple convolution layer to extract the shallow feature.
Then the 2)Deep Feature Extraction stage performs with several stacked
Residual State Space Blocks (RSSBs). As the core component of our MambaIR,
the RSSB is designed with local convolution to mitigate local pixel forgetting
when applying the vanilla Mamba to 2D images, and it is also equipped with
channel attention to reduce channel redundancy caused by the excessive hidden
state number. We also employ the learnable factor to control the skip connec-
tion within each RSSB. Finally, the 3)High-Quality Image Reconstruction
stage aggregates both shallow and deep features to produce a high-quality out-
put image. Through possessing both a global effective receptive field as well as
linear computational complexity, our MambaIR serves as a new alternative for
image restoration backbones.

In short, our main contributions can be summarized as follows:

– We are the first work to adapt state space models for low-level image restora-
tion via extensive experiments to formulate MambaIR, which acts as a simple
but effective alternative for CNN- and Transformer-based methods.

– We propose the Residue State Space Block (RSSB) which can boost the
power of the standard Mamba with local enhancement and channel redun-
dancy reduction.

– Extensive experiments on various tasks demonstrate our MambaIR outper-
forms other strong baselines to provide a powerful and promising backbone
solution for image restoration.

2 Related Work

2.1 Image Restoration

Image restoration has been significantly advanced since the introduction of deep
learning by several pioneering works, such as SRCNN [16] for image super-
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resolution, DnCNN [81] for image denoising, ARCNN [15] for JPEG compres-
sion artifact reduction, etc. Early attempts usually elaborate CNNs with tech-
niques such as residual connection [6, 34], dense connection [68, 89] and oth-
ers [13, 19, 36, 70] to improve model representation ability. Despite the success,
CNN-based restoration methods typically face challenges in effectively model-
ing global dependencies. As transformer have proven its effectiveness in multiple
tasks, such as time series [43], 3D cloud [75, 77], and multi-modal [4, 20, 21, 86],
using transformer for image restoration appears promising. Despite the global
receptive field, transformer still faces specific challenges from the quadratic com-
putational complexity of the self-attention [65]. To address this, IPT [8] divides
one image into several small patches and processes each patch independently
with self-attention. SwinIR [41] further introduces shifted window attention [45]
to improve the performance. In addition, progress continues to be made in de-
signing efficient attention for restoration [9–12,26,38,63,72,78,85]. Nonetheless,
efficient attention design usually comes at the expense of global receptive fields,
and the dilemma of the trade-off between efficient computation and global mod-
eling is not essentially resolved.

2.2 State Space Models

State Space Models (SSMs) [24, 25, 62], stemming from classics control the-
ory [33], are recently introduced to deep learning as a competitive backbone
for state space transforming. The promising property of linearly scaling with
sequence length in long-range dependency modeling has attracted great inter-
est from searchers. For example, the Structured State-Space Sequence model
(S4) [24] is a pioneer work for the deep state-space model in modeling the long-
range dependency. Later, S5 layer [62] is proposed based on S4 and introduces
MIMO SSM and efficient parallel scan. Moreover, H3 [18] achieves promising
results that nearly fill the performance gap between SSMs and Transformers
in natural language. [52] further improve S4 with gating units to obtain the
Gated State Space layer to boost the capability. More recently, Mamba [22], a
data-dependent SSM with selective mechanism and efficient hardware design,
outperforms Transformers on natural language and enjoys linear scaling with
input length. Moreover, there are also pioneering works that adopt Mamba to
vision tasks such as image classification [44, 92], video understanding [37, 66],
biomedical image segmentation [48,71] and others [28,31,56,59,76]. In this work,
we explore the potential of Mamba to image restoration with restoration-specific
designs to serve as a simple but effective baseline for future work.

3 Methodology

3.1 Preliminaries

The recent advancements of the class of structured state-space sequence models
(S4) are largely inspired by the continuous linear time-invariant (LTI) systems,



MambaIR 5

which maps a 1-dimensional function or sequence x(t) ∈ R → y(t) ∈ R through
an implicit latent state h(t) ∈ RN . Formally, this system can be formulated as a
linear ordinary differential equation (ODE):

h′(t) = Ah(t) + Bx(t),

y(t) = Ch(t) + Dx(t),
(1)

where N is the state size, A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , and D ∈ R.
After that, the discretization process is typically adopted to integrate Eq. (1)

into practical deep learning algorithms. Specifically, denote ∆ as the timescale
parameter to transform the continuous parameters A, B to discrete parameters
A, B. The commonly used method for discretization is the zero-order hold (ZOH)
rule, which is defined as follows:

A = exp(∆A),

B = (∆A)−1(exp(A)− I) ·∆B.
(2)

After the discretization, the discretized version of Eq. (1) with step size ∆
can be rewritten in the following RNN form:

hk = Ahk−1 + Bxk,

yk = Chk + Dxk.
(3)

Furthermore, the Eq. (3) can also be mathematically equivalently trans-
formed into the following CNN form:

K ≜ (CB,CAB, · · · ,CA
L−1

B),

y = x ⊛ K,
(4)

where L is the length of the input sequence, ⊛ denotes convolution operation,
and K ∈ RL is a structured convolution kernel.

The recent advanced state-space model, Mamba [22], have further improved
B, C and ∆ to be input-dependent, thus allowing for a dynamic feature repre-
sentation. The intuition of Mamba for image restoration lies in its development
on the advantages of S4 model. Specifically, Mamba shares the same recursive
form of Eq. (3), which enables the model to memorize ultra-long sequences so
that more pixels can be activated to aid restoration. At the same time, the par-
allel scan algorithm [22] allows Mamba to enjoy the same advantages of parallel
processing as Eq. (4), thus facilitating efficient training.

3.2 Overall Architecture

As shown in Fig. 2, our MambaIR consists of three stages: shallow feature ex-
traction, deep feature extraction, and high-quality reconstruction. Given a low-
quality (LQ) input image ILQ ∈ RH×W×3, we first employ a 3 × 3 convolu-
tion layer from the shallow feature extraction to generate the shallow feature
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Fig. 2: The overall network architecture of our MambaIR, as well as the (a) Residual
State-Space Block (RSSB), the (b) Vision State-Space Module (VSSM), and the (c)
2D Selective Scan Module (2D-SSM).

FS ∈ RH×W×C , where H and W represent the height and width of the in-
put image, and C is the number of channels. Subsequently, the shallow fea-
ture FS undergoes the deep feature extraction stage to acquire the deep feature
F l
D ∈ RH×W×C at the l-th layer, l ∈ {1, 2, · · ·L}. This stage is stacked by mul-

tiple Residual State-Space Groups (RSSGs), with each RSSG containing several
Residue State-Space Blocks (RSSBs). Moreover, an additional convolution layer
is introduced at the end of each group to refine features extracted from RSSB.
Finally, we use the element-wise sum to obtain the input of the high-quality re-
construction stage FR = FL

D +FS , which is used to reconstruct the high-quality
(HQ) output image IHQ.

3.3 Residual State-Space Block

The block design in previous Transformer-based restoration networks [10, 12,
41, 78] mainly follow the Norm → Attention → Norm → MLP flow. Although
Attention and SSM can both model global dependencies, however, we find these
two modules behave differently (see supplementary material for more details)
and simply replacing Attention with SSM can only obtain sub-optimal results.
Therefore, it is promising to tailor a brand-new block structure for Mamba-based
restoration networks.

To this end, we propose the Residual State-Space Block (RSSB) to adapt
the SSM block for restoration. As shown in Fig. 2(a), given the input deep
feature F l

D ∈ RH×W×C , we first use the LayerNorm (LN) followed by the Vision
State-Space Module (VSSM) [44] to capture the spatial long-term dependency.
Moreover, we also use learnable scale factor s ∈ RC to control the information
from skip connection:

Zl = VSSM(LN(F l
D)) + s · F l

D. (5)
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Fig. 3: (a) Without using local enhancement will cause spatially close pixels (area in
the red box) get forgotten in the flattened 1D sequence due to the long distance. (b)
We use RELU and global average pooling on the VSSM outputs from the last layer
to get the channel activation values. Most channels are not activated (i.e., channel
redundancy) when channel attention is not used.

Furthermore, since SSMs process flattened feature maps as 1D token se-
quences, the number of neighborhood pixels in the sequence is greatly influenced
by the flattening strategy. For example, when employing the four-direction un-
folding strategy of [44], only four nearest neighbors are available to the anchor
pixel (see Fig. 3(a)), i.e., some spatially close pixels in 2D feature map are in-
stead distant from each other in the 1D token sequence, and this over-distance
can lead to local pixel forgetting. To this end, we introduce an additional local
convolution after VSSM to help restore the neighborhood similarity. Specifically,
we employ LayerNorm to first normalize the Zl and then use convolution layers
to compensate for local features. In order to maintain efficiency, the convolution
layer adopts the bottleneck structure, i.e., the channel is first compressed by a
factor γ to obtain features with the shape RH×W×C

γ , then we perform channel
expansion to recover the original shape.

In addition, SSMs typically introduce a larger number of hidden states to
memorize very long-range dependencies, and we visualize the activation results
for different channels in Fig. 3(b) and find notable channel redundancy. To
facilitate the expressive power of different channels, we introduce the Channel
Attention (CA) [27] to RSSB. In this way, SSMs can focus on learning diverse
channel representations after which the critical channels are selected by sub-
sequent channel attention, thus avoiding channel redundancy. At last, another
tunable scale factor s′ ∈ RC is used in residual connection to acquire the final
output F l+1

D of the RSSB. The above process can be formulated as:

F l+1
D = CA(Conv(LN(Zl))) + s′ · Zl. (6)

3.4 Vision State-Space Module

To maintain efficiency, the Transformer-based restoration networks usually di-
vide input into small patches [8] or adopt shifted window attention [41], hindering
the interaction at the whole-image level. Motivated by the success of Mamba in
long-range modeling with linear complexity, we introduce the Vision State-Space
Module to image restoration.
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The Vision State-Space Module (VSSM) can capture long-range dependen-
cies with the state space equation, and the architecture of VSSM is shown in
Fig. 2(b). Following [44], the input feature X ∈ RH×W×C will go through two
parallel branches. In the first branch, the feature channel is expanded to λC by
a linear layer, where λ is a pre-defined channel expansion factor, followed by
a depth-wise convolution, SiLU [61] activation function, together with the 2D-
SSM layer and LayerNorm. In the second branch, the features channel is also
expanded to λC with a linear layer followed by the SiLU activation function.
After that, features from the two branches are aggregated with the Hadamard
product. Finally, the channel number is projected back to C to generate output
Xout with the same shape as input:

X1 = LN(2D-SSM(SiLU(DWConv(Linear(X))))),

X2 = SiLU(Linear(X)),

Xout = Linear(X1 ⊙X2),

(7)

where DWConv represents depth-wise convolution, and ⊙ denotes the Hadamard
product.

3.5 2D Selective Scan Module

The standard Mamba [22] causally processes the input data, and thus can only
capture information within the scanned part of the data. This property is well
suited for NLP tasks that involve a sequential nature but poses significant chal-
lenges when transferring to non-causal data such as images. To better utilize the
2D spatial information, we follow [44] and introduce the 2D Selective Scan Mod-
ule (2D-SSM). As shown in Fig. 2(c), the 2D image feature is flattened into a 1D
sequence with scanning along four different directions: top-left to bottom-right,
bottom-right to top-left, top-right to bottom-left, and bottom-left to top-right.
Then the long-range dependency of each sequence is captured according to the
discrete state-space equation. Finally, all sequences are merged using summation
followed by the reshape operation to recover the 2D structure.

3.6 Loss Function

To make a fair comparison with previous works [41, 78, 89], we optimize our
MambaIR with L1 loss for image SR, which can be formulated as:

L = ||IHQ − ILQ||1, (8)

where ||·||1 denotes the L1 norm. For image denoising, we utilize the Charbonnier
loss [7] with ϵ = 10−3:

L =
√

||IHQ − ILQ||2 + ϵ2. (9)
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4 Experiences

4.1 Experimental Settings

Dataset and Evaluation. Following the setup in previous works [41, 78], we
conduct experiments on various image restoration tasks, including image super-
resolution (i.e., classic SR, lightweight SR, real SR) and image denoising (i.e.,
Gaussian color image denoising and real-world denoising), and JPEG compres-
sion artifact reduction (JPEG CAR). We employ DIV2K [64] and Flickr2K [42]
to train classic SR models and use DIV2K only to train lightweight SR models.
Moreover, we use Set5 [5], Set14 [74], B100 [50], Urban100 [29], and Manga109 [51]
to evaluate the effectiveness of different SR methods. For gaussian color image
denoising, we utilize DIV2K [64], Flickr2K [42], BSD500 [3], and WED [49]
as our training datasets. Our testing datasets for guassian color image denois-
ing includes BSD68 [50], Kodak24 [17], McMaster [84], and Urban100 [29]. For
real image denoising, we train our model with 320 high-resolution images from
SIDD [1] datasets, and use the SIDD test set and DND [58] dataset for testing.
Following [41,89], we denote the model as MambaIR+ when self-ensemble strat-
egy [42] is used in testing. The performance is evaluated using PSNR and SSIM
on the Y channel from the YCbCr color space. Due to page limit, the results of
JPEG CAR are shown in the supplementary material.
Training Details. In accordance with previous works [10, 41, 78], we perform
data augmentation by applying horizontal flips and random rotations of 90◦, 180◦,
and 270◦. Additionally, we crop the original images into 64×64 patches for image
SR and 128 × 128 patches for image denoising during training. For image SR,
we use the pre-trained weights from the ×2 model to initialize those of ×3 and
×4 and halve the learning rate and total training iterations to reduce training
time [42]. To ensure a fair comparison, we adjust the training batch size to 32
for image SR and 16 for image denoising. We employ the Adam [35] as the opti-
mizer for training our MambaIR with β1 = 0.9, β2 = 0.999. The initial learning
rate is set at 2× 10−4 and is halved when the training iteration reaches specific
milestones. Our MambaIR model is trained with 8 NVIDIA V100 GPUs.

4.2 Ablation Study

Effects of different designs of RSSB. As the core component, the RSSB
can improve Mamba with restoration-specific priors. In this section, we ablate
different components of the RSSB. The results, presented in Tab. 1, indicate
that (1) applying 1D scan on flattened images can lead to local pixel forget-
ting, and the utilization of simple convolution layers can effectively enhance the
local interaction. (2) Without using additional convolution and channel atten-
tion, i.e., directly employing off-the-shelf Mamba for restoration, can only obtain
sub-optimal results, which also supports our previous analysis. (3) Replacing
Conv+ChanelAttention with MLP, whose resulted structure will be similar to
Transformer, also leads to unfavorable results, indicating that although both
SSMs and Attention have the global modeling ability, the behavior of these two
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Table 1: Ablation experiments for dif-
ferent design choices of RSSB.

settings Set5 Set14 Urban100

(1)remove Conv 38.48 34.54 34.04
(2)remove Conv+CA 38.55 34.64 34.06
(3)replace with MLP 38.55 34.68 34.22

Table 2: Ablation experiments for
different scan modes in VSSM.

scan mode Set5 Set14 Urban100

one-direction 38.53 34.63 34.06
two-direction 38.56 34.60 33.96
baseline 38.57 34.67 34.15

OursSRFormerSwinIRIPTSAN

IGNNRCANEDSR RDNHR

Urban100(×4): img_004

Urban100(×4): img_059 OursSRFormerSwinIRIPTSAN

IGNNRCANEDSR RDNHR

OursSRFormerSwinIRIPTSAN

IGNNRCANEDSR RDNHR

Urban100(×4): img_073

Fig. 4: Qualitative comparison of our MambaIR with CNN and Transformer based
methods on classic image SR with scale ×4.

modules is different and thus accustomed block structure should be considered
for further improvements.

Effects of Different Scan Modes in VSSM. To allow Mamba to process
2D images, the feature map needs to be flattened before being iterated by the
state-space equation. Therefore, the unfolding strategy is particularly impor-
tant. In this work, we follow [44] which uses scans in four different directions to
generate scanned sequences. Here, we ablate different scan modes to study the
effects, the results are shown in Tab. 2. Compared with one-direction (top-left to
bottom-right) and two-direction (top-left to bottom-right, bottom-right to top-
left), using four directions of scanning allows the anchor pixel to perceive a wider
range of neighborhoods, thus achieving better results. We also include other ab-
lation experiments, such as the layer number of RSSBs, please see supplementary
material for more analysis.
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Table 3: Quantitative comparison on classic image super-resolution with state-
of-the-art methods. The best and the second best results are in red and blue.

Set5 Set14 BSDS100 Urban100 Manga109Method scale PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR [42] ×2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RCAN [88] ×2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786
SAN [13] ×2 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
HAN [57] ×2 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785
IGNN [90] ×2 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
CSNLN [54] ×2 38.28 0.9616 34.12 0.9223 32.40 0.9024 33.25 0.9386 39.37 0.9785
NLSA [53] ×2 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
ELAN [87] ×2 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793
IPT [8] ×2 38.37 - 34.43 - 32.48 - 33.76 - - -
SwinIR [41] ×2 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
SRFormer [91] ×2 38.51 0.9627 34.44 0.9253 32.57 0.9046 34.09 0.9449 40.07 0.9802
MambaIR ×2 38.57 0.9627 34.67 0.9261 32.58 0.9048 34.15 0.9446 40.28 0.9806
MambaIR+ ×2 38.60 0.9628 34.69 0.9260 32.60 0.9048 34.17 0.9443 40.33 0.9806

EDSR [42] ×3 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RCAN [88] ×3 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499
SAN [13] ×3 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
HAN [57] ×3 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500
IGNN [90] ×3 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
CSNLN [54] ×3 34.74 0.9300 30.66 0.8482 29.33 0.8105 29.13 0.8712 34.45 0.9502
NLSA [53] ×3 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
ELAN [87] ×3 34.90 0.9313 30.80 0.8504 29.38 0.8124 29.32 0.8745 34.73 0.9517
IPT [8] ×3 34.81 - 30.85 - 29.38 - 29.49 - - -
SwinIR [41] ×3 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
SRformer [91] ×3 35.02 0.9323 30.94 0.8540 29.48 0.8156 30.04 0.8865 35.26 0.9543
MambaIR ×3 35.08 0.9323 30.99 0.8536 29.51 0.8157 29.93 0.8841 35.43 0.9546
MambaIR+ ×3 35.13 0.9326 31.06 0.8541 29.53 0.8162 29.98 0.8838 35.55 0.9549

EDSR [42] ×4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RCAN [88] ×4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173
SAN [13] ×4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
HAN [57] ×4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177
IGNN [90] ×4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
CSNLN [54] ×4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201
NLSA [53] ×4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
ELAN [87] ×4 32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167 31.68 0.9226
IPT [8] ×4 32.64 - 29.01 - 27.82 - 27.26 - - -
SwinIR [41] ×4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
SRFormer [91] ×4 32.93 0.9041 29.08 0.7953 27.94 0.7502 27.68 0.8311 32.21 0.9271
MambaIR ×4 33.03 0.9046 29.20 0.7961 27.98 0.7503 27.68 0.8287 32.32 0.9272
MambaIR+ ×4 33.13 0.9054 29.25 0.7971 28.01 0.7510 27.80 0.8303 32.48 0.9281

4.3 Comparison on Image Super-Resolution

Classic Image Super-Resolution. Tab. 3 shows the quantitative results be-
tween MambaIR and state-of-the-art super-resolution methods. Thanks to the
significant global receptive field, our proposed MambaIR achieves the best per-
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Fig. 5: Computational complexity comparison with different input scales. We set the
standard attention [65] which has a global receptive field as baseline, and denote it as
"Full-attn". We adjust the model to ensure the GPU usage is roughly similar at the
beginning, and then scale the input resolution from 48× 48 to 84× 84.

formance on almost all five benchmark datasets for all scale factors. For exam-
ple, our Mamba-based baseline outperforms the Transformer-based benchmark
model SwinIR by 0.41dB on Manga109 for ×2 scale, demonstrating the prospect
of Mamba for image restoration. We also give visual comparisons in Fig. 4, and
our method can facilitate the reconstruction of sharp edges and natural textures.

Model Complexity Comparison. We give comparison results of computa-
tional complexity with varying input sizes in Fig. 5. As one can see, our method
is far more efficient than the full-attention baseline [65] and exhibits linear com-
plexity with input resolution which is similar to the efficient attention techniques
such as SwinIR. These observations above suggest that out MambaIR has similar
scale properties as shifted window attention, while possessing a global receptive
field similar to standard full attention.

Lightweight Image Super-Resolution. To demonstrate the scalability of
our method, we train the MambaIR-light model and compare it with state-of-
the-art lightweight image SR methods. Following previous works [47, 91], we
also report the number of parameters (#param) and MACs (upscaling a low-
resolution image to 1280×720 resolution). Tab. 4 shows the results. It can be seen
that our MambaIR-light outperforms SwinIR-light [41] by up to 0.34dB PSNR
on the ×4 scale Manga109 dataset with similar parameters and MACs. The
performance results demonstrate the scalability and efficiency of our method.

Real-world Image Super-resolution. We also investigate the performance of
the network for real-world image restoration. We follow the training protocol in
[10] to train our MambaIR-real model. Since there are no ground-truth images
for this task, only the visual comparison is given in Fig. 6. Compared with the
other methods, our MambaIR exhibits a notable advancement in resolving fine
details and texture preservation, demonstrating the robustness of our method.
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Table 4: Quantitative comparison on lightweight image super-resolution with
state-of-the-art methods.

Set5 Set14 BSDS100 Urban100 Manga109Method scale #param MACs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CARN [2] ×2 1,592K 222.8G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765
IMDN [30] ×2 694K 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
LAPAR-A [39] ×2 548K 171.0G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
LatticeNet [47] ×2 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 - -
SwinIR-light [41] ×2 878K 195.6G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
SRFormer-light [91] ×2 853K 236G 38.23 0.9613 33.94 0.9209 32.36 0.9019 32.91 0.9353 39.28 0.9785
Ours ×2 859K 198.1G 38.16 0.9610 34.00 0.9212 32.34 0.9017 32.92 0.9356 39.31 0.9779

CARN [2] ×3 1,592K 118.8G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440
IMDN [30] ×3 703K 71.5G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
LAPAR-A [39] ×3 544K 114.0G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
LatticeNet [47] ×3 765K 76.3G 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 - -
SwinIR-light [41] ×3 886K 87.2G 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
SRFormer-light [91] ×3 861K 105G 34.67 0.9296 30.57 0.8469 29.26 0.8099 28.81 0.8655 34.19 0.9489
Ours ×3 867K 88.7G 34.72 0.9296 30.63 0.8475 29.29 0.8099 29.00 0.8689 34.39 0.9495

CARN [2] ×4 1,592K 90.9G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
IMDN [30] ×4 715K 40.9G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LAPAR-A [39] ×4 659K 94.0G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
LatticeNet [47] ×4 777K 43.6G 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 - -
SwinIR-light [41] ×4 897K 49.6G 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
SRFormer-light [91] ×4 873K 62.8G 32.51 0.8988 28.82 0.7872 27.73 0.7422 26.67 0.8032 31.17 0.9165
Ours ×4 879K 50.6G 32.51 0.8993 28.85 0.7876 27.75 0.7423 26.75 0.8051 31.26 0.9175

ESRGAN Real-ESRGANBSRGAN SwinIR OursRealSRLR

Fig. 6: Qualitative comparison with RealSR [32], ESRGAN [68], BSRGAN [80], Real-
ESRGAN [67], and SwinIR [41] on real image super-resolution with scale ×4.

4.4 Comparison on Image Denoising

Gaussian Color Image Denoising. The results of gaussian color image de-
noising are shown in Tab. 5. Following [79,81], the compared noise levels include
15, 25 and 50. As one can see, our model achieves the best performance on most
datasets. In particular, it surpasses the SwinIR [41] by even 0.48dB with σ=50 on
the Urban100 dataset. We also give a visual comparison in Fig. 7. Thanks to the
global receptive field, our MambaIR can achieve better structure preservation,
leading to clearer edges and natural shapes.
Real Image Denoising. We further turn to the real image denoising task to
evaluate the robustness of MambaIR when facing real-world degradation. Fol-
lowing [72], we adopt the progressive training strategy for fair comparison. The
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Table 5: Quantitative comparison on gaussian color image denoising with state-
of-the-art methods.

Method BSD68 Kodak24 McMaster Urban100
σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

IRCNN [82] 33.86 31.16 27.86 34.69 32.18 28.93 34.58 32.18 28.91 33.78 31.20 27.70
FFDNet [83] 33.87 31.21 27.96 34.63 32.13 28.98 34.66 32.35 29.18 33.83 31.40 28.05
DnCNN [81] 33.90 31.24 27.95 34.60 32.14 28.95 33.45 31.52 28.62 32.98 30.81 27.59
DRUNet [79] 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08 34.81 32.60 29.61
SwinIR [41] 34.42 31.78 28.56 35.34 32.89 29.79 35.61 33.20 30.22 35.13 32.90 29.82
Restormer [72] 34.40 31.79 28.60 35.47 33.04 30.01 35.61 33.34 30.30 35.13 32.96 30.02
MambaIR 34.48 32.24 28.66 35.42 32.99 29.92 35.70 33.43 30.35 35.37 33.21 30.30

SwinIRIPT Restormer OursGT Noisy

Fig. 7: Qualitative comparison of our MambaIR with other methods on
color image denoising task with noise level level σ=50.

Table 6: Quantitative comparison on the real image denosing task.

DeamNet [60] MPRNet [73] DAGL [55] Uformer [69] Restormer [72] OursDataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SIDD 39.47 0.957 39.71 0.958 38.94 0.953 39.77 0.959 40.02 0.960 39.89 0.960
DND 39.63 0.953 39.80 0.954 39.77 0.956 39.96 0.956 40.03 0.956 40.04 0.956

results, shown in Tab. 6, suggest that our method achieves comparable per-
formance with existing state-of-the-art models Restormer [69] and outperforms
other methods such as Uformer [69] by 0.12dB PSNR on SIDD dataset, indicat-
ing the ability of our method in real image denoising.

5 Conclusion

In this work, we explore for the first time the power of the recent advanced state
space model, i.e., Mamba, for image restoration, to help resolve the dilemma
of trade-off between efficient computation and global effective receptive field.
Specifically, we introduce the local enhancement to mitigate the neighborhood
pixel forgetting problem from the flattening strategy and propose channel atten-
tion to reduce channel redundancy. Extensive experiments on multiple restora-
tion tasks demonstrate our MambaIR serves as a simple but effective state-space
model for image restoration.
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