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Fig. 1: We visualize an example of two pedestrians (walking from left to right), cherry-
picked to have unusually high density lidar returns, making it particularly easy to
estimate flow. We expect that state-of-the-art scene flow methods should work well in
this case, but find that all prior art fails catastrophically. Notably, TrackFlow is the
only method to estimate flow for these pedestrians.

Abstract. State-of-the-art scene flow methods broadly fail to describe
the motion of small objects, and existing evaluation protocols hide this
failure by averaging over many points. To address this limitation, we pro-
pose Bucket Normalized EPE, a new class-aware and speed-normalized
evaluation protocol that better contextualizes error comparisons between
object types that move at vastly different speeds. In addition, we pro-
pose TrackFlow, a frustratingly simple supervised scene flow baseline that
combines a high-quality 3D object detector (trained using standard class
re-balancing techniques) with a simple Kalman filter-based tracker. No-
tably, TrackFlow achieves state-of-the-art performance on existing met-
rics and shows large improvements over prior work on our proposed met-
ric. Our results highlight that scene flow evaluation must be class and
speed aware, and supervised scene flow methods must address point-level
class imbalances. Our evaluation toolkit and code is available on GitHub.
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https://github.com/kylevedder/BucketedSceneFlowEval
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1 Introduction

Scene flow estimation is the task of describing a 3D motion field between tem-
porally successive point clouds [2, 7, 12, 25, 42, 43, 52]. In theory, high quality
flow estimators can provide a valuable signal about scene-level dynamics [12,42]
for both online [52] and offline [32] processing. Do state-of-the-art scene flow
methods actually work well in practice?

Status Quo. Standard scene flow metrics suggest that existing methods
can estimate motion to centimeter-level accuracy. For example, ZeroFlow XL
5x [42] achieves an average Threeway EPE [5] of only 4.9 centimeters (1.9 inches)
and a Dynamic EPE (averaged over points moving faster than 0.5 m/s) of 11.7
centimeters (4.6 inches). Notably, these errors are relatively small compared to
the scale of cars and pedestrians, implying that current scene flow methods
produce high quality flow. On the scale of cars and people, these feel like tiny
errors and seem to imply that current scene flow methods are high quality.

Bucket Normalized EPE. We visualize flow predictions from several state-
of-the-art supervised (FastFlow3D [12], DeFlow [53]) and unsupervised (NSFP [18],
ZeroFlow [42]) approaches and find that all methods underestimate flow for small
objects (Fig. 1) with fewer lidar points (e.g. pedestrians and bicyclists). Surpris-
ingly, existing scene flow metrics do not highlight such failure cases on these
safety-critical categories because small objects only make up a tiny fraction of
the dynamic points in a scene (Fig. 2). To address this limitation, we propose
Bucket Normalized EPE, a new evaluation protocol that allows us to directly
measure performance disparities across classes of different sizes and speed pro-
files. Specifically, Bucket Normalized EPE evaluates the percentage of described
motion, allowing us to normalize comparisons between objects moving at differ-
ent speeds. Our proposed evaluation metric takes inspiration from mean Average
Precision (mAP), a metric commonly used to evaluate object detectors. Notably,
unlike existing scene flow metrics, mAP equally weights the performance of large
common objects like cars and small rare objects like strollers. Therefore, state-
of-the-art 3D object detectors use data augmentation and class re-balancing
techniques [56] to perform well on both common and rare classes.

TrackFlow. Based on this observation, we propose TrackFlow, a frustrat-
ingly simple baseline that generates scene flow estimates using rigid transforma-
tions to describe point-level motion within a 3D object track. Specifically, we
run a state-of-the-art 3D object detector [46] followed by a simple 3D Kalman
filter-based tracker [47] to generate object trajectories. Despite its simplicity,
TrackFlow achieves state-of-the-art performance on Threeway EPE and signifi-
cantly outperforms prior art on our Bucket Normalized EPE metric, capturing
an additional 10% of total motion in general and an additional 20% of total
motion on pedestrians (a 1.5× improvement). Importantly, our simple baseline’s
state-of-the-art performance is an indictment of existing supervised scene flow
methods. We argue that utilizing (well established) class re-balancing techniques
can improve performance on rare safety-critical categories in real-world datasets,
and evaluating scene flow methods using class and speed-aware metrics more
closely reflects real-world performance.
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Contributions. We present three primary contributions.

1. We highlight the qualitative failure of state-of-the-art scene flow methods on
safety-critical categories like pedestrians and bicycles.

2. We introduce Bucket Normalized EPE, a new evaluation protocol that allows
us to quantify this qualitative failure on small objects.

3. We propose TrackFlow, a frustratingly simple baseline that achieves state-of-
the-art performance on standard metrics and significantly outperforms prior
art on our class-aware Bucket Normalized EPE metric.

2 Related Work

2.1 Scene Flow Datasets and Ground Truth

Unlike next token prediction in language [38] or next frame prediction in vi-
sion [48], scene flow is not naïvely self-supervised: future observations do not
provide ground truth scene flow. Therefore, ground truth motion descriptions
must be provided by an oracle, typically from human annotators for real data [4,
29, 30, 40, 49] or a data generator for synthetic datasets [28, 55]. For real world
datasets (typically from the autonomous vehicle domain) human annotations are
provided in the form of 3D bounding boxes and tracks for every object in the
scene [5]. Consequently, the generated ground truth flow is assumed to be rigid,
even in the case of non-rigid motion like pedestrian gaits.

2.2 Scene Flow Estimation

Given point clouds Pt and Pt+1, scene flow estimators predict F̂t,t+1, a 3D vector
per point in Pt that describes its motion from t to t + 1 [6]. Performance is
typically measured using Average Endpoint Error (EPE) which is the L2 norm
between the predicted (F̂t,t+1) and ground truth flow (F ∗

t,t+1), as in Equation 1.

Average EPE (Pt) =
1

∥Pt∥
∑
p∈Pt

∥∥∥F̂t,t+1(p)− F ∗
t,t+1(p)

∥∥∥
2
. (1)

Current state-of-the-art methods for scene flow estimation broadly fall into
one of two categories: supervised and unsupervised.

Supervised Scene Flow methods train feedforward networks to perform flow
vector regression based on ground truth annotations [1,3,10,12,15,17,21,25,37,
41, 45, 50, 53]. Many of these networks utilize custom point operations such as
point-based convolutions [10,15,21,25], making them intractable to train on large
point clouds. In contrast, FastFlow3D [12] uses a feedforward architecture based
on PointPillars [16], an efficient lidar detector architecture, to train and predict
flow on real-world large-scale point clouds. FastFlow3D’s speed and quality make
it a popular base architecuture for both unsupervised and supervised methods
like ZeroFlow [42] and DeFlow [53], respectively.
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Unsupervised Scene Flow methods tend to use online optimization against
surrogate objectives such as Chamfer distance [18], cycle-consistency [31], dis-
tance transforms [19], or other hand-designed heuristics [5, 9, 36]. For example,
Neural Scene Flow Prior (NSFP) [18] provides high quality scene flow estimates
by optimizing a small ReLU MLP at test time to minimize Chamfer distance
and maintain cycle-consistency. Other unsupervised methods like ZeroFlow [42]
indirectly leverage online optimization. Vedder et. al [42] introduces Scene Flow
via Distillation, a framework that uses a slow optimization-based method to
pseudolabel unlabeled point cloud pairs and trains a fast feedforward network
with these pseudolabels.

2.3 Scene Flow Evaluation Metrics

In real-world scenes, most points belong to the static background. Consequently,
simply computing Average EPE (Equation 1) over all points is dominated by
background points. In order to separately measure non-ego dynamics, Chodosh
et al. [5] introduces Threeway EPE, which computes a mean over the Aver-
age EPE for three disjoint classes of points: Foreground Dynamic (points inside
bounding box labels moving greater than 0.5m/s), Foreground Static (points in-
side bounding box labels moving less than 0.5m/s), and Background Static. We
extend Threeway EPE to consider different class and speed profiles.

2.4 3D Object Detection and Tracking

Object detectors have advanced techniques for training with imbalanced datasets.
Notably, modern object detectors use carefully designed losses to mitigate foreground-
vs-background imbalances in proposal generation, and data augmentation strate-
gies to train with long-tailed taxonomies. Existing methods address imbalanced
foreground-vs-background region proposals using Focal Loss [22] to upweight the
importance of foreground regions. More recently, 3D object detectors use class-
balanced sampling [56] and copy-paste augmentation to upsample and rebalance
the distribution of examples per class. In addition, state-of-the-art 3D object
detectors take advantage of multi-modal data to improve detection [27,33,44] of
small and rare categories. Since many state-of-the-art tracking algorithms [47]
follow the tracking-by-detection paradigm, improving detection quality also sig-
nificantly improves tracking performance.

3 Bucket Normalized EPE : Small Objects (Should)
Matter in Scene Flow

As shown in Fig. 1 (and further in Fig. 8), existing scene flow methods consis-
tently struggle to describe the motion of safety-critical objects like pedestrians.
However, these failures are not captured by Threeway EPE because these ob-
jects are small and have few points. Specifically, Threeway EPE’s Foreground
Dynamic category is dominated by large, common objects with many points like
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Fig. 2: Number of points from each semantic meta-class for Argoverse 2’s val split.
Although PEDESTRIAN instances are common, they contribute less than 1% of the total
number of points owing to their small instance size relative to CAR and OTHER VEHICLES.
Number of points (Y axis) shown on a log scale.

cars and other vehicles. As shown in Fig. 2, 15% of all points are from cars or
other vehicles (dominating Foreground Dynamic’s Average EPE), while fewer
than 1% of points are from pedestrians and other vulnerable road users (VRUs).

Additionally, Threeway EPE fails to account for large differences in speed
across objects. For example, a 0.5m/s estimation error on a car moving 20 m/s
is negligible (<2.5%), while a 0.5m/s estimation error on a pedestrian moving
0.5m/s fails to describe 100% of the pedestrian’s motion. However, Threeway
EPE treats both estimation errors equally.

We address these two limitations with our Bucket Normalized EPE metric.
First, our proposed metric breaks down the object distribution using a tax-
onomy that human labelers have deemed important (similar to mean Average
Precision [23], see Appendix C for discussion on semantics-free evaluation). Sec-
ond, our proposed metric allows us to contextualize the percentage of object
motion being described by normalizing for the speed of the object, allowing us
to directly compare performance across object categories.

We implement our class-aware and speed-normalized metric by accumulating
every point into a class-speed matrix (e.g. Appendix B, Table 4) based on its
ground truth speed and class, recording an Average EPE as well as a per-bucket
average speed. To summarize these results, we report two numbers per class:

– Static EPE, taken directly from the Average EPE of the first speed bucket
for that class (i.e. the first column of Appendix B, Table 4)

– Dynamic Normalized EPE, computed from a mean over the Normalized EPE
( Average EPE
average speed ) of each non-empty speed bucket (i.e. an average across the

Normalized EPEs of the second column onwards in Appendix B, Table 4)

Dynamic Normalized EPE measures the fraction of motion not described by
the estimated flow vectors across the entire speed spectrum. A method that only
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Class Static (Avg EPE) Dynamic (Norm EPE)

BACKGROUND 0.002402 -
CAR 0.018442 0.182092
OTHER VEHICLES 0.081475 0.312882
PEDESTRIAN 0.052842 0.396849
WHEELED VRU 0.062573 0.257647

Table 1: TrackFlow’s Bucket Normalized EPE on the Argoverse 2 test split. Similar
to Threeway EPE, we breakdown our evaluation into static and dynamic buckets.
However, we also further breakdown performance by meta-categories and normalize
by speed to compare performance disparities on safety-critical categories. TrackFlow is
able to capture most dynamic car motion (lower is better), but performs considerably
worse on other vehicles and pedestrian.

predicts ego motion (e.g.
−→
0 after ego-motion compensation) will achieve 1.0 Dy-

namic Normalized EPE, and a method that perfectly describes all motion will
have 0.0 Dynamic Normalized EPE. Methods may achieve errors greater than
1.0 by predicting errors with a magnitude greater than the average speed. For
example, a method that describes the negative vector of true motion will get ex-
actly 2.0 Dynamic Normalized EPE (every bucket’s Average EPE will be exactly
2× the magnitude of the average speed). The range of Dynamic Normalized EPE
is between 0 (perfect) and ∞, and is undefined for buckets without any points.
After normalization, Dynamic Normalized EPE can be directly compared across
classes.

We provide an example per-class performance breakdown in Table 1 for
TrackFlow (Section 4). Results can be further summarized into a single tuple of
mean Static EPE and mean Dynamic Normalized EPE by taking a mean across
classes (similar to mean Average Precision [23]). TrackFlow has a mean Static
EPE of 0.076277 and a mean Dyanmic Normalized EPE of 0.287368. We rank
methods according to their mean Dynamic Normalized EPE.

4 TrackFlow : Scene Flow via Tracking

To highlight the failure of current supervised scene flow methods on smaller
objects, we propose Scene Flow via Tracking, a simple framework that uses
bounding box track motion from off-the-shelf 3D detectors and trackers to gen-
erate scene flow estimates (Fig. 3). We instantiate Scene Flow via Tracking with
LE3DE2E [46]1, a state-of-the-art 3D detector, and AB3DMOT [47], a Kalman
filter-based 3D tracker. As shown in Section 5, TrackFlow achieves state-of-the-
art performance on Threeway EPE and beats all prior art by a large margin on
Bucket Normalized EPE.
1 LE3DE2E [46] is the winning method from the Argoverse 2 2023 3D Detection,

Tracking and Forecasting challenge [33–35].
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Detect

Detect

Track

Fig. 3: Overview of the Scene Flow via Tracking framework. Our proposed framework
generates scene flow estimates using rigid transformations to describe point-level mo-
tion within a 3D object track.

Scene Flow via Tracking works well in practice because it mimics the ground
truth flow annotation process. Specifically, ground truth flow is generated using
rigid transforms to describe point-level motion within ground truth 3D object
tracks (Section 2.1). Therefore, a perfect 3D detector and tracker will achieve
perfect flow. However, the power of TrackFlow isn’t just derived from its use of
bounding boxes; it also greatly benefits from recent advances in class-imbalanced
learning [56]. As discussed in Section 2.4, modern detectors are trained with a
variety of data augmentation techniques to achieve high precision and recall on
all semantic class. TrackFlow leverages the strength of modern 3D detectors to
significantly outperform prior art on pedestrians and other small objects.

Interestingly, we find that the Scene Flow via Tracking framework performs
best when using detectors tuned to a low confidence threshold. Typically, detec-
tors are optimized to only predict high confidence boxes (0.7 - 0.9) to minimize
the number of false positives. However, our method works best when setting the
confidence threshold lower (0.2 for TrackFlow) to increase recall. Specifically, we
find that detectors with higher recall and more accurate heading estimation are
better suited for Scene Flow via Tracking. We explore detector choice and ablate
the impact of confidence thresholds further in Section 5.3.

5 Experiments

In this section, we compare TrackFlow against state-of-the-art supervised and
unsupervised scene flow methods like FastFlow3D [12], DeFlow [53], NSFP [18],
and ZeroFlow [42] on the Argoverse 2 benchmark [49]2.

5.1 TrackFlow Achieves SOTA Performance on Threeway EPE

TrackFlow is state-of-the-art on Threeway EPE (Fig. 4a) on the Argoverse 2
benchmark [49], achieving an overall reduction of 0.0015m (0.15cm, or 1.5mm)
2 All evaluations are performed with a maximum radius of 35m from the ego vehicle

to maintain consistency with Chodosh et al. [5].
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(b) Threeway EPE’s Foreground Dynamic

Fig. 4: Threeway EPE and Threeway EPE’s Foreground Dynamic performance of re-
cent supervised and unsupervised scene flow methods on Argoverse 2’s test split. Su-
pervised methods shown with hatching. Lower is better. Method color is consistent
between plots. We find that all recent methods achieve 5cm error on Threeway EPE,
suggesting that these approaches work well in-the-wild. However, this number hides
the failure of these methods to describe small object motion.

over the next best method, ZeroFlow XL 5x. Notably, this improvement can be
attributed to significantly better Threeway EPE’s Dynamic Foreground (Fig. 4b).
Is this performance difference meaningful?

Based on our reduction of 1.5mm on Threeway EPE (about 4× the thickness
of a human fingernail), it would seem that TrackFlow is only an incremental
improvement over prior art. However, TrackFlow qualitatively outperforms prior
work on important small objects such as pedestrians (Fig. 1, Fig. 8). As shown
in the next section, our proposed evaluation protocol Bucket Normalized EPE
makes it quantitatively clear that TrackFlow performs significantly better on
safety-critical categories like pedestrians and VRUs.

5.2 Bucket Normalized EPE Highlights Failures on Small Objects

Evaluating existing state-of-the-art methods on our class-aware, speed-normalized
evaluation, Bucket Normalized EPE, makes it clear that TrackFlow meaningfully
outperforms prior art (Fig. 6) — TrackFlow correctly describes almost 10% addi-
tional total motion across meta-classes compared to DeFlow [53]. This difference
in dynamic performance becomes even more clear when broken down by meta-
class: Fig. 5 shows that TrackFlow is the only method able to describe more than
50% of pedestrian motion, beating DeFlow [53] by more than 20% (Fig. 5c), a
1.5× improvement. Similarly, other state-of-the-art methods like NSFP [18] and
ZeroFlow XL 5x [42] describe less than 30% and 20% of pedestrian motion,
respectively.
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(b) OTHER VEHICLES
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Fig. 5: Per meta-class Dynamic Normalized EPE of recent supervised and unsuper-
vised scene flow estimation methods on Argoverse 2’s test split. Supervised methods
shown with hatching. Lower is better. Method color and position is consistent be-
tween plots. TrackFlow significantly improves over prior work on both pedestrian and
wheeled VRUs. Notably, Bucket Normalized EPE quantitatively demonstrates signifi-
cant method performance differences not highlighted in Threeway EPE.

Bucket Normalized EPE allows practitioners to effectively compare perfor-
mance between methods that were almost indistinguishable under Threeway
EPE. For example, if you only care about flow performance on cars, DeFlow
out-performs all other methods including TrackFlow (Fig. 5a), while ZeroFlow
XL 5x out-performs all other methods on larger vehicles (Fig. 5b).

5.3 What Makes a Good Detector for TrackFlow?

As discussed in Section 4, we tune Scene Flow via Tracking with a low confidence
threshold to maximize recall. What makes a good detector for TrackFlow?

We ablate the impact of detector quality on TrackFlow by replacing LE3DE2E
[46] with BEVFusion [26]. We call this new approach TrackFlowBEVF. BEVFu-
sion only has 2% lower mAP than LE3DE2E on the AV2 detection leaderboard3,
but we find that TrackFlowBEVF performs significantly worse than TrackFlow,
with 10% to 22% drops in performance on Dynamic Normalized EPE (Table 2).

This significant degradation is the result of BEVFusion’s poor recall at low
confidence thresholds (Table 3). In contrast, LE3DE2E has very high recall at
low thresholds (Fig. 7), producing many candidate boxes for pedestrians in the
3 BEVFusion [26] was second on the Argoverse 2 2023 3D Detection, Tracking and

Forecasting challenge [33–35].
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0.0 0.2 0.4 0.6 0.8 1.0

mean Dynamic Normalized EPE

ZeroFlow 1x
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ZeroFlow 3x

ZeroFlow 5x

ZeroFlow XL 3x

ZeroFlow XL 5x

NSFP

DeFlow

TrackFlow (ours)
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Fig. 6: Average Dynamic Normalized EPE of recent supervised and unsupervised scene
flow estimation methods on Argoverse 2’s test split. Supervised methods shown with
hatching. Lower is better. Our simple baseline achieves state-of-the-art performance,
suggesting that supervised scene flow methods should embrace point-level class re-
balancing.

BEVFusion

LE3DE2E

Fig. 7: A qualitative comparison of the recall of BEVFusion and LE3DE2E. LE3DE2E
has much higher recall, allowing it to pick out pedestrians BEVFusion missed (circled
in red), and better quality box heading estimates. Both detectors are using a confidence
threshold of 0.2.

scene. BEVFusion’s false negatives are extremely costly to TrackFlowBEVF, as
they result in

−→
0 flow estimates that miss 100% of each false positive pedestrian’s

motion.
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Class Static (Avg EPE) Dynamic (Norm EPE)

BACKGROUND -0.000228 -
CAR +0.039049 +0.117944
OTHER VEHICLES +0.009013 +0.224830
PEDESTRIAN +0.007187 +0.224250
WHEELED VRU -0.025889 +0.151373

Table 2: Relative Bucket Normalized EPE performance of TrackFlowBEVF compared
to TrackFlow, on the Argoverse 2’s test split. Increases in error (worse) are shown with
a + in red, and decreases in error (better) are shown with a - in green. TrackFlow’s ab-
solute results are shown in Table 1.BEVFusion only has 2% lower mAP than LE3DE2E
on the AV2 detection leaderboard, but performs significantly worse than TrackFlow on
Dynamic Normalized EPE.

Confidence Mean Dynamic Norm EPE
0.1 0.4816
0.2 0.4643
0.3 0.6008
0.4 0.8176

Table 3: Mean Dynamic Bucketed EPE values for TrackFlowBEVF using various
confidence thresholds for the detector. Lower confidences with higher recall significantly
improve Dynamic Norm EPE performance.

More broadly, a good detector for Scene Flow via Tracking isn’t necessarily
one with a high mAP; it’s is one with very high recall and accurate heading
estimates. Notably, these error characteristics enable the tracker to reject false
positives. We believe this interaction between the detector and tracker is an
important yet subtle point — two detectors may have the same mAP, but dra-
matically different performance in our Scene Flow via Tracking framework.

6 Conclusion

In this work, we highlight that current scene flow methods consistently fail to
describe motion on pedestrians and other small objects. We demonstrate that
current standard evaluation metrics hide this failure and present Bucket Normal-
ized EPE, a new class-aware, speed normalized evaluation protocol, to quantify
this failure. In addition, we present TrackFlow, a frustratingly simple supervised
scene flow baseline that achieves state-of-the-art on Threeway EPE and Bucket
Normalized EPE. We argue that current evaluation protocols fail to reveal perfor-
mance across the distribution of safety-critical objects, and do not contextualize
absolute errors in the context of an object’s speed. Moreover, we highlight that
class and speed aware evaluation is important even if a method has zero human
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(a) Ground Truth (b) FastFlow3D (c) DeFlow (d) NSFP (e) ZeroFlow (f) TrackFlow

Fig. 8: Visualizations of different methods on diverse scenes in Argoverse 2. Each
method is estimating flow from the blue to the green point cloud.

Row 1: Two pedestrians in left foreground with cars moving in the background. Track-
Flow is the only method able to describe the pedestrian motion.

Row 2: Three pedestrians walking across an intersection in front of a stationary car.
DeFlow is able to capture the furthest pedestrian, but only TrackFlow is able
to capture the motion of all three. TrackFlow also falsely estimates motion of
the moving box truck in the background.

Row 3: Top view of pedestrians walking down the sidewalk between a building and
several cars parked in the street. TrackFlow is the only method able to describe
the pedestrian motion.

Row 4: Pedestrians walking down the sidewalk next to a moving car. TrackFlow is
the only method able to describe the pedestrian motion.

Row 5: Two bicyclists riding across an intersection next to driving cars. Most methods
are able to capture the training bicyclists and the moving cars, but only NSFP
and TrackFlow are able to capture the lead bicyclist.

Row 6: Two pedestrians walk across an intersection while a car drives parallel to them.
All methods capture the car motion, but only DeFlow, NSFP, and TrackFlow
capture most of the pedestrian motion. TrackFlow also falsely estimates mo-
tion of one of the parked cars far down the street in the background.
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supervision. Importantly, we cannot expect any method to meaningfully gener-
alize to the long tail of unknown objects if it cannot provide high quality motion
descriptions on a known set of objects. Lastly, TrackFlow outperforms prior art
by a wide margin because it leverages recent advances in class imbalanced learn-
ing. Our approach highlights that supervised scene flow methods should adopt
many of the lessons learned by the detection community to properly address
class and point imbalances.

6.1 Limitations

TrackFlow only predicts rigid flow for objects within LE3DE2E’s fixed taxon-
omy because it uses a closed-world bounding box based detector. However, as
discussed in Appendix D, these limitations can be addressed with a different
detector architectures, and is not a fundamental limitations of the Scene Flow
via Tracking framework.
Acknowledgements: This work was supported in part by funding from the
NSF GRFP (Grant No. DGE2140739). This work was in part supported by
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