
Rethinking Unsupervised Outlier Detection via
Multiple Thresholding

Zhonghang Liu1 , Panzhong Lu2 , Guoyang Xie3,4 , Zhichao Lu4 , and
Wen-Yan Lin1

1 Singapore Management University
2 Westlake University

3 Contemporary Amperex Technology Co., Limited
4 City University of Hong Kong
zhliu.2020@phdcs.smu.edu.sg
lupanzhong@westlake.edu.cn

guoyang.xie@ieee.org
luzhichaocn@gmail.com
daniellin@smu.edu.sg

Abstract. In the realm of unsupervised image outlier detection, assign-
ing outlier scores holds greater significance than its subsequent task:
thresholding for predicting labels. This is because determining the op-
timal threshold on non-separable outlier score functions is an ill-posed
problem. However, the lack of predicted labels not only hinders some
real applications of current outlier detectors but also causes these meth-
ods not to be enhanced by leveraging the dataset’s self-supervision. To
advance existing scoring methods, we propose a multiple thresholding
(Multi-T) module. It generates two thresholds that isolate inliers and
outliers from the unlabelled target dataset, whereas outliers are employed
to obtain better feature representation while inliers provide an uncon-
taminated manifold. Extensive experiments verify that Multi-T can sig-
nificantly improve proposed outlier scoring methods. Moreover, Multi-
T contributes to a naive distance-based method being state-of-the-art.
Code is available at: https://github.com/zhliu-uod/Multi-T.

Keywords: Unsupervised outlier detection, multiple thresholding, out-
lier scoring

1 Introduction

Which is more important for the unsupervised outlier detection (UOD), outlier
score or label? Currently, the mainstream UOD approaches [23, 28, 31, 56] fo-
cus on the first, i.e., learning a discriminative outlier score function. However,
those recent outlier detectors are usually complex and non-iterative since the
absence of predicted labels limits these methods to be further advanced with the
dataset’s self-supervision. Such that, this work tends to label the unlabelled tar-
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Fig. 1: Unlike the default UOD paradigm (a) concerned about learning a discriminative
score function, our perspective (b) is to explore the dataset’s prior knowledge via
thresholding, to advance the previously proposed method. (c) illustrates the significant
improvement of DeepSVDD [50] with Multi-T module.

get dataset, thereby leveraging the dataset’s prior knowledge to enhance simple
outlier scoring methods1, achieving state-of-the-art (SOTA) results efficiently.

To understand the importance of the target dataset’s self-supervision, we first
decompose the predominant image outlier scoring approaches [9, 32, 50, 51] into
two continuous stages: inlier/normal manifold learning and distance/similarity
inference. There is no doubt that identifying inliers will contribute to learning an
uncontaminated inlier manifold (e.g. the hypersphere of DeepSVDD [50]). Addi-
tionally, motivated by Shell Theory [32,33] in the high-dimensional space, image
feature representation for distance computation can be significantly improved
via outliers-based Shell Normalization [32]. Such that it is critical to obtain the
thresholds that separate both inliers and outliers from target datasets.

To align with our above objective, we present a Multi-T module, which follows
a multiple thresholding mechanism. Compared with conventional single thresh-
olding methods [19, 24, 48, 49], Multi-T generates two distinct thresholds that
separably isolate outliers and inliers from the target dataset, which is capable of
dealing with the inevitable inseparability of the initial given score distribution.
This allows us to directly implement Multi-T on a simple outlier score function.

By understanding the impact of the outlier ratio, Multi-T involves two stages:
Uncontaminated inliers. We employ an iterative two-step process (i) identi-
fying a noisy inlier distribution through the analysis of sorted initial score func-
tion, i.e., Ergodic-set normalized [34] distance to the mean of target dataset; (ii)
subsequently filtering outliers with 3-sigma rule [42]. When converged, we can
identify uncontaminated inliers, thereby training an inlier/normal manifold.
Adaptive outliers. The uncontaminated inliers identification process also out-
puts a series of outlier threshold candidates. Subsequently, we compare the
ranking-index similarity between Ergodic-set Normalization [34] and Shell Nor-
malization [32] on the initial outlier score function. The structural consistency
and contrastive properties of the two normalization procedures motivate us to
implicitly estimate a rough outlier ratio, thereby detecting the adaptive outliers.

The Multi-T module is training-free, highly efficient and grants the adaptive-
ness to choose thresholds suited to downstream implementations. As evaluated

1 Outlier scoring methods refers to the classical outlier detectors.
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with comprehensive experimental settings, Multi-T helps to boost significant
performance (efficacy and efficiency) improvement. For example, the AUC score
of DeepSVDD [50] is improved from 0.622 to 0.925 on STL-10 dataset [15]. More-
over, the naive distance-to-the-target dataset’s mean [32] metric integrated with
Multi-T achieves SOTA results with only 1.2 second consumption for 10, 000
ResNet-50 [21] samples that are orders of magnitude faster than baselines. Our
primary contributions are summarized below:
− We introduce a novel perspective for UOD about enhancing previously pro-
posed scoring methods via thresholding on a simple initial outlier score function.
− We present a multiple thresholding (Multi-T) module that generates two dif-
ferent thresholds to separate both inliers and outliers from the target dataset.
− The efficacy of integrated scoring methods can be significantly improved with-
out the external complexity increase, as evaluated in extensive experiments.

2 Related Work

2.1 Unsupervised Outlier Detection

Classic UOD task aims to assign an outlier score/likelihood to an image sam-
ple. The recent models can be divided into inlier-manifold learning and outlier
exposure. Inlier-manifold learning assumes that inliers are the majority. Deep
learning-based outlier detectors, as illustrated in studies [14, 28, 30, 38, 56, 58,
62, 63], typically focus on reducing the dimensionality of image data by pro-
jecting it into a latent and discriminative space. Additionally, various statistics-
based methods model the inlier manifold using discrimination-based [32, 34] or
density-based approaches [11, 26, 31, 40]. In applications where outliers are not
the minority [13, 57], different approaches are required. Some outlier exposure
methods [22,36] employ out-of-distribution (OOD) data to train networks for de-
tecting unseen OOD samples. For example, Shell-Renormalization [32] employs
predicted outlier candidates to iteratively refine feature representation. It is par-
ticularly useful in scenarios where classic manifold learners, assuming outliers as
a minority, may not be effective. However, these two paradigms are separable,
this work will attempt to design a thresholding framework that generates both
inliers and outliers, leveraging the benefits of both. inlier-manifold learning and
outlier exposure.

2.2 Thresholding

Some traditional outlier detection methods [32, 35, 52], provide both the outlier
score and its corresponding threshold concurrently. In this context, the thresh-
old manifests as a hypersphere that accepts the inliers while rejecting those out-
liers. Unquestionably, discerning it presents its challenges in high-dimensional
space [34]. In response, we venture into an alternate perspective. Some other
threshold detectors are mostly based on statistical analysis that can be uti-
lized for any given 1-d outlier score function [28, 31, 32]. The representative
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works involve Kernel-based [43, 48]; Curve-based [17]; Normality-based: [5, 10];
Filtering-based [19, 55]; Statistical-based [1, 3, 4, 6–8, 11, 12, 16, 24, 37, 49] and
Transformation-based [25, 46]. In practice, the default thresholding follows a
single thresholding paradigm is not realistic since the perfect discriminativeness
of the outlier score function is usually not assumed. Therefore, this work intro-
duces a new perspective: multiple thresholding.

3 Overview

3.1 Problem Definition

Before introducing our method, we first formally define the problem. The target
dataset Z = Zin∪Zout involves n unlabelled images, here Zin and Zout represent
inliers (normal data) and outliers (anomalous data), respectively. The outlier
(contamination) ratio γ ∈ (0, 1) is denoted as #Zout

#Zin+#Zout
. Notably, this setup

differs from the related semi-supervised outlier detection task by eliminating the
need for a prior train/test split for the target dataset. Aligning with previous
works [28, 32, 34], the raw images are extracted to feature representation X =
Xin ∪ Xout = {xi}ni=1 with pixel representation [32, 34] or pre-trained neural
networks (e.g., ResNet [21] and CLIP [45]). The main objective of UOD is to
create an outlier score function F(·) to evaluate the likelihood of an image feature
xi ∈ X being outliers:

Y(xi) =

{
0, F(xi) < ϕ
1, F(xi) ≥ ϕ,

(1)

where Y = 0 (inlier)/1 (outlier) refers to predicted labels and ϕ is the threshold
(decision boundary). In this study, we not only center on evaluating the ranking
accuracy of F(·) [28,32,34,50], but also measure the efficacy of the threshold ϕ.

3.2 Rethinking UOD

As there is no prior train/test split for the target dataset, a classic outlier scoring
method M(·) predicts the outlier score function F(X) = {F(xi)}ni=1 follows the
below process:

F(X) = M.fit(X).predict(X), (2)

where fit(·) and predict(·) refer to fitting the target dataset and predicting outlier
scores, respectively. Motivated by previous research [32,33], Shell normalization
S-norm(·) illustrated below is an ideal feature de-noising/refining paradigm.

S-norm(xi,vS) =
xi − vS

||xi − vS||2
,vS =

[
1

n

n∑
i=1

Xout[i][1], · · · ,
1

n

n∑
i=1

Xout[i][d]

]
,

(3)
where || · ||2 refers to ℓ2-norm and d is the feature dimension. Thus, our first
stage is to identify outlier candidates X′

out. Subsequently, as how some one-class
learning-based methods (e.g., OCSVM [51], DeepSVDD [50]) usually perform,
we secondly predict the inliers X′

in to fit an inlier/normal manifold. Thus, our
objective is to identify both X′

in and X′
out.
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Fig. 2: The overall paradigm of adopting the multi-thresholds learning (Multi-T) mod-
ule to advance the existing outlier scoring methods. (a) The preparation consists of fea-
ture extraction and an initial outlier score function. (b) Visualization of our Multi-T
module. (c) Integrating the predicted inliers and outliers with the previously proposed
outlier detectors and obtaining an enhanced outlier score function.

4 Method

Our solution is displayed as below subsections. Sec. 4.1: we introduce the initial
outlier score function; Sec. 4.2: we present the Multi-T module, to generate two
thresholds for separating inliers and outliers from the target dataset; Sec. 4.3: we
leverage predicted inliers and outliers to advance previously proposed methods.

4.1 Initial Outlier Score Function

In our approach, we employ LVAD [34], one of the UOD SOTAs, as the initial
outlier score function. LVAD assumes each image feature xi ∈ X comes from
one of T high-dimensional generative processes. Thus, the outlier score becomes
a sum of the weighted distance of the given instance, xi, arising from each
generative process {wt,mt | t ∈ {1, . . . , T}}, which can be simplified as:

FLVAD(xi) =

T∑
t=1

wt · Dist(E-norm(xi),E-norm(mt)), (4)

where Dist(·) refers to the ℓ2-norm metric (Euclidean distance), wt is the weight
of the t-th generative process, mt is the t-th generative process’s centroid and
E-norm(·) refers to the Ergodic-set normalization, an effective and outlier ratio
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Algorithm 1: MTL
1 Input: Initial Outlier Score Function: Finit(X), Outlier Scoring Method: M(·)
2 Output: Advanced Outlier Score Function: FM+Multi-T(X)
3 // Stage 1: Identifying Uncontaminated Inliers
4 for b in iterations do
5 if not converged then
6 F̂init(X) = sort(Finit(X)) // sort-transform(Eq.9)

7 Ib =
{

F̂init(xi)|i < maxi

{
g(ai) > F̂init(xi)

}}
// linear-fit(Eq.10)

8 ϕb
out = mean(Ib) + 3 · std(Ib) // outlier threshold (Eq.11)

9 Ib+1 = Ib. remove({Finit(xi)|Finit(xi) > ϕb
out}) // filtering(Eq.11)

10 b = b+ 1

11 Converged b : b∗

12 ϕin = max(Ib
∗
) // inlier threshold(Eq.12)

13 X′
in = {xi|Finit(xi) ≤ ϕin} // predicted inliers(Eq.13)

14 // Stage 2: Identifying Adaptive Outliers
15 ρ← similarity(FS(X),FE(X)) // outlier ratio estimation(Eq.15,16)
16 if ρ > 0.3 then
17 ϕout = ϕ∗

out
18 else
19 if 0.1 ≤ ρ ≤ 0.3 then
20 ϕout = ϕ1

out
21 else
22 ϕout = ϕ0

out

23 X′
out = {xi|Finit(xi) > ϕout} // predicted outliers(Eq.20)

24 // Stage 3: Adopting Multi-T to Outlier Scoring Method
25 return M.fit({S-norm(xi,v

′
S)|xi ∈ X′

in}).predict({S-norm(xi,v
′
S)|xi ∈ X})

invariant normalization procedure, illustrated as follows:

E-norm(xi,vE) =
xi − vE

||xi − vE||2
,vE =

[
1

n · d

n∑
i=1

d∑
j=1

xi,j , · · · ,
1

n · d

n∑
i=1

d∑
j=1

xi,j

]
,

(5)
where vE is its reference vector and j is the dimension index. To gain higher
efficiency and maintain efficacy, we set T = 1, such that the initial outlier score
function (LVAD-S) is formulated as:

Finit(X) = FLVAD-S(X) = {Dist(E-norm(xi,vE),E-norm(mX,vE))}ni=1,

mX =

[
1

n

n∑
i=1

xi,1, · · · ,
1

n

n∑
i=1

xi,d

]
,

(6)

where mX is the mean of target dataset’s features. Despite its simplicity, Eq. 6
is still a reliable outlier scoring method [34].
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4.2 Multi-T: Multiple Thresholding

Motivation. In the field of UOD, the conventional thresholding paradigm is to
learn a single threshold ϕ on the initial outlier score function Finit(X). However,
it ignores the impact of the outlier ratio γ. As the mean of target dataset mX

will be shifted to outliers when γ becomes higher, i.e., mean-shift problem [47],
there will be an inevitable overlap between inlier and outlier score distributions.
So we define the distribution of the initial outlier score function D as follows:

D = Finit(X) = Finit(Xin) ∪ Finit(Xout) = I ∪A ∪O, (7)

where I and O refer to the uncontaminated inlier and outlier score distributions,
A refers to the overlap. Such that we are concerned about multi -thresholding
instead of the conventional way that explicitly finding a single threshold between
Finit(Xin) and Finit(Xout). Specifically, our objective is identifying the inlier
threshold ϕin and outlier threshold ϕout that isolate I and O from D.
Identifying uncontaminated inliers. We identify I by understanding the
initial outlier score function (Eq. 6), which computes the normalized ℓ2-norm of
each instance xi ∈ X relative to the mean of X. Inspired by Shell Theory [32],
I satisfies a Gaussian-like distribution, the classic statistical estimation of I is:

I = {Finit(xi)|Finit(xi) < mean(D) + k · std(D)} , (8)

where mean(D) and std(D) refer to the mean and standard deviation, k is the
hyper-parameter of the "k-sigma" rule. In practice, optimizing k without super-
vision is challenging. Thus, we convert to a non-parametric way by utilizing an
ascending sort projection sort(·) to Finit(X), which projects D into a 2-d space
(x-axis: instance index, y-axis: sorted outlier score), the sorted outlier score is:

F̂init(X) = sort(F̂init(X)), i.e., F̂init[i+ 1] > F̂init[i]. (9)

Intuitively, Î = sort(I) can be fitted with a naive linear regressior g(a) = β⊤ ·a =
β0 + β1 · a, as shown in Fig. 2 (b). So we identify the potential inliers as:

I =
{

F̂init(xi)|i < max
i

{
g(ai) > F̂init(xi)

}}
, s.t.min

β
||a⊤β − F̂init(X)||2,

(10)
where β is the coefficients. Inevitably, this fitting process will be shifted with
outliers, which is addressed together with the following outliers’ identification.
Identifying adaptive outliers. In statistics, 3-sigma rule [42] declares vari-
ables C has a large probability within three standard deviations from the mean
if C follows a Gaussian-like distribution. So we employ it with two aspects:
(i) iteratively filter outliers during the phase of inliers identification:

ϕb
out = mean(Ib) + 3 · std(Ib), Ib+1 = Ib. remove({Finit(xi)|Finit(xi) > ϕb

out}),
(11)

where b refers to the b-th iteration. When converged, the inlier threshold is:

ϕin = max(Ib
∗
), (12)
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where Ib
∗

refers to the converged inlier prediction and we can identify inliers as:

X′
in = {xi|Finit(xi) ≤ ϕin}. (13)

(ii) During the above phase, we estimate the outlier threshold candidates:

ϕ1
out = mean(I1) + 3 · std(I1), ϕ∗

out = mean(Ib
∗
) + 3 · std(Ib

∗
), (14)

where ϕ1
out, ϕ∗

out refer to the outlier threshold candidates at the first and final it-
erations, respectively, i.e., ϕ1

out > ϕ∗
out. To obtain a γ-adaptive outlier threshold,

we consider the impact and relationship of two mentioned normalization pro-
cedures: Shell Normalization S-norm(·) (Eq. 3) and Ergodic-set Normalization
E-norm(·) (Eq. 5). Both them follow a similar normalization formula (denomi-
nator: ℓ2-norm), the difference is their reference vectors v′

S and vE, contrast as:

v′
S =

[
1

n

n∑
i=1

X′
out[i][1], · · · ,

1

n

n∑
i=1

X′
out[i][d]

]
,

vE =

[
1

n · d

n∑
i=1

d∑
j=1

xi,j , · · · ,
1

n · d

n∑
i=1

d∑
j=1

xi,j

]
.

(15)

Obviously, Shell normalization is strongly subjective to the efficacy of outlier
prediction X′

out while Ergodic-set Normalization is independent with γ that is
a sub-optimal but stable operation. To compare these two normalization pro-
cedures, we first employ them to Eq. 6, and obtain two outlier score functions:

FS(X) = {Dist(S-norm(xi,v
′
S), S-norm(mX,v′

S))}ni=1,

FE(X) = {Dist(E-norm(xi,vE),E-norm(mX,vE))}ni=1,
(16)

where v′
S comes from X′

out obtained by MAD [6] (Shell Normalization’s default
thresholding method that is only effective on high-γ). Subsequently, two out-
lier score functions FS(X) and FE(X) are arranged in ascending order, and we
denote the ranked-index lists as RS and RE. The outlier ratio γ can be ap-
proximately estimated with the similarity between RS and RE since FS(X) and
FE(X) share a consistent structure (distance-to-the-mean), making RS and RE
comparable. Besides, FE(X) serves as a reliably effective baseline. When γ is
low, S-norm(X,v′

S) tends to under-perform, lead the similarity between RS and
RE becomes low. In contrast, with a high γ, S-norm(X,v′

S) merely refines the
ranking of a small number of outliers, indicative of high similarity. The similarity
ρ ∈ [−1, 1] is computed with the Pearson correlation coefficient:

ρ =
cov(RS,RE)

std(RS) · std(RE)
, (17)

where cov(RS,RE) and std(RS)/ std(RE) are the covariance and standard devi-
ation of the rank variables. If the similarity is relatively low (< 0.1), we compute
the 3-sigma of the entire outlier score distribution D as the outlier threshold:

ϕ0
out = mean(D) + 3 · std(D). (18)
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It is a conservative estimator for outliers since the above linear fitting might suffer
from some challenges at low-γ since there is no explicit outlier score distribution.
If the similarity is large (> 0.3), we choose the relatively smooth outlier threshold
ϕ∗

out, while ϕ1
out is used for middle-γ cases. The outlier threshold is described as:

ϕout =

ϕ∗
out , if ρ > 0.3

ϕ1
out , if 0.1 ≤ ρ ≤ 0.3

ϕ0
out , otherwise

(19)

Therefore, we can subsequently identify outlier ratio invariant outliers as:

X′
out = {xi|Finit(xi) > ϕout}. (20)

4.3 Implementation

Firstly, we can directly employ Multi-T with the distance-to-the-mean paradigm:

FMulti-T(X) = {Dist(S-norm(xi,v
′
S), S-norm(mX′

in
,v′

S))}ni=1,

v′
S =

[
1

n

n∑
i=1

X′
out[i][1], · · · ,

1

n

n∑
i=1

X′
out[i][d]

]
,

mX′
in
=

[
1

n

n∑
i=1

X′
in[i][1], · · · ,

1

n

n∑
i=1

X′
in[i][d]

]
.

(21)

Secondly, Multi-T can be integrated with UOD methods M(·), illustrated as:

FM+Multi-T(X) = M.fit({S-norm(xi,v
′
S)|xi ∈ X′

in})
.predict({S-norm(xi,v

′
S)|xi ∈ X}).

(22)

5 Experiments

We cover our experiments for (i) comparing with other threshold learners on
dataset splitting (Sec. 5.1); (ii) measuring the performance improvement of
adopting the Multi-T to previously proposed outlier scoring methods (Sec. 5.2).
Benchmarks and Feature Extraction. Based on the existing research [32,34],
we use the raw pixel representation for grayscale datasets, including MNIST [29]
and Fashion-MNIST [59]. For RGB datasets such as STL-10 [15], Internet [32],
CIFAR-10 [27], MIT-Places-Small [61], we adopt two deep feature extractors:
ImageNet pretrained [20] ResNet-50 [21] (ResNet)2, and CLIP [45].
Target Dataset. In our experiments, each class within a benchmark dataset is
alternatively regarded as inliers, with instances from all other classes considered
outliers. The target dataset includes all inliers along with a randomly selected
subset of outliers. Results for each dataset are averaged across all classes. Ad-
ditionally, for every round, we further average the results over a wide range of
outlier ratios: [0.05, 0.1, 0.2, 0.3, 0.4]3, to assess the method’s robustness/stability.

2 Unless otherwise stated, ResNet-50 is the default feature extractor.
3 Unless otherwise stated, the experimental results are averaged across [0.05, · · · , 0.4].
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Fig. 3: Qualitative results compared with SOTA threshold learners. The experiments
are conducted on STL-10 (Inlier class: Monkey).

5.1 Threshold Learning

Competing Methods. We compare our proposed Multi-T with those effec-
tive thresholding (TL) methods involving Kernel-based: AUCP [48], FGD [43];
Curve-based: EB [17]; Normality-based: DSN [5], CHAU [10]; Filtering-based:
FILTER [19], HIST [55]; Statistical-based: MTT [49], BOOT [37], QMCD [24],
CLF [7], IQR [8], KARCH [1], MCST [16], GESD [4], REGR [3], MAD [6],
CLUST [11], CPD [12] and Transformation-based: MOLL [25], YJ [46].
Evaluation Metric. The performance of general thresholding is measured with
Fβ-score, defined as follows:

Fβ =
(
1 + β2

)
· precision · recall
(β2 · precision) + recall

, (23)

where β < 1 tilts towards precision while β > 1 prioritizes recall. In this work,
we utilize F0.1-score (F0.1) and F10-score (F10) that measure the accuracy of
predicted outliers and inliers. Besides, F1-score (β = 1), a harmonic mean of the
precision and recall, is not practical for this task since the compete separability
between inliers’ and outliers’ score distributions cannot be guaranteed.
Main Results. Across a series of competing threshold learners, while one method
may achieve a commendable F0.1-score of 0.976, the corresponding F10-score is
mere 0.452, and vice versa (F10-score: 0.979; F0.1-score: 0.447). By contrast,
our solution maintains its efficacy across various evaluation criteria (F0.1-score:
0.917, F10-score: 0.980). It exhibits remarkable stability across a diverse spec-
trum of outlier ratios, as illustrated in Fig. 3. To further investigate the benefits
of our technique, Tab. 1 categorizes two groups, each representing a different
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Table 1: Average Fβ-score of thresholding methods on STL-10. "+GT Norm" refers
to the ideal initial outlier score function. "Highest Fβ" (β: 0.1, 10) refers to the method
that garners the highest Fβ-score across all baseline models. The better average result
is highlighted in bold.

Outlier Score Fun. Method (TL)
ResNet-50 CLIP

F0.1 F10 Avg. F0.1 F10 Avg.

LVAD-S [34]
Highest F0.1 0.911 0.454 0.682 0.936 0.401 0.669
Highest F10 0.382 0.967 0.674 0.357 0.954 0.655
Multi-T(Ours) 0.840 0.869 0.855 0.860 0.866 0.863

+GT Norm [32]
Highest F0.1 0.976 0.452 0.714 0.977 0.448 0.713
Highest F10 0.447 0.979 0.713 0.691 0.986 0.839
Multi-T(Ours) 0.917 0.980 0.949 0.857 0.984 0.920

outlier score function. Such categorization is pivotal as threshold methods ought
to accommodate various foundational bases.

Table 2: Average AUC results compared with SOTA outlier scoring methods (outlier
detectors). Blue and Orange indicates the best and second-best results, respectively.

Method (OS)
STL-10 CIFAR-10 CIFAR-100 MIT-Places MNIST

ResNet CLIP ResNet CLIP ResNet CLIP ResNet CLIP Pixel

IF [35] 0.836 0.943 0.780 0.891 0.790 0.866 0.687 0.868 0.776
LOF [11] 0.628 0.626 0.673 0.621 0.839 0.849 0.556 0.520 0.754
RSRAE [28] 0.962 0.938 0.862 0.879 0.914 0.885 0.874 0.876 0.793
ECOD [31] 0.907 0.981 0.873 0.935 0.873 0.918 0.777 0.943 0.734
LUNAR [18] 0.776 0.821 0.767 0.774 0.838 0.899 0.643 0.871 0.797
Shell-Re. [32] 0.862 0.838 0.860 0.813 0.835 0.813 0.826 0.914 0.776
LVAD [34] 0.954 0.968 0.860 0.917 0.921 0.917 0.844 0.919 0.867
Multi-T 0.968 0.989 0.895 0.957 0.938 0.956 0.867 0.974 0.897
DeepSVDD [50] 0.622 0.597 0.560 0.509 0.563 0.581 0.583 0.549 0.513
+Multi-T 0.925 0.921 0.769 0.819 0.835 0.826 0.755 0.832 0.732
Improve. 48.7% 54.3% 37.3% 60.9% 48.3% 42.2% 29.5% 51.6% 37.9%
OCSVM [51] 0.927 0.921 0.826 0.850 0.879 0.850 0.826 0.871 0.831
+Multi-T 0.957 0.965 0.859 0.916 0.916 0.899 0.846 0.924 0.863
Improve. 3.24% 4.78% 4.00% 7.76% 4.21% 5.76% 2.42% 6.08% 3.85%
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5.2 Outlier Scoring

Competing Methods. We compare two themes of baseline outlier scoring (OS)
methods: (i) statistical-based methods: IF [35], OCSVM [51], DeepSVDD [51],
ECOD [31], LUNAR [28], RSRAE [28], Shell-Re. [32], LVAD [34]. (ii) deep-
learning-based models: GOAD [9], ICL [53], REPEN [39], NeuTraL [44], SLAD
[60]. For a fair comparison, we apply Ergodic-set normalization [34] if it improves
the performance of the baseline algorithms, such as IF [35], OCSVM [51].
Evaluation Metric. The performance of outlier scoring (ranking accuracy) is
primarily assessed using the Area Under the Receiver Operating Characteristic
curve (AUC). This metric provides a thorough assessment of ranking accuracy.
Main Results. Tab. 2 shows that Multi-T can be seamlessly integrated with
two classic outlier scoring methods: DeepSVDD [51], and OCSVM [51] while ex-
hibiting significant improvements in both efficacy and stability across a diverse
range of outlier ratios and various benchmarks. In most of our experiments,
Multi-T itself achieves SOTA results. Notably, even in the case of non-aligned
and low-resolution datasets like CIFAR-10 [27] and CIFAR-100 [27], which are
known to pose challenges [41]. It surpasses the current SOTA AUC scores by
margins of 7.76% and 5.76% for CIFAR-10 and CIFAR-100, respectively. Addi-
tionally, we observe a logical and significant enhancement in performance with
improved feature representation, e.g., for the MIT-Places [61] dataset, the AUC
improves from 0.867 using ResNet-50 [21] to 0.974 with CLIP [45].

Table 3: Average AUC results, for more outlier scoring methods with(w/) or with-
out(w/o) our Multi-T module, conducted on STL-10.

Feature
IF [35] ECOD [11] ABOD [26] PCA [54] GMM [2]

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/
ResNet 0.836 0.899 0.907 0.919 0.665 0.883 0.865 0.945 0.859 0.952
CLIP 0.943 0.983 0.981 0.984 0.715 0.909 0.984 0.994 0.892 0.962
Avg. 0.890 0.941 0.944 0.951 0.690 0.896 0.925 0.970 0.876 0.957

Feature
GOAD [9] ICL [53] REPEN [39] NeuTraL [44] SLAD [60]

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/
ResNet 0.952 0.962 0.934 0.957 0.877 0.889 0.854 0.950 0.941 0.962
CLIP 0.961 0.989 0.951 0.982 0.879 0.930 0.851 0.971 0.945 0.985
Avg. 0.957 0.975 0.943 0.970 0.878 0.909 0.853 0.961 0.943 0.973

In Tab. 3, we present the results of Multi-T integrated with more methods
involving both statistical and deep models, which shows its broad applications.
Moreover, our solution excels not just in detection accuracy but also in running
speed since Multi-T compresses the size of fitting data, as illustrated in Tab.
4, 5. In Fig. 4, we compare with the most related work Shell-Re. [32], which
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has a built-in Robust-Least-Square (RLS) thresholding procedure with MAD
[6]. Apparently, our method is capable of estimating multiple thresholds that
facilitate a clear demarcation of diverse scenarios (outlier ratio, dataset domain,
and feature representation).

Table 4: Efficiency comparison for outlier
scoring. Timing is measured with 10,000
samples, GPU: NVIDIA RTX 3080.

Method (OS) Device Time (↓)

LVAD [34] CPU 645.2s
RSRAE [28] GPU 121.6s
Multi-T CPU 1.2s
OCSVM [51]

CPU
154.8s

+Multi-T 105.4s
GOAD [9]

GPU
268.1s

+Multi-T 211.7s

Table 5: Efficiency comparison for
thresholding. All thresholding methods
are conducted on CPU.

Method (TL) Time (↓)

CPD [12] 3.61s
FWFM [19] 1.26s
DSN [5] 3.79s
CLUST [11] 7.36s
AUCP [48] 1.26s

Multi-T 0.97s

0.63

0.72

0.81

0.90

0.99

A
U

C

STL-10 (ResNet-50)

Shell-Re.
Multi-T

STL-10 (CLIP)

Shell-Re.
Multi-T

Internet (ResNet-50)

Shell-Re.
Multi-T

Internet (CLIP)

Shell-Re.
Multi-T

0.69

0.76

0.83

0.90

0.97

A
U

C

CIFAR-10 (ResNet-50)

Shell-Re.
Multi-T

CIFAR-10 (CLIP)

Shell-Re.
Multi-T

CIFAR-100 (ResNet-50)

Shell-Re.
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Shell-Re.
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Outlier Ratio

0.51

0.63

0.75
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Shell-Re.
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0.05 0.1 0.2

Outlier Ratio
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Multi-T
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Multi-T
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MNIST (Pixel)
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Fig. 4: AUC results of Multi-T compared with Shell-Re. [32] over various outlier ratios.

Discussions. We conclude the feasibility of adopting Multi-T to outlier scoring
methods into three aspects: (i) both normalization with outliers and manifold
learning with inliers are necessary for most of outlier scoring methods; (ii) De-
spite the initial outlier score distribution (Eq. 6) is usually not perfectly sepa-
rable, it provides a reliable baseline. (iii) Multi-T is able to isolate the overlap
region and predict both uncontaminated inliers.



14 Z. Liu et al.

Table 6: Ablation study for DeepSVDD
and LVAD-S with Multi-T (γ: 0.2).

DeepSVDD AUC LVAD-S AUC

+Multi-T 0.950 +Multi-T 0.971
w/o In 0.643 w/o In 0.965
w/o Out 0.939 w/o Out 0.951

Table 7: Comparison with k-sigma.

Metric Method Score

F
0
.1 3-sigma 0.406

Multi-T 0.840

F
1
0 1-sigma 0.806

Multi-T 0.869

5.3 Ablation Study

The experiments thus far have established the effectiveness of Multi-T. However,
there remains a concern regarding how sensitive the performance improvement
is to Multi-T’s two primary components: adaptive outliers (Out) and uncon-
taminated inliers (In), which refer to the normalization and manifold learning
procedures, respectively. We select two representative outlier scoring models:
DeepSVDD [50] and LVAD-S [34], whereas DeepSVDD follows a widely-used
outlier detection mechanism, i.e., learning the normality (hyper-sphere), and
identifying inliers is of great significance. Without predicted inliers, the AUC
result decreases from 0.950 to 0.643 on STL-10, shown in Tab. 6. Additionally,
since the normalization procedure can be considered as a distance de-noising
procedure [33], Multi-T will contribute to those methods with distance compu-
tation, e.g., the result of LVAD-S is improved from 0.951 to 0.971 on STL-10
and 0.838 to 0.882 on CIFAR-10, which verify our prior assumption that the
identification of both inliers and outliers is of great significance, which enhances
the reliability of of multiple thresholding perspective. Moreover, Tab. 7 indicates
that our thresholding process markedly surpasses the classical k-sigma rule [42].

5.4 Limitation

Our method is tied to the ranking accuracy (separability) of the initial outlier
score function. Based on most related works, we consider UOD as an one-class
learning task (only one inlier/normal class in the target dataset). However we
find in some specific cases, there might exist multi-normal classes, e.g., the digit
5 class of the MNIST dataset. In that case, the efficacy of our method might
be decreased. Additionally, this statistical-based method has limitations in very
small-scale datasets since the "three-sigma" rule will be less effective.

6 Conclusion

This work introduces a novel perspective for UOD about advancing existing
outlier detectors (scoring methods) via thresholding. To this end, we propose a
multiple thresholding (Multi-T) module, to label the unlabelled target dataset.
Comprehensive experiments verify that the Multi-T can significantly improve
both the efficacy and efficiency of previously proposed outlier scoring methods.
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