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1 Network Details

In this section, we present network details of the diffusion prior model and tri-
plane diffusion model.

Diffusion Prior Model The network architecture of the diffusion prior model is
a MLP with skip connections between layers at different depths as shown in Fig.
1. The diffusion backbone consists of multiple ResBlocks. In each block, image
embedding is injected into the block through concatenation, and the timestep
embedding is injected through addition.
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Fig. 1: Diffusion Prior Network.

Triplane Diffusion Model The diffusion backbone is a UNet, which contains
multiple ResBlocks and down/up sample layers as shown in Fig. 2. The input
and output of each ResBlock are triplanes, we use TriConv (3D-aware convolu-
tion [3]) in each ResBlock, and the timestep embedding is injected through ad-
dition. Shape embedding es and image embedding ep are injected through cross
attention. Specifically, shape embedding es and image embedding ep are concate-
nated, which are subsequently used for predicting k ∈ Rl×c and v ∈ Rl×c, where
l is the number of tokens, c is the channels number of each token. The q ∈ Rr2×c

is a reshaped triplane, r is the resolution of triplane. The cross-attention feature
is obtained by sotfmax( qk

T

√
c
)v, and finally we reshape the cross-attention feature

back to a triplane.
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Fig. 2: Triplane Diffusion UNet.

2 Images In the Wild

In addition to testing our method on the test dataset, we also test our method
on some images outside the dataset. Specifically, we collect some images on the
internet as input. The generation results are shown in Fig. 3, demonstrating that
our method generalizes well to images in the wild.

3 Limitations and Future Work

While Compress3D has demonstrated success in generating high-quality 3D mod-
els, there are certain limitations inherent in our approach. As illustrated in Fig.4,
the resolution of 3D scene representation, as discussed in [2], imposes constraints
on the level of detail achievable for thin structures in our generated results, which
may not match those of manually modeled 3D models. Additionally, since Com-
press3D is trained on the Objaverse dataset [1], which includes samples with
illumination information, the textures generated by our method also incorpo-
rate embedded illumination details. As depicted in the second example of Fig.4,
the front of the stele appears lighter, while the back appears darker, with shad-
ows cast on the ground. Furthermore, owing to the nature of generative models,
our method may produce some 3D models that visually appear correct but de-
viate from reality. For instance, when provided with a photo of the Earth, our
method may generate a planet resembling the Earth, yet it may not precisely
replicate the real Earth. Looking ahead, our future efforts will be directed to-
wards enhancing the texture quality of 3D models and providing greater control
over the generation process.

4 More Results

We show more results of our method, in Fig. 5, Fig. 6, Fig. 7 and Fig. 8.
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Fig. 3: Generation results for images in the wild.
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Fig. 4: Limitations of our method.
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Input Generated models

Fig. 5: The generation diversity of our method.
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Fig. 6: More results of our method.
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Fig. 7: More results of our method.
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Fig. 8: More results of our method.
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