
Compress3D: a Compressed Latent Space for 3D
Generation from a Single Image

Bowen Zhang1∗ , Tianyu Yang2† Yu Li2 , Lei Zhang2 , and Xi Zhao1†

1 Xi’an Jiaotong University
2 International Digital Economy Academy (IDEA)

Input Generated 3D Models(with and without texture)

Fig. 1: Given a single-view image, our method can generate high-quality 3D Models.

Abstract. 3D generation has witnessed significant advancements, yet
efficiently producing high-quality 3D assets from a single image remains
challenging. In this paper, we present a triplane autoencoder, which
encodes 3D models into a compact triplane latent space to effectively
compress both the 3D geometry and texture information. Within the
autoencoder framework, we introduce a 3D-aware cross-attention mech-
anism, which utilizes low-resolution latent representations to query fea-
tures from a high-resolution 3D feature volume, thereby enhancing the

∗ Work done during the internship at IDEA.
† Corresponding authors.

https://orcid.org/0000-0002-7919-1748
https://orcid.org/0000-0002-9674-5220
https://orcid.org/0000-0003-1865-8276
https://orcid.org/0000-0001-6926-0538
https://orcid.org/0000-0002-3993-9870

2 Zhang et al.

representation capacity of the latent space. Subsequently, we train a dif-
fusion model on this refined latent space. In contrast to solely relying
on image embedding for 3D generation, our proposed method advocates
for the simultaneous utilization of both image embedding and shape em-
bedding as conditions. Specifically, the shape embedding is estimated via
a diffusion prior model conditioned on the image embedding. Through
comprehensive experiments, we demonstrate that our method outper-
forms state-of-the-art algorithms, achieving superior performance while
requiring less training data and time. Our approach enables the gener-
ation of high-quality 3D assets in merely 7 seconds on a single A100
GPU. More results and visualization can be found on our project page:
https://compress3d.github.io/.

Keywords: 3D Generation · Diffusion Model

1 Introduction

3D assets are widely used and have huge demand in the fields of gaming, AR/VR,
and films. However, 3D modeling is a time-consuming and labor-intensive job
and requires a long period of learning and mastering a variety of tools. Although
there are already some image generation algorithms that can assist designers in
3D modeling, directly generating high-quality 3D assets is still challenging.

Benefiting from the emergence of the large-scale image-text pairs dataset
LAION, image generation algorithms have made great progress in both gener-
ation quality and diversity. DreamFusion [26] proposed score distillation sam-
pling(SDS) for the first time, and used pre-trained 2D diffusion models to guide
the generation of 3D models. Subsequent works replace the 3D scene represen-
tation with DMtet or Gaussian Splatting and improve the optimization process,
which speeds up the generation process and improves the mesh quality. Learning-
based 3D generation is also a promising direction, and our method also falls into
this category. There have been some works [5, 10, 21] training latent diffusion
models on large-scale 3D datasets, achieving impressive results. However, none
of these methods has a highly compressed latent space, which reduces the train-
ing speed and generation speed of latent diffusion. Moreover, current 3D gener-
ation methods use text or images as conditions to directly generate 3D models.
However, these generated models usually do not conform to text or images, and
the generated mesh geometry is low-quality.

To tackle the problems above, we propose a triplane autoencoder that takes
colored point clouds as input to compress 3D model into a low-dimensional
latent space on which a two-stage diffusion model is trained to generate 3D con-
tents. [5, 21] directly project 3D point-wise features to triplanes through mean
pooling. As this process involves no learnable parameters, it inevitably leads to
the loss of 3D information. [5,21] use UNet to further refine the triplane, which
however greatly increases computation due to the high-resolution of triplanes.
We instead add learnable parameters in the process of projecting 3D point cloud
to 2D triplanes, which mitigates the information loss while avoiding significant

https://compress3d.github.io/

Compress3D 3

computational overhead. Specifically, we first convert 3D point-wise features into
3D feature volume and then use 3D convolution neural networks in 3 directions
to obtain high-resolution triplane features. We use a series of ResNet blocks and
downsample layers to get a low-resolution triplane. To further enhance the repre-
sentation ability of latents, Shap-E [10] uses multi-view images as additional in-
put and injects multi-view information via cross-attention. However, multi-view
images lack accuracy in representing 3D information and computing attention
weights between image patch embeddings and latent tokens consumes signifi-
cant time, resulting in inefficiency in encoder training. In contrast, we leverage a
3D feature volume to augment the representation capability of triplane features.
Specifically, we use triplane latent to query the 3D feature volume. This opera-
tion constitutes a local cross-attention mechanism that not only facilitates rapid
computation but also significantly enhances the expressive capacity of triplane
features.

Recovering 3D model from a single-view image is inherently an ill-posed prob-
lem. Instead of solely relying on image embedding for generating 3D, we propose
leveraging both image embedding and shape embedding as conditions simulta-
neously for 3D content generation. Shape embedding inherently contains more
3D information compared to image embedding. Therefore, incorporating shape
embedding as an additional condition for 3D generation is expected to yield
better results than conditioning solely on image embedding. To obtain shape
embedding during generation, we train a diffusion prior model to generate shape
embedding conditioned on the image embedding. Specifically, we first use a pre-
trained shape-text-image alignment model OpenShape [17] to extract the shape
embedding of 3D model and the image embedding of its corresponding rendering
image. We then train a diffusion prior model that can estimate shape embedding
conditioned on the corresponding image embedding. Since these embeddings are
aligned in the same space, it is easy to learn a model to convert image embed-
ding into shape embedding. Finally, we train a triplane latent diffusion model to
generate triplane latent conditioned on the image embedding and the predicted
shape embedding.

To summarize, our contributions are:

– We design an autoencoder capable of efficiently compressing 3D models into
a low-dimensional triplane latent space and accurately decoding them back
to high-quality colored 3D models.

– We introduce a triplane latent diffusion model that can be conditioned on
both image embeddings and shape embeddings estimated from image em-
beddings, thereby facilitating the generation of 3D models.

– We conduct extensive ablations studies to verify the effectiveness of different
components of our method and demonstrate that our method achieves high-
quality 3D generation from a single image.

4 Zhang et al.

2 Related Work

2.1 Optimization-based Methods

Different from image generation, the size of datasets for 3D generation is much
smaller than that of 2D generation. The largest 3D dataset Objaverse-XL [3]
contains 10 million 3D objects, which is far smaller than LAION [30] that is used
to train text-to-image generation models. To alleviate the problem of lacking
3D data, DreamFusion [26] proposes score distillation sampling (SDS), which
enables the use of a 2D pre-trained diffusion model as a prior for 3D optimization.
However, the optimization process takes around 2 hours for one 3D asset. Make-
it-3D [39] incorporates constrain in the reference image and employs a two-stage
optimization to achieve high-quality 3D generation. Magic3D [16] also adopts
coarse to fine two-stage optimization, and it replaces the 3D scene representation
from NeRF [22] to DMTet [31] in the refining stage, which allows it to efficiently
render high-resolution images, greatly speeding up the optimization process and
reducing the optimization time from 2 hours to 40 minutes. Recently, with the
emergence of a new 3D scene representation Gaussian Splatting [11], there are
also some works [1,38,42] that introduce this 3D representation into the field of
optimization-based 3D generation. However, generating high-quality 3D assets
using these optimization-based methods still takes several minutes.

2.2 Learning-based Methods

Limited by the scale of the 3D dataset, early learning-based 3D generation
methods were limited to generating 3D geometry only. And there has been a
large number of methods tried to explore generating point clouds [14, 41, 43],
mesh [20,24,35] and signed distance field(SDF) [2,13,23,33,34,44,45]. Due to its
sparse nature, point clouds are difficult to reconstruct fine 3D geometry. Com-
puting the signed distance field requires preprocessing of the 3D mesh, and the
geometry quality of the processed mesh will decrease. With the emergence of new
3D scene representations (NeRF [22], DMTet [31], Gaussian Splatting [11], Flex-
iCubes [32]) and large-scale 3D datasets, it is possible to replicate the successes
of image generation in the field of 3D generation. Point-E [25] train a diffusion
transformer with CLIP [28] image embedding as a condition on a large-scale
3D dataset to generate coarse colored point cloud, and then use a point cloud
upsampler to upsamle coarse colored point cloud. Compared to optimization-
based 3D generation methods, it is one to two orders of magnitude faster to
sample from. However, since the generated point cloud contains only 4K points,
it is difficult to reconstruct high-quality 3D mesh. To generate high-quality 3D
mesh, Shpa-E [10] uses a transformer encoder to encode colored point cloud and
multi-view images into parameters of an implicit function, through which mesh
and neural radiance fields can be generated. Shpa-E then trains a conditional
latent diffusion transformer to generate the parameters of the implicit function.
Shap-E demonstrates the potential of latent representation in the field of 3D
generation. Subsequent works [5,21] also train the diffusion model on the latent

Compress3D 5

Colored Point Cloud

Triplane Encoder

Triplane
Latent

Triplane Decoder

3D Model

(a) Triplane AutoEncoder

Image Embedding

Shape Embedding

Triplane UNet

ZT

T times

Image

CLIP
Image

Encoder

MLP
es

T

T times

(b) Triplane Diffusion Model (c) Diffusion Prior Model

Image Embedding

AvgPool

Fig. 2: Method overview. Compress3D mainly contains 3 components. (a) Triplane
AutoEncoder: Triplane Encoder encodes color point cloud on a low-resolution triplane
latent space. Then we use a Triplane Decoder to decode 3D model from a triplane
latent. (b) Triplane Diffusion Model: we use shape embedding and image embedding
as conditions to generate triplane latent. (c) Diffusion Prior Model: generate shape
embedding conditioned on the image embedding.

space, but use DMTet [31] as the 3D scene representation, which improves the
training speed and geometry quality. However, how to compress 3D model into
a low-dimensional latent space is still an open problem.

2.3 Reconstruction-based Methods

There are also some methods that use 3D reconstruction techniques to gener-
ate 3D assets. Zero-1-to-3 [19] proposes that for a single-view image of a given
object, images of other specific views of the object are generated through fine-
tuning a 2D diffusion model, and then reconstruct 3D assets through the gener-
ated multi-view images. One-2-3-45 [18] further improves view consistency and
reconstruction efficiency. LRM [9] and Instant3d [15] use a transformer to en-
code images into a triplane and use NeRF to reconstruct the 3D assets. Some
recent work has introduced the gaussian splatting technique into the field of
reconstruction-based 3D generation to achieve more efficient and high-quality
reconstruction. [46] uses a hybrid triplane-gaussian intermediate representation
for single-view reconstruction that efficiently generates a 3D model from a single
image via feed-forward inference. More recently, LGM [37] proposes to encode
multi-view images into multi-view gaussian features for high-quality 3D model
generation.

6 Zhang et al.

Colored Point Cloud
(100k, 6)

PointNet

C
on

ve
rt

Feature Volume
(128,128,128,32)

3D Conv
y-axis

3D Conv
x-axis

3D Conv
z-axis

High-res Triplane
3×(128, 128, 32)

TriConv
in=128
out=64

Down
Sample

1/2

ResBlock
in=64

out=128

Down
Sample

1/2

ResBlock
in=128

out=128

ResBlock
in=32

out=64

×2

Tr
iC

on
v

G
ro

up
N

or
m

Sw
is

h

Tr
iC

on
v

G
ro

up
N

or
m

Sw
is

h

Tr
iC

on
v

Tr
ip

la
ne

Tr
ip

la
ne

×2 ×4

Low-res Triplane
3×(32, 32, 128)

3D-aware
Cross Attention

μ

σ

3D Conv

N(μ,σ2)

Triplane Latent
3×(32, 32, 32)

f3
w3

f1

w1
f2w2

Selected volume grid

Unselected volume grid

Neighbouring point of
selected volume grid

Non-neighbouring point
of selected volume grid

Fig. 3: Triplane Encoder. TriConv is the 3D-aware convolution proposed in [40].

3 Method

Our approach uses latent diffusion models to generate 3D assets from a sin-
gle image. Instead of generating on the latent space of 3D models directly, we
first generate shape embedding conditioned on the image embedding, then we
generate triplane latent conditioned on both image embedding and previously
generated shape embedding. The overview of our method is shown in Fig. 2.

Specifically, our method consists of three stages. In the first stage, we train a
triplane variational autoencoder which takes as input the colored point clouds.
The triplane encoder encodes 3D geometry and texture on a compressed triplane
latent space. Subsequently, a triplane decoder reconstructs colored 3D model
from the triplane latent space. In the second stage, we train a diffusion prior
model to generate shape embedding conditioned on the image embedding. To
obtain shape and image embedding pairs, we use OpenShape [17] to extract the
shape embedding of 3D model and the image embedding of its rendered image.
In the third stage, we train a triplane diffusion model to generate triplane latent
conditioned on the image embedding and shape embedding.

3.1 Triplane AutoEncoder

Encoder The triplane encoder is shown in Fig. 3. The encoder takes colored
point clouds as input and outputs a distribution on the triplane latent space. We
represent the colored point cloud as P ∈ RN×6, where N is the number of points.
The first three channels represent point 3D position (x, y, z) and the last three
channels represent its corresponding (R,G,B) colors. We use PointNet [27] with
position embedding and local max pooling as our point cloud encoder to extract
3D point-wise features. Then we project 3D point-wise features onto triplanes
to achieve feature compression.

Previous methods [5, 21] directly project 3D point-wise features to triplanes
through mean pooling, which inevitably leads to the loss of 3D information due
to no learnable parameters in this process. Other works, such as 3DGen [5],

Compress3D 7

employ a UNet to further refine the triplane features and mitigate the loss of 3D
information. However, incorporating an additional UNet does not compress the
triplane and may increase computational demands. We instead add learnable
parameters in this process. Specifically, given point-wise features F = {fi ∈
Rc}N , the feature volume V = {vj ∈ Rc}r×r×r ∈ Rr×r×r×c is calculated as

vj =
∑

i∈N (j)

wi · fi (1)

where r is the resolution of feature volume and c is the number of channels. N (j)
is a set which contains the neighbor points indices of the jth feature volume
grid, and wi = (1 − |pxj − pxi |)(1 − |pyj − pyi |)(1 − |pzj − pzi |) is a weight that is
inversely proportional to the distance between pi and pj . The 2D illustration of
the conversion is shown in Fig. 3. As the point cloud density is usually uneven,
we need to normalize vj to cancel out the impact of the point cloud density. We
obtain the normalized feature volume V n = {vnj ∈ Rc}r×r×r ∈ Rr×r×r×c by,

vnj =
vj∑

i∈N(j) wi
(2)

After obtaining normalized feature volume V n, We employ 3D convolution
in three directions to convolve the normalized feature volume and obtain high-
resolution triplane features Txy, Tyz, Tzx ∈ Rr×r×c, respectively.

Txy = 3DConv(V n, k = (1, 1, r), s = (1, 1, r)) (3)
Tyz = 3DConv(V n, k = (r, 1, 1), s = (r, 1, 1)) (4)
Tzx = 3DConv(V n, k = (1, r, 1), s = (1, r, 1)) (5)

where k is the kernel size and s is the stride. Then the triplane features are passed
through a series of ResBlocks and down-sample layers to obtain low-resolution
triplane latents T l

xy, T l
yz, T l

zx ∈ Rr′×r′×c′ .
To enhance the representation ability of triplane latents, we propose a 3D-

aware cross-attention mechanism, which takes triplane features as queries to
query features from 3D feature volume. The 3D-aware cross-attention computa-
tion process is shown in Fig. 4. We first use a 3D convolutional layer to down
sample V n to obtain a low-resolution feature volume V n

d ∈ Rr′′×r′′×r′′×c′′ .

V n
d = 3DConv(V n, k = (o, o, o), s = (o, o, o)) (6)

where o is the down-sample factor. Then, leveraging low-resolution triplane la-
tents T l

xy, T l
yz, and T l

zx, we employ 3D-aware cross-attention on the feature
volume V n

d to extract a residual feature. This residual feature is then added to
the original triplane latent to compose the enhanced triplane latent.

(T e
xy, T

e
yz, T

e
zx) = (Axy, Ayz, Azx) + (T l

xy, T
l
yz, T

l
zx) (7)

where T e
xy, T e

yz, T e
zx are enhanced triplane latents. Axy, Ayz, Azx are the residual

feature obtained by 3D-aware cross-attention. We empirically found that query-
ing on low-resolution feature volume does not hurt the performance while saving

8 Zhang et al.

X

y

z

X

y

Cross Attention
qij

vijkij

Fig. 4: 3D-aware cross attention. We use each point feature on the triplane to query
the corresponding cube region (red) of feature volume. In addition, we add a position
embedding to the volume feature.

lots of computation as shown in Table 3. To compute the residual features, we
need first calculate the triplane queries Qxy, Qyz, Qzx ∈ Rr′×r′×d and feature
volume keys K ∈ Rr′′×r′′×r′′×d and values V ∈ Rr′′×r′′×r′′×c′ by,

(Qxy, Qyz, Qzx) = TriConv((T l
xy, T

l
yz, T

l
zx), k = (1, 1), s = (1, 1))

K = 3DConv(V n
d , k = (1, 1, 1), s = (1, 1, 1))

V = 3DConv(V n
d , k = (1, 1, 1), s = (1, 1, 1))

(8)

where TriConv is the 3D-aware convolution proposed in [40]. For simplicity, we
take Axy as an example to illustrate 3D-aware cross-attention process. Ayz, Azx

can be calculated in a similar way. We define Qxy = {qij ∈ R1×d}r′×r′ where qij
is one point feature at position (i, j). We then extract its corresponding key and
value by,

kij = K(mi : mi+m− 1,mj : mj +m− 1, :, :) ∈ Rm×m×r′′×d (9)

vij = V (mi : mi+m− 1,mj : mj +m− 1, :, :) ∈ Rm×m×r′′×c′ (10)

where m = round(r
′′

r′) is the scale ratio between volume size and triplane size.
We then reshape kij and vij to Rm2r′′×d and Rm2r′′×c′ repectively for ease of
attention computation. The cross-attention feature Axy = {aij ∈ R1×c′}r′×r′

can be calculated by,

aij = sotfmax(
qijk

T
ij√
d

)vij (11)

Decoder As shown in Fig. 5, the decoder consists of a series of ResBlocks and
up-sample layers. The decoder is responsible for decoding the low-resolution tri-
plane latent into a high-resolution triplane feature. The high-resolution triplane
feature contains the geometry and texture information of the 3D model.

To recover geometry information from triplane features, we adopt Flexi-
Cubes [32] representation, an isosurface representation capable of generating
high-quality mesh with low-resolution cube grids. For each cube in FlexiCubes,
we predict the weight, signed distance function (SDF), and vertex deformation
at each cube vertex. Specifically, we concatenate the triplane features of the eight
vertices of each cube and predict the cube weight using an MLP layer. Similarly,

Compress3D 9

Triplane Latent
3×(32, 32, 32)

TriConv
in=32

out=128

ResBlock
in=128
out=64

×5

Up
Sample

2

Up
Sample

2

ResBlock
in=32

out=32

×3

ResBlock
in=64

out=32

×3

High-res Triplane
3×(128, 128, 32)

deformation MLP

SDF MLP

weight MLP

FlexiCubes

x
y

z

Color MLP

Surface
Point

Uncolored
3D Model

Colored
3D Model

Fig. 5: Triplane Decoder.

we concatenate the triplane features of each vertex to predict the SDF and de-
formation using another 2 MLP layers. With the cube weights, SDF, and vertex
deformations determined, the mesh can be extracted using the dual marching
cubes method [29]. To recover texture information from the triplane features,
we take the triplane features of the mesh surface points and predict the color of
each surface point through an MLP layer.

Renderer We train the encoder and decoder using a differentiable renderer [12].
Compared with previous methods [23, 44, 45], we do not need to pre-compute
the signed distance field of each 3D mesh, which demands a huge computation
and storage space. Moreover, our method based on differentiable rendering also
avoids information loss during data pre-processing. For the mesh output by the
decoder, we first render the 3D model at a certain view and then compare it with
the rendering images of the ground truth model from the same perspective. The
rendering images contains RGB image Irgb, silhouette image Imask and depth
image Idepth. Finally, we calculate the loss in the image domain and train the
encoder and decoder jointly through rendering loss LR. The rendering loss is as
follows:

LR = λ1Lrgb + λ2Lmask + λ3Ldepth − λklDKL(N(µ, σ)|N(0, 1)) (12)

where Lrgb = ||Irgb − Igtrgb||2, Lmask = ||Imask − Igtmask||2, Ldepth = ||Idepth −
Igtdepth||2, N(µ, σ) is the distribution of the low resolution triplane latent. More-
over, we add KL penalty to ensure that the distribution of the triplane latent
N(µ, σ) is close to the standard Gaussian distribution N(0, 1).

3.2 Diffusion Prior Model

Generating a 3D model directly from an image is a difficult task because the
image embedding of a single view image only contains 2D geometry and texture
information of the 3D model. Compared to image embedding, shape embedding
contains richer 3D geometry and texture information. Generating 3D model with

10 Zhang et al.

shape embedding as a condition is easier and more accurate than using image
embedding as a condition. To train this diffusion prior model, we first use the
OpenShape [17] model pre-trained on large-scale 3D dataset, a shape-text-image
alignment model, to extract the shape embedding es ∈ R1280 of the 3D model
and the image embedding ei ∈ R1280 of the single-view rendering image. Then we
design an MLP with skip connections between layers at different depths of the
network as the diffusion backbone to generate shape embedding. This diffusion
backbone consists of multiple MLP ResBlocks. In each block, image embedding is
injected into the MLP block through concatenation, and the timestep embedding
is injected through addition. Instead of using ϵ-prediction formulation as used
in [7], we train our prior diffusion model to predict the denoised es directly with
1000 denoising steps, and use a L1 loss on the prediction:

Lprior = E
t∼[1,T],e

(t)
s ∼qt

[||fp
θ (e

(t)
s , t, ei)− es||] (13)

where fp
θ is the learned prior model.

3.3 Triplane Diffusion Model

After we obtain the prior model, we then train a triplane diffusion model, which
uses the shape embedding estimated by the prior model and image embedding
as conditions, to generate 3D models. The diffusion backbone is a UNet, which
contains multiple ResBlocks and down/up sample layers. The input and output
of each ResBlock are triplanes, and we use 3D-aware convolution [40] in each
ResBlock. Shape embedding es and image embedding ep are injected into Res-
Blocks through cross attention. We train the triplane diffusion model to predict
the noise ϵ added to the triplane latent with 1000 denoising steps, and use an
L1 loss on the prediction,

Ltri = Et∼[1,T],ϵ∼N(0,1)[||fθ(zt, t, es, ep)− ϵ||] (14)

where fθ is the learned triplane diffusion model. To improve the diversity and
quality of generated samples, we introduce classifier free guidance [8] by ran-
domly dropout conditions during training. Specifically, we randomly set only
ep = ∅p for 5%, only es = ∅s for 5%, both ep = ∅p and es = ∅s for 5%. During
the inference stage, the score estimate is defined by,

f̃θ(z
t, t, es, ep) =fθ(z

t, t,∅s,∅p)

+ sp · (fθ(zt, t,∅s, ep)− fθ(z
t, t,∅s,∅p))

+ ss · (fθ(zt, t, es, ep)− fθ(z
t, t,∅s, ep))

(15)

4 Experiments

4.1 Dataset Curation

We train our model on a filtered Objaverse dataset [4]. As there are many low-
quality 3D models in the origin Objaverse dataset. To obtain high-quality 3D

Compress3D 11

Table 1: Quantitative Comparison with other methods.

Metric Shap-E [10] OpenLRM [6] LGM [37] Ours

FID(↓) 146.14 86.93 88.64 53.21
CLIP Similarity(↑) 0.731 0.764 0.743 0.776
PSNR(↑) 14.54 14.36 13.23 16.82
LPIPS(↓) 0.350 0.335 0.381 0.272
Latent space dimension(↓) 1.05M 0.98M - 0.10M
Seconds per shape(↓) 11 5 55 7
Training dataset size ≥1M 0.951M 0.080M 0.095M
Training time (A100 GPU hours) - 9200 3072 1900

data for training, we manually annotated approximately 2500 3D models, catego-
rizing them as either good or bad. A ’good’ 3D model exhibits realistic textures
and intricate geometric structures, whereas a ’bad’ 3D model is characterized
by single-color textures or simple shapes. We randomly select five random views
and use the pre-trained CLIP model to extract their image embeddings. Then we
concatenate these image embeddings and feed them into a shallow MLP network
for classification. Despite the limited annotation data, we find that the trained
MLP classification network can correctly classify 3D models in most cases. We
use this MLP classification network to filter the entire Objaverse dataset and
obtain 100k high-quality 3D models. We randomly select 95% 3D models for
training and 5% for testing.

4.2 Training Details

Triplane AutoEncoder For the encoder, the number of input points N is
100k, the resolution r of the Vnorm is 128, the resolution r′′ of the V n

d used in
3D-aware cross attention is 32. The resolution r′ of the triplane latent is 32, and
its channel number is 32. For the decoder, the decoded triplane has a resolution
of 128, and its channel number is 32, we set the grid size of FlexiCubes as 90.
For the Renderer, we render 512 × 512 RGB, mask and depth images from 40
random views to supervise the training process, and we set λ1 = 10, λ2 = 10,
λ3 = 0.1, λkl = 1e−6 for the rendering loss. The triplane autoencoder has 32M
parameters in total, and it is trained with the AdamW optimizer. The learning
rate gradually decreases from 3×10−5 to 3×10−6. We train it on 8 A100 GPUs
for 6 days.
Diffusion Prior Model To stabilize the training process of the prior diffusion
network, we scale the shape embedding es by 0.25, and image embedding ei by
0.85, making their variance approximate to 1. The Diffusion Prior Model has
25.8M parameters, and we train it on 2 A100 GPUs for 18 hours. The learning
rate gradually decreases from 1× 10−5 to 1× 10−6.
Triplane Diffusion Model The triplane diffusion model has 864M parameters,
We train the model on 8 A100 GPUs for 4 days. The learning rate gradually
decreases from 3× 10−5 to 3× 10−6.

12 Zhang et al.

4.3 Comparison with Other Methods

We compare our method with Shap-E [10] , OpenLRM [6] and LGM [37]. To
generate 3D model efficiently, We use DDIM [36] sampler with 50 steps. The
guidance scale for shape embedding and image embedding are 1.0 and 5.0 re-
spectively.

OursOpenLRMShap-EInput LGM

Fig. 6: Qualitative comparison with other methods.

Quantitative Comparison We use FID and CLIP similarity as evaluation
metrics for generation quality. For the computation of FID, we randomly select
200 images in our test set that have not been seen during training, and generate
200 3D models using our method. Then we render each generated 3D model and
its corresponding ground truth 3D model from 40 random views. We compute
FID of the generated images set and ground truth image set. For the CLIP sim-
ilarity, we calculate the cosine similarity of the CLIP image embedding of the
generated 3D model and GT 3D model at the same viewpoint. We calculate FID
and CLIP similarity five times and take the average. The quantitative compar-
ison is reported in Table 1. Our method achieves lower FID and higher CLIP
similarity than Shap-E and OpenLRM, while using less training data and time.
Qualitative Comparison The qualitative comparison is shown in Fig. 6. Com-
pared with other methods, Compress3D can generate 3D models with good
texture and fine geometric details. Benefiting from the two-stage generation,

Compress3D 13

our method can generate high-quality results under various viewing angles,
while OpenLRM and Shpa-E are more sensitive to viewing angles. For example,
OpenLRM and Shpa-E usually fail to generate 3D models with fine geometric
details given top and bottom views as input. In addition, the up-axis of the 3D
model generated by OpenLRM often does not coincide with the z-axis, which
needs to be manually rotated to align with the z-axis This is time-consuming and
laborious. In comparison, our method could generate 3D models whose up-axis
coincides with the z-axis, which makes it easier to use.

4.4 Ablation Studies

To evaluate the design of our method, we conduct a series of ablation studies on
several key designs.
3D-aware cross-attention. As described in Section 3.1, to enhance the repre-
sentation ability of the triplane latent, we use triplane to query a feature volume
via 3D-aware cross-attention. Table 2 shows that 3D-aware cross-attention im-
proves the geometric and texture reconstruction quality greatly. Although the
training time for each step increases slightly, from 0.789s to 0.824s, this is ac-
ceptable. As shown in Table 3, we find using a down-sampled feature volume
in 3D-aware cross-attention improves reconstruction quality slightly and greatly
decreases the training time.

Table 2: Ablation study on 3D-aware cross attention.

Method Lrgb × 103 Lmask × 103 Ldepth × 102 CD × 102 seconds per step

w/o atten 3.798 6.953 2.637 2.11 0.789
w atten 2.485 5.059 2.095 1.64 0.824

Table 3: Ablation study on volume resolution r′′ used in 3D-aware cross attention.

Resolution Lrgb × 103 Lmask × 103 Ldepth × 102 CD × 102 seconds per step

128 2.551 5.234 2.187 1.72 2.295
64 2.497 5.134 2.124 1.67 0.961
32(ours) 2.485 5.059 2.095 1.64 0.824

Diffusion Prior Model. To validate the importance of diffusion prior model, we
train a triplane diffusion model conditioned only on the image embedding and
compare it with our method. As shown in Table 4, using prior model further
improves the quality of generated 3D model. As shown in Figure 7, our method
can still produce correct shapes under some unusual viewing angles, while the
one without prior model fails.
Guidance scales. To increase the quality of generated 3D models, we adopt
classifier-free guidance during inference. There are multiple combinations of guid-
ance scales for shape embedding and image embedding. Overall, we find that an
appropriate guidance scale for sp or ss can improve the generation quality. As

14 Zhang et al.

Input Ours Without Prior Network

Fig. 7: Ablation Study: Compare our method with the version that do not use prior
diffusion network.

Table 4: Ablation study on using diffusion prior model.

Method FID(↓) CLIP Similarity(↑)

w/o prior 66.46 0.745
w prior 53.21 0.776

shown in Table 5, when sp = 5.0, ss = 1.0, the model achieves the best FID.
Although its CLIP similarity is slightly lower than the best one, they are very
close.

Table 5: Ablation study on shape embedding guidance scale ss and image embedding
guidance scale sp. The values are [FID/ CLIP similarity].

sp

ss 1.0 3.0 5.0 10.0

1.0 65.18/0.75934 61.20/0.76435 57.05/0.76149 58.80/0.75882
3.0 55.09/0.77800 55.18/0.77538 53.60/0.77803 53.30/0.77494
5.0 53.21/0.77642 55.00/0.77524 53.43/0.77683 53.86/0.77343
10.0 54.82/0.77611 54.82/0.77543 54.63/0.77643 54.91/0.77689

5 Conclusion

This paper proposes a two-stage diffusion model for 3D generation from a single
image, that was trained on a highly compressed latent space. To obtain a com-
pressed latent space, we add learnable parameters in the projecting process from
3D to 2D, and we use 3D-aware cross-attention to further enhance the latent.
Instead of generating latent conditioned solely on image embedding, we addition-
ally condition on the shape embedding predicted by the diffusion prior model.
Compress3D achieves high-quality generation results with minimal training data
and training time, showcasing its versatility and adaptability across diverse sce-
narios.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of
China (62072366, U23A20312).

Compress3D 15

References

1. Chen, Z., Wang, F., Liu, H.: Text-to-3d using gaussian splatting. arXiv preprint
arXiv:2309.16585 (2023)

2. Cheng, Y.C., Lee, H.Y., Tulyakov, S., Schwing, A.G., Gui, L.Y.: Sdfusion: Multi-
modal 3d shape completion, reconstruction, and generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4456–
4465 (2023)

3. Deitke, M., Liu, R., Wallingford, M., Ngo, H., Michel, O., Kusupati, A., Fan, A.,
Laforte, C., Voleti, V., Gadre, S.Y., et al.: Objaverse-xl: A universe of 10m+ 3d
objects. Advances in Neural Information Processing Systems 36 (2024)

4. Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E.,
Schmidt, L., Ehsani, K., Kembhavi, A., Farhadi, A.: Objaverse: A universe of
annotated 3d objects. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 13142–13153 (2023)

5. Gupta, A., Xiong, W., Nie, Y., Jones, I., Oğuz, B.: 3dgen: Triplane latent diffusion
for textured mesh generation. arXiv preprint arXiv:2303.05371 (2023)

6. He, Z., Wang, T.: Openlrm: Open-source large reconstruction models. https://
github.com/3DTopia/OpenLRM (2023)

7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

8. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598 (2022)

9. Hong, Y., Zhang, K., Gu, J., Bi, S., Zhou, Y., Liu, D., Liu, F., Sunkavalli, K.,
Bui, T., Tan, H.: Lrm: Large reconstruction model for single image to 3d. arXiv
preprint arXiv:2311.04400 (2023)

10. Jun, H., Nichol, A.: Shap-e: Generating conditional 3d implicit functions. arXiv
preprint arXiv:2305.02463 (2023)

11. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics 42(4) (2023)

12. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. ACM Transactions on Graphics
39(6) (2020)

13. Li, M., Duan, Y., Zhou, J., Lu, J.: Diffusion-sdf: Text-to-shape via voxelized dif-
fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 12642–12651 (2023)

14. Li, R., Li, X., Hui, K.H., Fu, C.W.: Sp-gan: Sphere-guided 3d shape generation
and manipulation. ACM Transactions on Graphics (TOG) 40(4), 1–12 (2021)

15. Li, S., Li, C., Zhu, W., Yu, B., Zhao, Y., Wan, C., You, H., Shi, H., Lin, Y.: Instant-
3d: Instant neural radiance field training towards on-device ar/vr 3d reconstruc-
tion. In: Proceedings of the 50th Annual International Symposium on Computer
Architecture. pp. 1–13 (2023)

16. Lin, C.H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis, K., Fidler,
S., Liu, M.Y., Lin, T.Y.: Magic3d: High-resolution text-to-3d content creation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 300–309 (2023)

17. Liu, M., Shi, R., Kuang, K., Zhu, Y., Li, X., Han, S., Cai, H., Porikli, F., Su, H.:
Openshape: Scaling up 3d shape representation towards open-world understanding.
Advances in Neural Information Processing Systems 36 (2024)

https://github.com/3DTopia/OpenLRM
https://github.com/3DTopia/OpenLRM

16 Zhang et al.

18. Liu, M., Xu, C., Jin, H., Chen, L., Varma T, M., Xu, Z., Su, H.: One-2-3-45: Any
single image to 3d mesh in 45 seconds without per-shape optimization. Advances
in Neural Information Processing Systems 36 (2024)

19. Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-
1-to-3: Zero-shot one image to 3d object. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. pp. 9298–9309 (2023)

20. Liu, Z., Feng, Y., Black, M.J., Nowrouzezahrai, D., Paull, L., Liu, W.: Meshdiffu-
sion: Score-based generative 3d mesh modeling. arXiv preprint arXiv:2303.08133
(2023)

21. Mercier, A., Nakhli, R., Reddy, M., Yasarla, R., Cai, H., Porikli, F., Berger, G.:
Hexagen3d: Stablediffusion is just one step away from fast and diverse text-to-3d
generation. arXiv preprint arXiv:2401.07727 (2024)

22. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

23. Mittal, P., Cheng, Y.C., Singh, M., Tulsiani, S.: Autosdf: Shape priors for 3d com-
pletion, reconstruction and generation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 306–315 (2022)

24. Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P.: Polygen: An autoregressive gen-
erative model of 3d meshes. In: International conference on machine learning. pp.
7220–7229. PMLR (2020)

25. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: A system for
generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751
(2022)

26. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using
2d diffusion. arXiv preprint arXiv:2209.14988 (2022)

27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets
for 3d classification and segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 652–660 (2017)

28. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

29. Schaefer, S., Warren, J.: Dual marching cubes: Primal contouring of dual grids. In:
12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004.
Proceedings. pp. 70–76. IEEE (2004)

30. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M.,
Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al.: Laion-5b: An open large-
scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems 35, 25278–25294 (2022)

31. Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a
hybrid representation for high-resolution 3d shape synthesis. Advances in Neural
Information Processing Systems 34, 6087–6101 (2021)

32. Shen, T., Munkberg, J., Hasselgren, J., Yin, K., Wang, Z., Chen, W., Gojcic, Z.,
Fidler, S., Sharp, N., Gao, J.: Flexible isosurface extraction for gradient-based
mesh optimization. ACM Transactions on Graphics (TOG) 42(4), 1–16 (2023)

33. Shim, J., Kang, C., Joo, K.: Diffusion-based signed distance fields for 3d shape
generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 20887–20897 (2023)

Compress3D 17

34. Shue, J.R., Chan, E.R., Po, R., Ankner, Z., Wu, J., Wetzstein, G.: 3d neural field
generation using triplane diffusion. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 20875–20886 (2023)

35. Siddiqui, Y., Alliegro, A., Artemov, A., Tommasi, T., Sirigatti, D., Rosov, V., Dai,
A., Nießner, M.: Meshgpt: Generating triangle meshes with decoder-only trans-
formers. arXiv preprint arXiv:2311.15475 (2023)

36. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502 (2020)

37. Tang, J., Chen, Z., Chen, X., Wang, T., Zeng, G., Liu, Z.: Lgm: Large multi-
view gaussian model for high-resolution 3d content creation. arXiv preprint
arXiv:2402.05054 (2024)

38. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653 (2023)

39. Tang, J., Wang, T., Zhang, B., Zhang, T., Yi, R., Ma, L., Chen, D.: Make-it-3d:
High-fidelity 3d creation from a single image with diffusion prior. arXiv preprint
arXiv:2303.14184 (2023)

40. Wang, T., Zhang, B., Zhang, T., Gu, S., Bao, J., Baltrusaitis, T., Shen, J., Chen,
D., Wen, F., Chen, Q., et al.: Rodin: A generative model for sculpting 3d digital
avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4563–4573 (2023)

41. Wu, L., Wang, D., Gong, C., Liu, X., Xiong, Y., Ranjan, R., Krishnamoorthi, R.,
Chandra, V., Liu, Q.: Fast point cloud generation with straight flows. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 9445–9454 (2023)

42. Yi, T., Fang, J., Wu, G., Xie, L., Zhang, X., Liu, W., Tian, Q., Wang, X.: Gaus-
siandreamer: Fast generation from text to 3d gaussian splatting with point cloud
priors. arXiv preprint arXiv:2310.08529 (2023)

43. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis,
K.: Lion: Latent point diffusion models for 3d shape generation. arXiv preprint
arXiv:2210.06978 (2022)

44. Zhang, B., Nießner, M., Wonka, P.: 3dilg: Irregular latent grids for 3d generative
modeling. Advances in Neural Information Processing Systems 35, 21871–21885
(2022)

45. Zhang, B., Tang, J., Niessner, M., Wonka, P.: 3dshape2vecset: A 3d shape
representation for neural fields and generative diffusion models. arXiv preprint
arXiv:2301.11445 (2023)

46. Zou, Z.X., Yu, Z., Guo, Y.C., Li, Y., Liang, D., Cao, Y.P., Zhang, S.H.: Triplane
meets gaussian splatting: Fast and generalizable single-view 3d reconstruction with
transformers. arXiv preprint arXiv:2312.09147 (2023)

	Compress3D: a Compressed Latent Space for 3D Generation from a Single Image

