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1 Architecture Details

The detailed network architecture of our proposed Phase-conditioned Dance
VAE (PDVAE) is provided in Figure 1. Particularly, all Transformer modules
consist of 5 blocks with 512 dimensions for keys, queries, and values, using 8
heads for multi-head attention [8] and feedforward layers with hidden dimensions
set to 512, along with a dropout rate of 0.1 to mitigate overfitting. 1D convolu-
tional layers with a kernel size of 31 and a padding size of 15 are employed to
encode the local relationship between motion frames, which corresponds to a 1-
second receptive field of the motion data. Additionally, the MLP phase predictor
comprises two hidden layers (512, 256) with Siren activations [7] to effectively
capture the periodicity of the movements. We elaborately design our dance gen-
erator architecture to capture the intricate long-range temporal dependencies
and local phase timing information inherent in dance movements, facilitating
the generation of high-fidelity and temporally consistent dance sequences.

1.1 Encoder

The Encoder takes both motion and music sequences as input, and produces a
distribution over possible latent phase variables capturing the cross-modal rela-
tionship between them, which is parameterized by a Gaussian distribution. We
implement the Encoder following the Transformer Decoder architecture where
the Cross-Attention mechanism [8] is utilized to learn the relationship between
the motion and the music. In particular, the input motion x is treated as the
query while the audio a is projected into the corresponding key and value. We
then calculate their cross-attention as follows:

Qe = WQ
e x, Ke = WK

e a, Ve = WV
e a, (1)

CrossAtt(x,a,a) = softmax
(
QeK

⊤
e√

dk

)
Ve, (2)
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Fig. 1: Detailed network architecture of Phase-conditioned Dance VAE (PDVAE).

where WQ
e ,W

K
e ∈ Rd×dk and WV

e ∈ Rd×dv are learnable projection matrices to
map the inputs into query, key, and value, respectively. Additionally, since the
transformer attention mechanism mainly models the long-range dependencies
with global receptive field, we further adopt 1D temporal convolutional layers
stacking on top of the transformer to capture the local relationship and pe-
riodicity between motion frames. Subsequently, the neural FFT (Fast Fourier
Transform) layer is applied to extract the mean embeddings in the frequency
domain given the encoded latent curves, whereas an MLP with two layers is
utilized to predict the variance of the phase parameters. Those predictions form
a latent Gaussian distribution over the possible phase parameters that can well
describe the essential information of a specific group dance. We then sample a
set of phase parameters z = {A;F;B;S} from this distribution and compute
the periodic parameterizations for decoding the original motion signals.
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1.2 Prior Network

Since only the music is available for inference, we need to learn a prior to match
the posterior distribution of the motion to draw new samples. Instead of imposing
the prior distribution to be standard normal as in conventional VAE [3], we relate
it to the music condition. Learning the conditional prior significantly improves
the ability of the CVAE to generalize to diverse types of music and motion.
Therefore, our conditional prior is defined as:

pθ(z|a) = N (z;µP , σP) (3)

where a Transformer model is used to encode the input conditioning music se-
quence and predict the corresponding µθ and Σθ. We implement the Prior net-
work akin to the Encoder network, however, here we use self-attention mech-
anism (Transformer Encoder) [8] to capture the multi-scale rhythmic patterns
and global music context.

Qp = WQ
p a, Kp = WK

p a, Vp = WV
p a, (4)

SelfAtt(a,a,a) = softmax

(
QpK

⊤
p√

dk

)
Vp, (5)

where WQ
p ,W

K
p ∈ Rd×dk and WV

p ∈ Rd×dv are learnable projection matrices.
Similarly, we also adopt temporal convolution, neural FFT, and MLP layers to
predict the variational phase manifold from the music sequence that matches
the posterior latent.

1.3 Decoder

Conditioned on the periodic latent paramerizations, the Decoder aims to produce
human motion for a given music duration in one go (i.e., non-autoregressively).
This architecture design is more suitable for our spatial-temporal phase repre-
sentation as it does not suffer from the error accumulation problem (i.e., the
prediction error accumulates over time since the current-frame outputs are used
as inputs to the next frame), thus can generate natural dance sequences with
high overall temporal alignments. Our Decoder is also based on Transformer
Decoder architecture that takes a single latent vector z, the music features a as
inputs, as well as the periodic parameterization sequence L̂ to start decoding:

pθ(x|z,a) = D(z,a),

D(z,a) = CrossAtt(L̂,a,a)

L̂ = A · sin(2π · (F · T − S)) +B

(6)

where CrossAtt is calculated similarly to Equation 1. Here, we also utilize cross-
attention model where we consider the music features as key and value, and the
latent periodic sequence as the query. Additionally, we introduce skip connections
from the phase features to each block of the network, enhancing the influence
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of the periodic signals. By utilizing these techniques, we can more effectively
model the periodicity inherent in the motion data, which can improve our dance
synthesis performance.

1.4 Global Motion Predictor

Following previous works [2, 6, 9], we presume that the character’s global trans-
lation is conditioned on its local poses. We utilize a Transformer network to
generate the 3D global translation τ of the root joint from the local joint rota-
tions, positions, and velocities as inputs. To alleviate ambiguity in the output
(e.g, same trajectories with different starting points are equally weighted), rather
than directly outputting the root position, we opt to predict its velocity υ. The
global translations τ can be obtained by integrating the trajectory over time as
follows:

τt+1 = τt + υt∆t (7)
However, the integrating process may likely suffer from error accumulation,
which leads to the trajectory easily getting off track. This problem is even more
severe in the upward movement (vertical direction), where the character may
gradually float into the air or under the floor. To avoid this phenomenon, we
directly predict the height τh of the root joint, which is reasonable since it lies
in a region bounded by the height of the character. Then, our global trajectory
predictor is optimized with the following objective:

Lglobal = Ltrans + Lvel

Ltrans =

T∑
t=1

∥τt − τ̂t∥, Lvel =

T∑
t=1

∥υt − υ̂t∥
(8)

Our Global Motion Predictor is based on a similar architecture to our Decoder,
consisting of 3 Transformer Decoder blocks. However, here we use the generated
local motion from Decoder as the input sequences, along with the corresponding
phase features for cross-attention to be applied.

To avoid the intersection problem, the predictor is also conditioned on the
neighboring trajectories from other previously generated dancers in the scene.
Specifically for crowded scene, we identify the trajectories of neighbor dancers
by using K-d tree clustering of the 3D positions [1]. The trajectories are then
flattened and processed by a 5-layer MLP each neighbor, yielding feature vectors
of size 512 that summarize the trajectory context. Subsequently, those feature
vectors are concatenated with the phase features and utilized as the conditions
for cross-attention. In addition, the starting position τ0 can either be controlled
by manual user inputs or randomly sampled by fitting a Gaussian Mixture Model
(GMM) over possible starting points in the training data.

2 Phase Manifold Visualization

We visualize the 2D PCA embedding of the phase manifold as depicted in Fig-
ure 2. In the visualization, we can see that each point is positioned along a smooth
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cyclical curve, indicating that motions generated by our method can mostly pre-
serve a unidirectional property. By ensuring this attribute within our system, we
can produce realistic and faithful movements that are consistent through time.
Furthermore, we also observe that dances belonging to the same group (same
color curves) are located in close proximity to each other. This indicates that
each group of dancers can be distinctively represented and distinguishable based
on their phase features, showing that our method can successfully capture differ-
ent key characteristics of dances with different styles or groups, and effectively
encode them into unique generative continuous phase manifolds. The phase man-
ifold can be utilized to effectively generate consistent and natural movements for
an infinite number of dancers via a scalable decoding process.

Fig. 2: Visualization of the phase mani-
fold by 2D PCA embedding for different
dances. Curves with the same color repre-
sent the temporally connected phase fea-
tures of dance sequences from the same
group.
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Fig. 3: User study results in three
criteria: Realism; Music-Motion Corre-
spondence; and Synchronization between
Dancers.

3 Extended Scalability Analysis

Figure 4 demonstrates that our method consistently delivers stable and com-
petitive outcomes irrespective of the number of dancers. This suggests that
our proposed approach effectively mitigates the scalability concerns inherent
in group dance generation while maintaining the overall performance quality of
each dance motion. This underscores the robustness and efficacy of our method
across various scenarios, ensuring reliable results regardless of the scale of the
dance ensemble.

4 User Study

User studies are vital for evaluating generative models, as user perception is
pivotal for downstream applications; thus, we conducted a study with 70 partic-
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Fig. 4: Extended Visualization of scalable dancers.

ipants, diverse in background, with experience in music and dance, aged between
20 to 40, consisting of approximately 47% females and 53% males, to assess the
effectiveness of our approach in group choreography generation.

Participants evaluated dancing animations based on three criteria: realism,
music-motion correspondence, and synchronization between dancers, rating them
on a scale of 0 to 10 with descriptors such as "very poor," "acceptable," and
"very good," which were subsequently normalized to a range of [0, 1].

The user study involved a total of 100 ∗ 4 samples, which included songs not
present in the training set, encompassing samples from GDanceR [5], GCD [4],
real dance clips, and results generated by our proposed method. Figure 3 illus-
trates the average scores for the mentioned criteria across the three experiments.
Notably, our method received significantly higher ratings than GDanceR and
GCD across all three criteria. These findings underscore that our method can
achieve comparable scores with other state-of-the-art approaches while address-
ing the scalability issue during dance motion generation.

5 Social Impacts

Our research aims to produce realistic dance movements. These lifelike motions
have significant potential in various domains, including animation and entertain-
ment industries. However, it’s crucial to acknowledge the ethical implications
associated with generating such content. Since the dance generation can be im-
plemented into fake dance moves of idols without their consent or knowledge,
there arises a concern regarding the misuse of generated content for malicious
purposes like deep-fakes, which can be used to encourage downloading videos
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that contain harmful malwares. Therefore, we advocate for further exploration
into systems capable of detecting augmented or fake media and verifying the au-
thenticity of real media, thus mitigating potential risks and safeguarding against
misuse.

6 Human Subjects Data

The AIOZ-GDance and AIST-M datasets are publicly available but no clear
statement about the consent of the human subjects is provided. However, our
work does not use or exploit any personally sensitive information such as subject
identity or appearance.
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