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Abstract. Generating group dance motion from the music is a challeng-
ing task with several industrial applications. Although several methods
have been proposed to tackle this problem, most of them prioritize opti-
mizing the fidelity in dancing movement, constrained by predetermined
dancer counts in datasets. This limitation impedes adaptability to real-
world applications. Our study addresses the scalability problem in group
choreography while preserving naturalness and synchronization. In par-
ticular, we propose a phase-based variational generative model for group
dance generation on learning a generative manifold. Our method achieves
high-fidelity group dance motion and enables the generation with an un-
limited number of dancers while consuming only a minimal and constant
amount of memory. The intensive experiments on two public datasets
show that our proposed method outperforms recent state-of-the-art ap-
proaches by a large margin and is scalable to a great number of dancers
beyond the training data.

1 Introduction

The widespread availability of digital social media platforms has led to a signifi-
cant increase in the popularity of creating dance videos. This heightened interest
has resulted in the daily production and viewing of millions of dance videos on
various online platforms [13, 32]. Recently, researchers from the computer vi-
sion and computer graphics community have focused on developing methods
for generating authentic dance movements in response to music [6, 94]. These
advancements have broad implications and find applications in diverse areas,
including animation [49,50], virtual idols [59], virtual metaverses [42], and dance
education [2,67,72]. Such techniques empower artists, animators, and educators
by providing powerful tools to enhance their creative pursuits and improve the
overall dance experience for performers and audiences alike.

Recently, significant strides have been made in creating dance motions for
solo dance performers [12,26,34,49,59,71,83]. However, generating synchronized
group dance movements that are both lifelike and in harmony with music remains
a complex challenge [9,27,87]. The introduction of AIOZ-GDance [40] stands as
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Fig. 1: We present a new group dance generation method that can generate a large
number of dancers within a fixed resource consumption. The illustration shows a gen-
erated group dance sample with 100 dancers.

the extensive dataset to aid in generating group choreography. Different aspects
of group dance motion such as the study of consistency and diversity among the
movements of dancers are explored in [39]. However, despite recent advances in
the field, existing methods can either only generate dances for a limited number
of dancers given the input audio [40, 86, 90], or would consume an expensively
large amount of memory due to their design nature [39, 40]. Typically, these
methods are usually based on specialized collaborative mechanisms such as cross-
entity attention [40, 51], group global attention [39], or residual communication
block [66] achieve coherent multi-person synthesis. In other words, their innate
architectural design requires the network to process and synthesize all motions
simultaneously, leading to excessively growing computational/memory costs with
the increasing number of inputs, and hence extremely difficult to scale up.

Despite the comprehensive exploration of group dance motion generation,
the predominant emphasis remains on optimizing the execution of the gener-
ated movements [14, 19, 31, 37, 52, 93]. These existing methodologies function
within a confined scope, often tethered to a predetermined maximum number
of dancers depicted in group choreography videos outlined by the predefined
dataset [39]. This inherent limitation poses a potential constraint on the adapt-
ability of trained models when transitioning to real-world applications [47]. In
our pursuit, we center our efforts on addressing the critical aspect of scalabil-
ity in group dance. Our primary objective revolves around not only expanding
the number of dancers but also ensuring the preservation of the innate natu-
ralness in the dance motions and the seamless synchronization between dancers
throughout the entirety of their performance.

In the field of character motion control and synthesis, existing approaches
can be broadly divided into two categories: deterministic [16, 26, 40, 49, 55, 86]
and probabilistic [19, 39, 59, 61, 83]. The former tries to learn direct and de-
terministic mapping from the input conditioning signal (such as text, audio,
or user controls) to the desired output motion. However, these methods usu-
ally regress towards the mean pose as they are typically trained by minimizing
a regression objective under different outputs for similar inputs, resulting in
freezing or drifting motion. On the other hand, probabilistic methods attempt
to capture the distribution over possible motions for a given condition, allow-
ing diverse and high-quality generation. In particular, Variational Autoencoder
(VAE) [18, 47, 60, 61], or Diffusion Models [4, 39, 81, 83, 97] have been widely
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used. Although diffusion models have recently shown strong potential in gener-
ating high-quality motions [81], they generally operate on high-dimensional space
(same as the original data) [39,81,83], hence rendering them extremely challeng-
ing to use for scalable group generation. Meanwhile, standard VAE models often
rely on a Gaussian latent space of fixed dimension for sampling a single latent
vector to generate motions, making it difficult to adapt to a wide range of archi-
tectures. Besides, the fixed-size single latent space might also not be sufficient
to represent the temporal dynamics of the whole motion sequence [7, 60].

Recent studies have demonstrated the significant advantages of learning mo-
tion features in the frequency domain. Specifically, [22, 74–76] have found that
different motion skills can be effectively represented by several phase variables
that can faithfully capture the spatial-temporal alignment of a wide range of
movements. This can be used to combine with common deep motion synthesis
networks to enhance its capability, facilitating natural, and stable motion genera-
tions by enforcing a unidirectional motion transition (i.e., no backward direction
in time) to prevent the motion from being stuck temporally [74]. Unlike those
prior works, where the phases are utilized as auxiliary signals to assist in the
motion synthesis process [68,74,88], we propose to learn to generate the phases
conditioned on the input audio signal in an end-to-end manner, eliminating the
need of training extra components. Our generative phase manifold can be used
to generate new motions efficiently, from which the latent motion curves are
sampled in frequency domain and decoded into the original motion space by a
learned decoder.

In this paper, our goal is to develop a scalable technique for group dance
generation, a phase-based variational generative model for scalable group dance
generation, namely Phase-conditioned Dance VAE (PDVAE). To our knowledge,
PDVAE is the first method to represent the variational latent space using phase
parameters in the frequency domain of the motion curves. Our method goes
beyond the conventional VAE approach that typically relies on a single latent
vector drawn from a Gaussian distribution, which is unable to adequately repre-
sent the temporal information of the motion sequence (e.g., the time dimension
is squeezed out). Figure 1 illustrates an example of a dance motion sequence
with 100 dancers generated by our model. In contrast to existing methods, our
model can generate crowd-dance animations for an unlimited number of dancers
without increasing computational burden (i.e., memory consumption remains
constant), while still maintaining the performance and fidelity of the generated
choreographies. To summarize, our key contributions are as follows:

– We introduce PDVAE, a phase-based variational generative model for scal-
able group dance generation. The method focuses on generating large-scale
group dance under limited resources.

– To effectively learn the manifold that is group-consistent (i.e., dancers within
a group lie upon the same manifold), we propose a group consistency loss
that enforces the networks to encode the latent phase manifold to be identical
for the same group given the input music.
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– Extensive experiments along with thorough user study evaluations demon-
strate the state-of-the-art performance of our model while achieving effective
scalability.

2 Related Work

2.1 Music-driven Choreography

Crafting natural human choreography derived from music presents a multifaceted
challenge [30,62,89]. Certain methodologies integrate constraints based on music-
motion similarity matching to ensure coherence between the generated motion
and the music [10,33,35,43,65,69]. However, many of these approaches rely con-
siderably on heuristic algorithms, stitching together pre-existing dance segments
sourced from a limited music-dance database [10, 48]. While successful in gen-
erating extended and realistic dance sequences, these methods face limitations
when endeavoring to create entirely novel dance fragments [57,90].

In the recent period, advancements have been evident in the domain of
converting music into dance movements through various techniques such as
Convolutional Networks (CNN) [1, 8, 77, 91, 92, 99], Recurrent Networks (RNN)
[3, 26, 77, 79, 87], Graph Neural Networks (GNN) [5, 12, 64, 95], Generative Ad-
versarial Networks (GAN) [41, 77], or Transformer models [34, 44, 45, 49, 59, 71].
These methodologies typically depend on various inputs, including the present
music and a concise history of previous dance movements, to forecast forthcom-
ing sequences of human poses. This innovation introduces a music-text feature
fusion module, engineered to amalgamate inputs into a motion decoder, thereby
enabling the creation of dance sequences conditioned upon both musical and
textual instructions [17].

While these techniques show promise in generating authentic and lifelike
dance motions, they often struggle to synchronize movements seamlessly across
multiple dancers [40]. Specifically, achieving coordination and harmony among
dancers necessitates consideration of spatial and temporal relationships, their
interactions, and the overall choreographic structure [84]. Consequently, fur-
ther advancements in this domain are being pursued to tackle these complexi-
ties [25, 47, 59, 98]. For instance, Perez et al . [59] integrate a multimodal trans-
former encoder with a normalizing-flow-based decoder to estimate a probabil-
ity distribution encompassing potential subsequent poses. Additionally, Feng et
al . [11] enable long-term generation by imposing a motion repeat constraint to
forecast future frames while considering historical motions. A recent study by Le
et al . [39] investigates consistency and diversity factors between the generated
motions of two or more dancers within a timeframe. However, these approaches
are limited to a predefined number of dancers, heavily constrained by the max-
imum number of dancers in the dataset-provided videos.

2.2 Motion Manifold Learning

Motion manifold learning has attracted considerable attention in computer vision
and artificial intelligence, with the primary goal of comprehending the funda-
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mental structures inherent in human movement and dynamics [16, 24, 56, 82].
Its distinctive ability to generate human movement patterns presents numer-
ous opportunities to comprehend intrinsic motion dynamics, manage nonlinear
relationships in motion data, and acquire contextual and hierarchical represen-
tations [29,63,88]. Consequently, various methodologies have emerged, each con-
tributing distinct perspectives and techniques to advance the comprehension and
synthesis of human motion [28,38,63,68].

For instance, Holden et al . [23] generate character movements by mapping
high-level parameters to the human motion manifold, allowing diverse move-
ments without manual preprocessing, and enabling post-generation editing for
natural, smooth motion sequences. MotionCLIP [80] introduces a 3D human
motion auto-encoder aligned with the Contrastive Language-Image Pre-training
(CLIP) model’s space, enabling semantic text-based motion generation, disen-
tangled editing, and abstract language specification, leveraging CLIP’s rich se-
mantic knowledge within the motion manifold. Recently, Sun et al . [78] utilize
a VQ-VAE to acquire a low-dimensional manifold, effectively cleansing the mo-
tion sequences. Regarding the scalability of group dance generation, the concept
of the motion manifold emerges as a potential solution for addressing the re-
stricted number of dancers in the dataset. This direction enables the learning of
a distribution that facilitates the extraction of dance motions, allowing for the
presentation of cohesive group dance sequences.

3 Variational Phase Manifold Learning for Scalable
Group Choreography

3.1 Task Definition

Given an input music sequence a = {a1, at, ..., aT } with t = {1, ..., T} indicates
the index of the music frames, our goal is to generate the group motion sequences
of N arbitrary dancers: x = {x1

1, ..., x
1
T ; ...;x

N
1 , ..., xN

T } where xn
t is the pose of

n-th dancer at frame t. We follow [19, 53] and represent dance as a sequence
of poses in the 24-joint of the SMPL body model [54], using the 6D continu-
ous rotation [96] for every joint, along with 3D joint positions and velocities.
Additionally, the corresponding 3D root translation vectors are concatenated
into the pose representations to involve the trajectory of motion. Previous group
dance methods [40], which generate the whole group at once, cannot deal with
the increasing number of dancers and can only create group sequences up to a
pre-defined number of dancers, due to the vast complexity of the architecture. In
contrast, we aim to generate group dance with an unlimited number of dancers.

3.2 Phase-conditioned Dance VAE

Our goal is to learn a continuous manifold such that the motion can be gener-
ated by sampling from this learned manifold. We assume that although different
dancers within the same group may present visually distinctive movements, the
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Fig. 2: Overview of our Phase-conditioned Dance VAE (PDVAE) for scalable group
dance generation. It consists of an Encoder, a Prior, and a Decoder network. During
training, we encode the corresponding motion and music inputs into a latent phase
manifold, which is variational and parameterized by the frequency domain parameters
of periodic functions. The latent phases can be sampled from the manifold and then
decoded back to the original data space to obtain new motions. The consistency loss
Lcsc is further imposed to constrain the manifold to be consistently unified for dancers
that belong to the same group. At inference stage, only the Prior and the Decoder are
used to synthesize group dances efficiently.

properties of their motions, such as timing, periodicity, or temporal alignment
are intrinsically similar. Drawing inspiration from [74], we aim to learn a gener-
ative phase representation for each group of dancer in order to synthesize their
motion indefinitely. Our generative model is built upon the conditional Varia-
tional Autoencoder architecture [73], thanks to its diverse generation capability
and fast sampling speed. However, instead of directly encoding the data into a
Gaussian latent distribution as in common VAE approaches [15, 41, 47, 60, 61],
we model the latent variational distribution by the phase parameters extracted
from the latent motion curve, which we call variational phase manifold. The la-
tent phase manifold is well-structured and can well describe key characteristics
of motion (such as its timing, local periodicity, and transition), which benefits
learning motion features [74].

The overview of our Phase-conditioned Dance VAE is illustrated in Figure 2.
Specifically, the model contains three main networks: an encoder E to capture
the approximate posterior distribution conditioned on both motion and music
qϕ(z|x,a), a prior network P to learn the conditional prior given only the mu-
sic pθ(z|a) , and a decoder D to learn to reconstruct the data from the latent
distribution pθ(x|z,a). The new motion is generated by sampling the frequency-
domain parameters predicted by the prior network, which is then passed through
the decoder network to reconstruct the motion in the original data space. Fur-
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thermore, we adopt Transformer-based architecture [85] in each network to ef-
fectively capture long-range dependencies and holistic context of the dance se-
quence.

Encoder. The encoder E is expected to take both the motion and music fea-
ture sequence as input, and produce a distribution over possible latent variables
capturing the cross-modal relationship between them. To transform the joint
input space into a learned phase manifold, we adopt the Transformer decoder
architecture where the Cross-Attention mechanism [85] is utilized to learn the
relationship between the motion and the music. Accordingly, the output of the
encoder is a batch of latent curves (i.e., the activation sequences per channel)
that can particularly capture different spatial and temporal aspects of the mo-
tion sequence. However, instead of training the model to directly reconstruct the
input motion from the extracted latent curves, we further enforce each channel
of the latent space to have a periodic functional form (i.e., sinusoidal). This en-
ables us to effectively learn a compact parameterization for each latent channel
from a small set of parameters in the frequency domain.

Generative Variational Phase Manifold. Here we focus on learning the pe-
riodicity and non-linear temporal alignment of the motion in the latent space. In
particular, given the output latent curves from the encoder L = E(x, a) ∈ RD×T

with D is the number of desired phase channels to be extracted from the motion,
we parameterize each latent curve in L using a sinusoidal function with ampli-
tude (A), frequency (F), offset (B) and phase shift (S) parameters [74]. To allow
for variational phase manifold learning, we opt to predict two sets of parameters
µE = {µA;µF ;µB ;µS} and σE = {σA;σF ;σB ;σS}, which corresponds to the
mean and variance of R4D dimensional Gaussian distribution:

qϕ(z|x,a) = N (z;µE , σE) (1)

To do so, we first apply differentiable Fast Fourier Transform (FFT) to each
channel of the latent curve L and create the zero-indexed matrix of Fourier
coefficients as c = FFT (L) with c ∈ CD×K+1, K = ⌊T

2 ⌋. Correspondingly, we
compute the per channel power spectrum p ∈ RD×K+1 as pi,j =

2
N |ci,j |2, where

i is the channel index and j is the index for the frequency bands. Correspondingly,
the distributional mean parameters of the periodic sinusoidal function are then
calculated as follows:

µA
i =

√√√√ 2

T

K∑
j=1

pi,j , µF
i =

∑K
j=1 fj · pi,j∑K

j=1 pi,j

, µB
i =

ci,0
T

, (2)

where f = (0, 1
T , . . . ,

K
T ) is the frequencies vector. At the same time, the phase

shift S is predicted using a fully-connected (FC) layer with two arctan activation
as:

(sy, sx) = FC(Li), µS
i = arctan(sy, sx), (3)
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To predict the distributional variance of the phase amplitude and phase shift
parameters {σA, σS}, We additionally apply a separate two-layer MLP network
over each channel of the latent curves, similar to Equation 3. The variational
latent phase parameters are sampled by utilizing parameterization trick [36],
i.e., A ∼ N (µA, σA) and S ∼ N (µS , σS). In our experiments, we find that
sampling the phase frequency F and offset B often produce unstable and non-
coherent group movements. This might be because the frequency amplitudes of
the dancers within the same group are likely to associate with the rhythmic
pattern of the musical beats while the offsets capture their alignment, thereby
should be consistent with each other. Therefore, we treat those parameters as
deterministic by constraining their variance to zero.

Finally, the sampled set of phase parameters z = {A;F;B;S} are used to
reconstruct a parametric latent space consisting of multiple periodic curves to
represent each intrinsic property of the motion by:

L̂ = A · sin(2π · (F · T − S)) +B (4)

where T is a known time window series obtained by evenly spacing the timesteps
from 0 to T . Intuitively this curve construction procedure can be viewed as a
"quantization" layer to enforce the network to learn to represent the motion
features in the frequency domain, which is useful in representing different aspects
of human motion such as their timing and periodicity. In the last step, a decoder
is utilized to reconstruct the original motion signals from the set of parametric
latent curves.

Decoder. To decode the latent space into the original motion space, previous
works [60,61] have to use a sinusoidal positional encoding sequence with duration
T as the proxy input to the sequence decoder. This is because their latent space
is only formed by single latent vectors following a Gaussian distribution, which
cannot span the time dimension. However, we observe that it usually results
in unstable and inconsistent movements, as the proxy sequence is generic and
usually contains less meaningful information for the decoder. Meanwhile, our
method does not suffer from this problem as our latent space is built on multiple
curves that can represent the motion information through time, thanks to the
phase parameters. Subsequently, our decoder D is based on Transformer decoder
architecture that takes the constructed parametric latent curve, as well as the
music features as inputs, to reconstruct the corresponding dance motions. Here,
we also utilize the cross-attention model [85] where we consider the sequence of
and music features as key and value along with the sampled latent curves as
the query. The output of the decoder is a sequence of T vectors in RD, which
is then projected back to the original motion dimensions through a linear layer,
to obtain the reconstructed outputs x̂ = pθ(x|z,a). We additionally employ a
global trajectory predictor to predict the global translation of the root joint based
on the generated local motions [19, 46], in order to avoid intersection problems
between dancers. We provide details of our global predictor in the supplemental.
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Prior Network. Since the ground-truth motion is generally inaccessible at
test time (i.e., we only have access to the music), we also need to learn a prior
P to match the posterior distribution of motion from which the latent phase
can be sampled. Specifically, We follow the procedure similar to Section 3.2
(Equation 1-4) to predict the Gaussian distribution conditioned on the music
sequence a, which is then used for sampling the latent phases:

pθ(z|a) = N (z;µP , σP) (5)

where a Transformer encoder is used to encode the input conditioning music
sequence and predict the corresponding µP and σP . We implement the prior
network similarly to the encoder network, however, we use self-attention mech-
anism [85] to capture the global music context. Learning the conditional prior
is crucial for the conditional VAE to generalize to diverse types of music and
motion. Intuitively speaking, each latent variable z is expected to represent pos-
sible dance motions x conforming to the music context a. Therefore, the prior
should be able to encode different latent distributions given different musics.

3.3 Training

During training, we consider the following variational lower bound [73] to mainly
train our dance generation VAE model:

log pθ(x|a) ≥ Eqϕ [log pθ(x|z,a)]−DKL(qϕ(z|x,a)∥pθ(z|a)) (6)

In practice, we apply the conditional VAE loss as similar to [61], which is defined
as the weighted sum Lcvae = Lrec + λKLLKL. In particular, the reconstruction
term Lrec measures the motion reconstruction error given the decoder output
(via a smooth-L1 loss). The KL divergence term LKL compares the divergence
DKL between the posterior and the prior distribution to enforce them to be close
to each other.

The conditional VAE objective above is calculated for each dancer separately
and cannot capture the correlation between dancers within a group. Therefore, it
is essential to impose consistency among dancers and avoid strange effects such
as unsynchronized dance. To this end, we propose a group consistency loss by
enforcing the latent phase manifold to be similar for the same group, given the
input music. Specifically, we first calculate the phase manifold features based on
the frequency domain parameters as follows:

P2i−1 = Ai sin(2π · Si), P2i = Ai cos(2π · Si) (7)

where P ∈ R2D is the phase manifold vector that encodes the spatial-temporal
information of the motion state. The phase feature may look similar to the posi-
tional encodings of transformers [85] in the sense that both use multi-resolution
sinusoidal functions. However, the phase feature is much richer in terms of repre-
sentation capacity since it learns to embed the spatial (body joints) and temporal
(positions in time) information of the motion curves, whereas the positional en-
codings only encode the position of words. Finally, our consistency objective is
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to constrain phase manifold between dancers within a group to be as close as
possible to each other, which is formulated as:

Lcsc = DKL(qϕ(z|xm,a)∥(qϕ(z|xn,a)) + ∥Pm −Pn∥22 (8)

where the first term encourages the network to map different dancers belonging
to the same group (xm and xn) into the same set of distributional phase parame-
ters while the second term penalizes the discrepancy in their corresponding phase
manifolds. In general, this loss is applied to ensure every dancer is embedded
into a single unified manifold that can effectively represent their corresponding
group. To summarize, our total training loss is defined as the combination of the
VAE loss and the consistency loss L = Lcvae + λcscLcsc.

For testing, we can efficiently generate motions for an unlimited number
of dancers by indefinitely drawing samples from the learned continuous group-
consistent phase manifold. It is noteworthy that for inference, we only need to
process the prior network once to obtain the latent distribution. To generate
a new motion, we can sample from this latent (Gaussian) distribution and use
the decoder to decode it back to the motion space. This approach is much more
efficient and has significantly higher scalability than previous approaches [39,40]
that is limited by the number of dancers processed simultaneously by the entire
network.

4 Experiments

4.1 Implementation Details

Our model was trained on 4 NVIDIA V100 GPUs using Adam optimizer with
a fixed learning rate of 10−4 and a mini-batch size of 32 per GPU. For training
losses, the weights are empirically set to λKL = 5 × 10−4 and λcsc = 10−4, re-
spectively. The Transformer encoders and decoders consist of 5 layers for both
encoder, decoder, and prior Network with 512-dimensional hidden units. Mean-
while, the number of latent phase channels is set to 256. To further capture
the periodic nature of the phase feature, we also use Siren activation following
the initialization scheme as in [70]. This can effectively model the periodicity
inherent in the motion data, and thus can benefit motion synthesis [68].

4.2 Experimental Settings

Dataset In our experiments, we utilize the AIOZ-GDance [40] and AIST-M [90]
datasets. AIOZ-GDance is the largest music-driven dataset focusing on group
dance, encompassing paired music and 3D group motions extracted from in-the-
wild videos through a semi-automatic process. This dataset spans 7 dance styles
and 16 music genres. For consistency, we adhere to the training and testing split
outlined in [40] during our experiments.
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Evaluation Protocol We employ several metrics to assess the quality of in-
dividual dance motions, including Frechet Inception Distance (FID) [20, 49],
Motion-Music Consistency (MMC) [49], and Generation Diversity (GenDiv) [26,
41, 49], along with the Physical Foot Contact score (PFC) [83]. Specifically, the
FID score gauges the realism of individual dance movements concerning the
ground-truth dance. MMC assesses the matching similarity between motion and
music beats, reflecting how well-generated dances synchronize with the music’s
rhythm. GenDiv is computed as the average pairwise distance of kinetic features
among motions [58]. PFC evaluates the physical plausibility of foot movements
by determining the agreement between the acceleration of the character’s center
of mass and the foot’s velocity.

In assessing the group dance quality, we adopt three metrics outlined in [40]:
Group Motion Realism (GMR), Group Motion Correlation (GMC), and Trajec-
tory Intersection Frequency (TIF). Broadly, GMR gauges the realism of gen-
erated group motions in comparison to ground-truth data, employing Frechet
Inception Distance on extracted group motion features. GMC evaluates the
synchronization among dancers within the generated group by computing their
cross-correlation. TIF quantifies the frequency of collisions among the generated
dancers during their dance movements.

Baselines Our method is subjected to comparison with various recent tech-
niques in music-driven dance generation, namely FACT [49], Transflower [59],
and EDGE [83]. These approaches are adapted for benchmarking within group
dance generation context, as outlined in [40], considering that their original
designs were tailored for single-dance scenarios. Additionally, our evaluation in-
cludes comparisons with GDanceR [40], GCD [39], and DanY [90]. All mentioned
works are specifically designed for the group choreography generation.

Dataset Method FID↓ MMC↑ GenDiv↑ PFC↓ GMR↓ GMC↑ TIF↓

AIOZ-GDANCE [40]

FACT [49] 56.20 0.222 8.64 3.52 101.52 62.68 0.321
Transflower [59] 37.73 0.217 8.74 3.07 81.17 60.78 0.332
EDGE [83] 31.40 0.264 9.57 2.63 63.35 61.72 0.356
GDANCER [40] 43.90 0.250 9.23 3.05 51.27 79.01 0.217
GCD [39] 31.16 0.261 10.87 2.53 31.47 80.97 0.167
Ours 31.01 0.271 10.98 2.33 30.08 84.52 0.163

AIST-M [90]

GDANCER [40] 52.90 0.222 6.52 1.93 65.13 60.56 0.121
GCD [39] 35.36 0.245 10.97 1.52 42.52 72.15 0.083
DanY [90] 40.25 0.240 11.40 1.65 50.29 63.53 0.137
Ours 31.49 0.257 11.81 1.42 41.24 78.64 0.076

Table 1: Performance comparison.

4.3 Experimental Results

Quality Comparison Table 1 presents a comparison among the baselines
FACT [49], Transflower [59], EDGE [83], GDanceR [40], GCD [39], and our pro-
posed manifold-based method. The results clearly demonstrate that our model
almost outperforms all baselines across all evaluations on two datasets AIOZ-
GDANCE [40] and AIST-M [90]. We observe that recent diffusion-based dance
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generation models such as EDGE or GCD yield competitive performance on
both single-dance metrics (FID, MMC, GenDiv, and PFC) and group dance
metrics (GMR, GMC, and TIF). However, due to limitations in their training
procedures, they still struggle when dealing with generating multiple dancing
motions in the context of a high quantity of dancers, as shown by their low
performance compared to our proposal. This result implies that our method
successfully preserves the performance of dancing motions when the number of
dancers is increased. Besides, Figure 3 also shows that our proposed methods
outperform other state-of-the-art methods such as GDanceR or GCD in dealing
with monotonous, repetitive, sinking, and overlapping dance motions.

G
D
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R
G

C
D

O
u
rs

Fig. 3: Visualization of a dancing sample between different methods. GDanceR displays
monotonous, repetitive, or sinking dance motions. GCD exhibits more divergence in
dance motions, yet dancers may intersect since their optimization does not address this
issue explicitly. Blue boxes mark these issues. In contrast, our manifold-based solution
ensures the divergence of dancing motions, while the phase motion path demonstrates
its effectiveness in addressing floating and crossing issues in group dances.

#Generated
Dancers Method FID↓ MMC↑ GenDiv↑ GMR↓ GMC↑ TIF↓

5
GDanceR [40] 44.19 0.249 8.99 55.05 78.72 0.218

GCD [39] 35.08 0.264 9.92 38.43 81.44 0.168
Ours 31.35 0.268 10.05 32.58 84.56 0.161

10
GDanceR [40] 57.93 0.225 7.63 73.32 72.79 0.386

GCD [39] N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory)
Ours 32.19 0.269 8.99 34.32 86.96 0.193

100
GDanceR [40] N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory)

GCD [39] N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory) N/A (Memory)
Ours 30.97 0.268 8.76 38.13 85.73 0.222

Table 2: Performance of group dance generation methods when we increase the number
of generated dancers. The experiments are done with common consumer GPUs with
4GB memory. (N/A means models could not run due to inadequate memory footprint)

Scalable Generation Analysis Table 2 illustrates the performance of different
group dance generation methods (GCD, GDancer, and Ours) when generating
dance movements with an increasing number of dancers. When the number of
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dancers is increased to 10, GCD appears to run out of memory, which is also
observed in GDanceR when the number of dancers increases to 100. Regardless
of the number of dancers, our method consistently achieves stable and compet-
itive results. This implies that our proposed method successfully addresses the
scalability issue in group dance generation without compromising the overall
performance of each individual dance motion. Figure 4 illustrates the memory
consumption to generate dance motions in groups for each method. Noticeably,
our proposal still achieves the highest performance while consuming immensely
fewer resources required for generating group dance motions (See Figure 5 for
illustrations). This, again, indicates that our method successfully breaks the
barrier of limited generated dancers by using the manifold.

Ablation Analysis Table 3 presents the performance improvements achieved
through the integration of consistency loss and phase manifold. Additionally,
we showcase the effectiveness of our proposed approach across three different
backbones: Transformer [49, 85], LSTM [21], and CNN [99]. Evaluation metrics
including FID, GMR, and GMC are utilized. The results indicate that the ab-
sence of consistency loss leads to an increase in GMR and a decrease in GMC,
suggesting a significant enhancement in the realism and correlation of group
dance motions facilitated by the inclusion of the proposed objective. Meanwhile,
with out the phase manifold, the model exhibits remarkably higher scores in
both the FID and GMR metrics, suggesting that phase manifold can effectively
improve the distinction in dance motions while maintaining the realism of group
dances, even when the number of dancers in a group is large. In comparing three
backbones—Transformer, LSTM, and CNN—we have observed that the chosen
Transformer backbone achieved the best results compared to LSTM or CNN.

Method FID↓ GMR↓ GMC↑
Ours 31.01 30.08 84.52
Ours w/o Consistency Loss 35.35 57.63 66.72
Ours w/o Phase Manifold 41.78 45.32 77.93
Ours w LSTM 41.29 47.47 71.82
Ours w CNN 36.99 44.94 75.77

Table 3: Module contribution and loss
analysis.
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Fig. 4: Memory usage vs. number of
dancers in different dance generators.

4.4 User Study

User studies are vital for evaluating generative models, as user perception is
pivotal for downstream applications; thus, we conducted two studies with around
70 participants each, diverse in background, with experience in music and dance,
aged between 20 to 40, consisting of approximately 47% females and 53% males,
to assess the effectiveness of our approach in group choreography generation.
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In the user study, we aim to assess the realism of sample outputs with more
and more dancers. Specifically, participants assign scores ranging from 0 to 10
to evaluate the realism of each dance clip with 2 to 10 dancers. Figure 6 shows
that, across all methods, the more the number of dancers is increased, the lower
the realism is found. However, the drop in realism of our proposed method is the
least compared to GCD and GDanceR. The results indicate our method’s good
performance compared to other baselines when the number of dancers increases.
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Fig. 5: Visualization of scalable dancers.
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5 Discussion

While our approach leverages the VAE as a primary solution for generating
a manifold, it is important to acknowledge certain inherent limitations associ-
ated with this choice. One notable challenge is the susceptibility to issues such
as posterior collapse and unstable sampling within the VAE framework. These
challenges can result in generated group dance motions that may not consistently
meet performance expectations.

One specific manifestation of this limitation is the potential for false decoding
when sampling points that lie too far from the learned distribution. This scenario
can lead to unexpected rotations or disruptions in the physics of the generated
content. The impact of this problem becomes evident in instances where the
generated samples deviate significantly from the anticipated distribution, intro-
ducing inaccuracies and distortions.

To address these challenges, we recognize the need for ongoing efforts to
mitigate the effects of posterior collapse and unstable sampling. While the prob-
lem is acknowledged, our approach incorporates measures to limit its impact.
Future research directions could explore alternative generative models or ad-
ditional techniques to enhance the robustness and reliability of the generated
results in the face of these identified limitations.
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