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Abstract. Salient Object Ranking (SOR) aims to study how human
observers shift their attention among various objects within a scene.
Previous works attempt to excavate explicit visual saliency cues, e.g .,
spatial frequency and semantic context, to tackle this challenge. How-
ever, these visual saliency cues may fall short in handling real-world
scenarios, which often involve various human activities and interactions.
We observe that human observers’ attention can be reflexively guided
by the poses and gestures of the people in the scene, which indicate
their activities. For example, observers tend to shift their attention to
follow others’ head orientation or running/walking direction to antici-
pate what will happen. Inspired by this observation, we propose to ex-
ploit human poses in understanding high-level interactions between hu-
man participants and their surroundings for robust salient object rank-
ing. Specifically, we propose PoseSOR, a human pose-aware SOR model
for the SOR task, with two novel modules: 1) a Pose-Aware Interac-
tion (PAI) module to integrate human pose knowledge into salient ob-
ject queries for learning high-level interactions, and 2) a Pose-Driven
Ranking (PDR) module to apply pose knowledge as directional cues to
help predict where human attention will shift to. To our knowledge,
our approach is the first to explore human pose for salient object rank-
ing. Extensive experiments demonstrate the effectiveness of our method,
particularly in complex scenes, and our model sets the new state-of-
the-art on the SOR benchmarks. Code and dataset are available at
https://github.com/guanhuankang/ECCV24PoseSOR.
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1 Introduction

Salient object detection (SOD) is a fundamental task in computer vision, aim-
ing to recognize objects that naturally attract human attention. However, SOD
methods [17, 30, 32, 45, 49, 50, 52, 55, 56] usually treat all salient objects equally,
which does not align with human viewing behaviors [21,38]. Psychological stud-
ies [19, 21, 22] show that humans tend to sequentially select and shift their at-
tention from one salient object to another, instead of attending to all salient
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Scenario-1: A chef is making a pizza.

Scenario-2: A referee leads the player away to prevent conflicts.

Scenario-3: A tennis player is getting ready to hit the ball.

Input OCOR [47] PSR [46] Ours GT

Fig. 1: Existing SOR methods are based on learning explicit visual saliency cues, and
may fail to handle complex human activities and interactions. In Scenario 1, humans
would tend to look at the chef in the middle first, and then the pizza that the chef
is making. SOTA methods, OCOR [47] and PSR [46], are biased towards semantic-
rich objects (i.e., the persons), and do not include the pizza until the very end. In
Scenario 2, SOTA methods tend to give higher ranks to high-contrast objects (i.e.,
the two players in white shirts and red hats). In Scenario 3, SOTA methods tend to
miss out small and less salient objects (i.e., the tennis ball), even though they may be
important. Our method integrates human pose knowledge in the prediction, and yields
predictions that are more in line with human labels.

objects at the same time. This discrepancy has recently spurred the develop-
ment of Salient Object Ranking (SOR) [44]. SOR aims to not only detect the
salient objects, but also predict the visiting order of human visual attention on
these objects. It can help better understand how humans interpret scenes and
benefit many downstream tasks, such as image editing [1, 36], gaze communica-
tion [10], and scene understanding [9, 26].

Recently, several works [12, 31, 44, 46, 47] are proposed to tackle the SOR
task. For example, Siris et al . [44] propose to infer attention shifts by incorpo-
rating both object-scene context and spatial mask cues. Liu et al . [31] use graph
convolution to model instance-level competition for saliency ranking. Fang et
al . [12] propose to learn an explicit position embedding to enhance the ranking
performance. Tian et al . [47] propose to predict saliency ranking by unifying
spatial-attention and object-based attention. All these methods mainly focus
on exploring explicit visual saliency cues, such as spatial frequency and seman-
tic context, to model how objects compete for saliency. While visual saliency
can help distinguish salient objects from their surroundings, it is not sufficient
to handle complex scenarios, which often involve various human activities and
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high-level interactions among human participants. For example, the first row in
Figure 1 depicts a scenario where the chef is making a pizza while the customers
are waiting. Our method first attends to the chef and then shifts the attention to
the pizza, which he is interacting with, before reaching the customer. This is in
line with the human label (GT). In contrast, existing methods [46, 47] shift the
attention from the chef directly to the distant customer, and they either attend
to the pizza at the end [47] or completely miss the pizza [46].

We observe that human observers’ attention can be reflexively guided by the
behaviors of people in the scene. For example, observers tend to shift their atten-
tion to follow people’s head orientation [8,24] to find out what they are looking
at. They also tend to shift their attention to follow people’s walking/running
direction [3, 14, 43] to find out what they are doing. Based on this observation,
we propose to incorporate human pose cues into the SOR model, to facilitate
the understanding of human activities and interactions in SOR. To this end, we
present PoseSOR, a novel human pose-aware SOR model. PoseSOR includes two
novel modules: 1) a Pose-Aware Interaction (PAI) module to integrate human
pose knowledge into salient object queries to facilitate the learning of high-level
interactions between people and their surroundings, and 2) a Pose-Driven Rank-
ing (PDR) module to leverage human pose knowledge as directional cues to
help predict where human attention will shift to. Our PAI module contains a
joint-level stage and an instance-level interaction stage. The former stage aims
to model inter-joint relations for individual pose understanding, and the latter
stage aims to model the interactions between people and their surroundings in
a pose-aware manner. The proposed PDR module leverages the pose knowledge
from the PAI module to help predict the next object that human attention will
likely shift to. Finally, PoseSOR learns to predict the overall rank order with
the knowledge learned from both modules. To our knowledge, we are the first
to uncover human pose cues for salient object ranking. We have conducted ex-
tensive experiments to demonstrate the effectiveness of our approach, and our
model achieves state-of-the-art performances on the existing SOR benchmarks.

In summary, our main contributions of this work are three-fold: i) We pro-
pose to explore human pose cues for salient object ranking. These human pose
cues convey information related to human activities and interactions. ii) We
propose PoseSOR, a human pose-aware SOR model, which includes two novel
modules, i.e. Pose-Aware Interaction (PAI) module and Pose-Driven Ranking
(PDR) module, to explore human pose knowledge for SOR. iii) We conduct ex-
tensive experiments to verify the effectiveness of our approach, and our model
outperforms existing state-of-the-art methods both quantitatively and qualita-
tively on SOR benchmarks.

2 Related Work

2.1 Salient Object Ranking

Salient Object Ranking (SOR) is a rather new research field. It studies how
humans sequentially prioritize their attention to daily scene objects. Islam et
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al . [18] make an initial attempt to address this task by introducing a rank-aware
approach, in which they utilize the frequency of an object labeled as salient to
guide the learning process. However, their approach does not account for at-
tention shifts, and is limited to pixel-level saliency competition. Later, Siris et
al . [44] enhance the concept of SOR by incorporating psychological and neurosci-
entific evidences [7,38], showcasing that SOR can be formulated as a process of
predicting the order of an observer’s attention on objects. They propose the first
instance-level SOR model by exploring the object-scene context and spatial mask
cues, and also constructing a large-scale SOR benchmark, which is commonly
used by the subsequent works. Fang et al . [12] suggest adding position infor-
mation to enhance the ranking performances, and propose a position-preserved
attention module for their goal. Liu et al . [31] construct a new SOR dataset
with fewer annotation errors and propose to use graph convolution for learning
instance-level saliency competition. Tian et al . [47] propose to combine both
spatial-attention and object-based attention to improve salient object ranking.
Most recently, Sun et al . [46] propose ranking salient objects by partition other
than ranking by sorting for alleviating the ranking ambiguities. Guan et al . [15]
propose to mimic human visual behaviors and rank salient objects in sequence.

While these works [12, 15, 18, 31, 44, 46, 47] have achieved some progress in
salient object ranking, their solutions are limited to exploiting explicit visual
saliency cues, such as spatial frequency and semantic context, or reducing the
ranking ambiguities [46]. In this work, we propose to excavate the human pose
cues, which convey information related to human activities and interactions be-
tween people and their surroundings, for the SOR task.

2.2 Salient Object Detection

Salient Object Detection (SOD) is a topic closely related to SOR and has
been widely studied. SOD aims to recognize objects that naturally capture
human attention. Traditional SOD approaches mainly rely on local appear-
ances [2,6] and low-level cues, such as center prior [6,54], boundary prior [51,57],
and background prior [20,27]. However, traditional methods usually suffer from
insufficient semantic understanding. Subsequently, deep learning based meth-
ods [17,30,32,45,49,50,52,55,56] have become popular and significantly improved
the SOD performances with various strategies, such as exploring multi-level or
multi-scale feature fusion strategies [49,55], utilizing boundary features [50,52],
and introducing advanced network architectures [30,32].

Despite the success, SOD approaches can only produce binary saliency maps,
without being able to differentiate object instances. Salient instance detection [25]
(SID) is then proposed to close this gap, aiming to identify salient object in-
stances. Most of the initial SID methods [11, 33, 53] adopt Mask R-CNN [16]
to detect object instances, and learn to differentiate the salient ones from the
background. Recently, Pei et al . [39] propose to detect salient instances using
transformers, and to initialize the object queries with center prior [6] to acceler-
ate convergence.
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Fig. 2: The PoseSOR Framework. PoseSOR follows a query-based architecture that
includes salient object queries to locate salient objects and pose queries for detecting
human poses. The Pose-Aware Interaction (PAI) module learns to integrate human
pose knowledge into salient object queries, and enables the modeling of high-level
interactions between people and their surroundings in a pose-aware manner. The Pose-
Driven Ranking (PDR) module excavates directional cues from pose queries to assist
in the prediction of the overall rank order.

In contrast to SOD and SID, salient object ranking (SOR) is more chal-
lenging, as it further takes human attention shifts into account. SOR requires
distinguishing the salient instances from the background, and assigning a rank to
each instance to indicate the visiting order of human attention on these objects.
In this work, we propose PoseSOR, a human pose-aware SOR model, to address
the SOR task.

3 Method

Human attention can be reflexively guided by the poses and gestures of peo-
ple in the scene, suggesting that human poses are strong cues for salient object
ranking. We present PoseSOR to explore the human pose cues, which convey
information about human activities and interactions, for the SOR task. We first
describe the PoseSOR framework in Section 3.1. We then show how to inte-
grate human pose knowledge into salient object queries and model interactions
between people and their surroundings in a pose-aware manner via our novel
Pose-Aware Interaction (PAI) module, described in Section 3.2. We propose our
novel Pose-Driven Ranking (PDR) module, which leverages pose knowledge as
directional cues to help predict where human attention will shift to, described
in Section 3.3. Finally, we present our training strategy in Section 3.4.
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3.1 PoseSOR

Figure 2 shows the PoseSOR framework. We first feed the input image to the
feature extractor to extract multi-scale image features, feats ∈ RC×Hs×Ws ,
where s ∈ {2, 3, 4, 5} is the stage number and C corresponds to the feature
dimension. The extracted image features feats are shareable for the subsequent
Transformer decoder, the PAI module, and the PDR module.

We start with N salient object queries (i.e., in Figure 2), denoted as
Q ∈ RN×C , where N is set to be significantly larger than the typical number
of salient objects in the image. Q represents all potential salient objects in the
input image and is initialized with zeros at the beginning. We next employ a
6-layer Transformer decoder [48] to enrich Q with salient object features, and
select the queries with high confidence of being salient for the subsequent PAI
module. This learning and selection process is formulated as:

Q = Transformers(Q, feats|s∈{3,4,5}), (1)
ŷ = σ(proj(Q)), (2)
Qs = {Qi | ŷi > τ , i = 1, 2, ..., N}, (3)

where feats serves as the key and value, while Q serves as the input sequence
to the Transformer decoder. proj is a linear layer that projects C-dimensional
features to 1-dimensional features. σ is a sigmoid function. ŷ ∈ RN indicates
the likelihood of each query being salient. τ ∈ R is a threshold for determining
salient object queries. Qs ∈ RM×C (i.e., in Figure 2) represents the selected
salient object queries that are likely to be salient, where M is the number of
detected salient objects in the input image.

Our PAI module uncovers human pose knowledge in a top-down manner, by
first detecting the persons and then locating the skeletal joints for each person.
We introduce pose queries (i.e., in Figure 2), denoted as Qp ∈ RM×K×C ,
which contains M instances with K joints each. We obtain Qp by summing up
every pair of salient object query and skeletal joint representation:

Qp
i,j = Qs

i + Jj , (4)

where J ∈ RK×C is the latent joint representation, with i ∈ {1, 2, ...,M} and
j ∈ {1, 2, ...,K}. We use the pose queries Qp to capture human pose knowledge.

The PAI module learns to integrate pose knowledge into salient object queries,
and model high-level interactions between people and their surroundings, gener-
ating pose-aware salient object queries (i.e., in Figure 2), denoted as Qsaliency,
and refined pose queries (i.e., in Figure 2), denoted as Qpose. We apply a dot-
product between Qsaliency and feat2 to obtain salient instance masks as:

masks = σ(linear(Qsaliency) · feat2), (5)

where linear is a linear layer, and masks ∈ RM×H2×W2 are salient instance
masks. The rankings of salient instances are determined by the PDR module as:

ranks = PDR(Qsaliency, Qpose). (6)
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Fig. 3: Pose-Aware Interaction (PAI) Module. The PAI module consists of a
joint-level interaction stage to model inter-joint relations for acquiring individual pose
knowledge, and an instance-level interaction stage to capture the interactions between
people and other salient items or scene elements, for understanding human activities
and high-level interactions in a pose-aware manner.

Finally, we combine the salient instance masks and rankings to get final output.

3.2 The Pose-Aware Interaction (PAI) Module

Our PAI module is proposed to uncover human pose knowledge, and learn to
integrate pose knowledge into salient object queries for a deeper understanding of
human activities and interactions. Figure 3 shows the design of our PAI module.
The PAI module includes a joint-level interaction stage to model inter-joint
relations for individual pose understanding, and an instance-level interaction
stage to model interactions between people and other items that they may be
interacting with. We repeat the PAI module for L times to ensure comprehensive
pose knowledge learning.

The joint-level interaction is specific to each instance, as each instance has
its own pose information. Thus, we first generate instance-specific features by
multiplying the image features with the intermediate instance maps as:

mapsi = σ(Qs
i · feat3), (7)

featinsi = mapsi ∗ feat3, (8)

where maps ∈ RM×H3×W3 are intermediate instance maps, ∗ is the element-wise
multiplication, and featins ∈ RM×C×H3×W3 are the generated instance-specific
features. We then use cross-attention and self-attention to model the joint-level
interactions as they are effective in capturing complex long-range relations:

Qpose = CrossAttn(Qp, ρ(featins)), (9)
Qpose = FFN(SelfAttn(Qpose)), (10)

where ρ is the flatten and permute operation, ρ(featins) ∈ RM×H3W3×C acts as
the key and value for the cross-attention layer. This enables the pose queries to
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attend to all pixels and aggregate the features of human skeletal joints. SelfAttn
is a self-attention layer for modeling joint-level interactions, and FFN is a feed-
forward neural network. Qpose ∈ RM×K×C are directly used to predict the co-
ordinates of human skeletal joints.

We transform the pose queries Qpose, which have M human poses with K
joints each, with a linear layer to aggregate the K joints to one global human
pose. We then incorporate this pose knowledge, i.e., aggregate(Qpose), into the
salient object queries Qs, to allow the pose knowledge to be exploited in the
latter instance-level interaction stage.

Since the surroundings where people stay also influences human activities
and interactions, we introduce a scene tokenizer to add some scene tokens:

T s = LN(ρ(MaxPool(feat3))), (11)

where LN is the layer normalization operation, and MaxPool denotes an adaptive
max pooling layer. T s ∈ RS×C are scene tokens. We concatenate scene tokens
T s and salient object queries Qs to form the input sequence to the instance-level
interaction stage, which is composed of a self-attention layer and a feed-forward
neural network:

[T scene, Qsaliency] = FFN(SelfAttn([T s, Qs])), (12)

where [·, ·] indicates the concatenation operator. T scene ∈ RS×C are the refined
scene tokens. Qsaliency ∈ RM×C are the refined salient object queries, which can
be used to generate the final salient instance masks, as stated in Eq. 5. Qsaliency

and Qpose are then sent to the PDR module for rankings inference.

3.3 The Pose-Driven Ranking (PDR) Module

The PDR module is proposed to apply the pose knowledge as directional cues
to help predict where human attention will shift towards, and combine both di-
rectional cues and interaction knowledge to predict the overall ranking. Figure 4
shows the design of our PDR module, which contains two parts: directional cues
learning and rankings inference.

Directional cues learning models the human attention shift process by intro-
ducing directional queries Qdirection, which have M instances with D shifting
directions each, and coordinate tokens T coordinate, which have M instances with
K coordinates each. We compute the likelihood of shifting by measuring the
similarity between each shifting direction and coordinate. We then learn the
salient features of the targets based on the shifting likelihood. This attention
shift process can be formulated as:

Lshift = softmax(ρ(Qdirection) · ρ(T coordinate)), (13)

Qnext = φ3(Lshift · ρ(Qsaliency)), (14)

where ρ is the flatten and permute operation. The shifting likelihood is Lshift ∈
RMD×MK . Qnext ∈ RM×C are the queries pointing to the next region/object
that human attention will shift towards.
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Fig. 4: Pose-Driven Ranking (PDR) Module. We transform the pose knowledge
to directional queries Qdirection, and coordinate tokens T coordinate, for modeling the
attention shift process by predicting the next object/region that human attention is
likely to shift towards. We then combine Qnext and Qsaliency to model the inter-query
ranking relations. φ1, φ2, φ3, θ1, θ2 are 3-layer MLPs.

∑M
1 means that we average the

matrix with shape of M ×M × C along the second axis to reduce it to M × C.

Rankings inference concatenates the salient object queries with Qnext for
further modeling inter-query ranking relations:

Qfuse = θ1([Q
saliency, Qnext]), (15)

where θ1 is a 3-layer MLP for combining interaction information and directional
cues, and reducing the dimensionality to C. As ranking is related to all other
queries, we model inter-query ranking relations in a pairwise manner, by con-
catenating every two queries and feeding them to a MLP to model their ranking
relation as:

pairsi,j = θ2([Q
fuse
i , Qfuse

j ]), (16)

where pairs ∈ RM×M×C denotes the ranking relation between every two queries.
We collect all pair relations belonging to the same instance, and average them
to get the ranking-aware Qrank:

Qrank
i =

1

M

j=M∑
j=1

pairsi,j . (17)

Finally, we predict the final ranking by treating the ranking process as a classifi-
cation problem, following Fang et al . [12]. In addition, to facilitate the prediction
of the next fixated region/object, we add a mask head on Qnext to force it to
fixate on the next salient object instance:

mapsnexti = σ(linear(Qnext
i ) · feat3), (18)

where mapsnexti should be matched to the i + 1 salient instance mask, and we
expect the last map of mapsnext to be the background, suggesting that humans
will shift their attention to the background after visiting all salient items.
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3.4 Training Strategy

PoseSOR uncovers the human pose cues for salient object ranking. We train
PoseSOR in an end-to-end manner. The overall loss function is formulated as:

ℓposesor = ℓmasks + ℓranks + ℓposes + ℓauxiliary, (19)

where ℓmasks adopts the binary cross-entropy loss and the dice loss [37] for
salient instance masks and the next fixated region/object maps learning. ℓranks
adopts the cross-entropy loss for ranking prediction. ℓposes adopts ℓ1 loss for
joint coordinate regression, and employs a heatmap loss [35,41,42] for fast con-
vergence. ℓauxiliary is used for training the Transformer decoder in Figure 2. The
Transformer decoder generates N queries, each of which predicts the saliency
likelihood, a bounding box, and a coarse instance mask. Following [4, 5, 47], we
use the Hungarian algorithm to match these N predictions to GT or no object.
Thus, the auxiliary loss can be formulated as:

ℓauxiliary = ℓŷ + ℓbbox + ℓcmask, (20)

where ℓŷ adopts the binary cross-entropy loss for the likelihood prediction. ℓbbox
adopts ℓ1 loss and GIoU loss [40] for the bounding box regression. ℓcmask adopts
the binary cross-entropy loss and the dice loss for the coarse masks learning.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct experiments on two popular SOR benchmarks: ASSR [44] and
IRSR [31]. ASSR contains 7,646 images for training, 1,436 images for valida-
tion, and 2,418 images for testing. It is the first SOR benchmark that contains
both instance-level salient object masks and saliency rankings. IRSR [31] com-
prises 6,059 training images and 2,929 testing images. These two benchmarks are
constructed from MS-COCO [29], and the images in both benchmarks depict a
variety of human scenarios and everyday objects, presenting great challenges for
the SOR task. We further collect human pose annotations from MS-COCO [29]
dataset for both SOR benchmarks to train our PoseSOR.

We use Segmentation-Aware SOR (SA-SOR) [31], Salient Object Ranking
(SOR score) [44] and Mean Absolute Error (MAE) for evaluation, following pre-
vious works [31, 46, 47]. SA-SOR computes the Pearson correlation between the
predicted rankings and human labels, and incorporates a penalty for the missed
salient instances. It ranges from -1.0 to 1.0, with a positive/negative value in-
dicating a positive/negative correlation. Higher SA-SOR scores are better. SOR
is the Spearman’s rank correlation between the predicted rankings and human
labels. SOR scores are normalized to a range of 0.0 to 1.0, with higher values
being better, without penalizing for false negatives. MAE measures the salient
object segmentation quality, with lower values being better.
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Table 1: Quantitative Comparison. SOD: Salient Object Detection task. SID:
Salient Instance Detection task. INS: INstance Segmentation task. SOR: Salient Object
Ranking task. Best results are marked in bold and second-best results are underlined.

Method Year-Pub Task ASSR Test Set (2418) IRSR Test Set (2929)
SA-SOR↑ SOR↑ MAE↓ SA-SOR↑ SOR↑ MAE↓

VST [32] 2021-ICCV SOD 0.422 0.643 9.99 0.183 0.571 8.75
MENet [49] 2023-CVPR SOD 0.369 0.627 9.60 0.162 0.558 8.25
S4Net [11] 2019-CVPR SID 0.451 0.649 14.4 0.224 0.611 12.1
QueryInst [13] 2021-ICCV INS 0.596 0.865 8.52 0.538 0.816 7.13
Mask2Former [5] 2022-CVPR INS 0.635 0.867 7.31 0.521 0.799 7.14
RSDNet [18] 2018-CVPR SOR 0.386 0.692 18.2 0.326 0.663 18.5
ASRNet [44] 2020-CVPR SOR 0.590 0.770 9.39 0.346 0.681 9.44
PPA [12] 2021-ICCV SOR 0.635 0.863 8.52 0.521 0.797 8.08
IRSR [31] 2021-TPAMI SOR 0.650 0.854 9.73 0.543 0.815 7.79
OCOR [47] 2022-CVPR SOR 0.541 0.873 10.2 0.504 0.820 8.45
PSR [46] 2023-ACMMM SOR 0.644 0.815 9.59 0.454 0.752 8.07
Ours 2024 SOR 0.673 0.871 7.23 0.568 0.817 6.29

4.2 Implementation Details

We use Swin Transformer [34], pretrained on ImageNet [23], and FPN [28] as
our feature extractor. We set N = 100, K = 17, C = 256, L = 3, τ = 0.1, and
D = 8. The output size of MaxPool in Eq. 11 is set to 4 × 4, i.e., 16 scene
tokens. During training, we compute the mask loss on 12, 544, i.e., 112 × 112,
randomly sampled points instead of the whole mask to reduce training memory
and improve training efficiency, as suggested by Cheng et al . [5]. We adopt the
AdamW optimizer with a weight decay of 1e-4 to optimize the model for 50k
iterations, with a batch size of 32. We set the initial learning rate to 5e-5 and
decay it to 5e-6 after 30k iterations. We use random flip and random resize, such
that each side is at least 704 and at most 800 pixels, for data augmentation. It
takes roughly 20 hours to train PoseSOR using 4 A100 GPUs. During inference,
we resize the input image to 768× 768 and feed it to PoseSOR for prediction.

4.3 Quantitative Results

To fully evaluate our approach, we compare it with 11 other related methods, cov-
ering salient object detection methods [32, 49], salient instance detection meth-
ods [11], instance segmentation methods [5,13] and salient object ranking meth-
ods [12,18,31,44,46,47]. We re-train all these methods on both ASSR and IRSR
benchmarks, to ensure a fair comparison. For salient object/instance detection
methods, we compute their saliency rankings based on the average saliency in-
tensity, following Islam et al . [18]. For instance segmentation methods, we cast
the rank labels to be the class labels.

Table 1 shows the quantitative results. We can see that our approach out-
performs all compared methods with nearly all metrics on both benchmarks. In
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Input RSDNet S4Net Mask2F ASRNet IRSR OCOR PSR Ours GT

Fig. 5: Qualitative Comparison. Our method generally produces more accurate
results that align with human labels (GT). Salient instances are colorized using varying
color temperatures, ranging from warm to cold, to indicate the saliency ranking order.

particular, our SA-SOR score surpasses the second best by a clear margin of
3.5% on ASSR and 4.6% on IRSR benchmarks. In addition, our MAE score sur-
passes the second best by 11.8% on the IRSR benchmark. We also observe that
the other state-of-the-art methods exhibit biases towards certain metrics. For
example, while OCOR [47] performs slightly better than ours in the SOR met-
ric, our SA-SOR and MAE scores are much better than those of OCOR. We find
that OCOR often misses some salient objects. However, SOR does not penal-
ize under-detection, while both SA-SOR and MAE do. In contrast, our method
achieves consistent competitive results in all metrics on both benchmarks.

4.4 Qualitative Results

We also evaluate our method qualitatively. As shown in Figure 5, our method
generally produces more accurate results that align with human labels (GT),
particularly in complex scenes. For example, in the 1st row, our method initially
focuses on the man, then shifts attention to the laptop that the man is interacting
in, and finally turns to the woman and the other objects. Our predictions are
in line with the GT, while the SOTA methods, e.g ., PSR [46], OCOR [47] and
IRSR [31], tend to assign more attention to the persons and visit the laptop
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Table 2: Analysis on the PAI module. ✓: human pose labels are used for training.

ID Methods Pose SA-SOR↑ SOR↑ MAE↓
1 PoseSOR ✓ 0.673 0.860 7.35
2 PoseSOR 0.665 0.856 7.70
3 w/o scene tokens ✓ 0.670 0.861 7.49
4 w/o featins ✓ 0.669 0.858 7.35
5 w/o aggregation ✓ 0.667 0.858 7.61

either at the very end or completely ignore it. In the 2nd row, the woman in
red is looking at the cake while the woman in yellow is standing next to her.
Our method correctly predicts the visiting order of this event, while the SOTA
methods fail to predict reasonable saliency rankings. In the 4th row, the man
on the phone is facing to the right while two women are passing in front of
the camera. The SOTA methods, such as OCOR [47] and PSR [46], initially
fixate on the man, then shift to the woman on the left, who is behind the man,
and finally focus on the right women. In contrast, our method makes a more
natural shift in attention from the man to the woman on the right, who is in
front of the man, then turns to the woman on the left, who is in front of the
camera, and finally reaches the woman in the middle, who is walking away from
the camera. In addition, our method can handle complex scenarios involving a
group of people, as shown in the last two rows of Figure 5.

In summary, our PoseSOR, which is equipped with the human pose-aware
ability, can produce more favorable results than SOTA methods, which mainly
focus on explicit visual saliency cues.

4.5 Ablation Study

We further conduct ablation experiments to evaluate the effectiveness of each
component on the ASSR benchmark. We adopt a computation-friendly training
setting of 512× 512 resolution and a batch size of 16. Each experiment requires
roughly 15 hours on an A100.
Analysis on the PAI Module. As shown in Table 2, the SA-SOR score drops
from 0.673 (ID1) to 0.665 (ID2, which does not use human pose labels during
training), demonstrating the advantages of incorporating human pose knowledge.
We can also see that the aggregation operation (ID5), which allows the instance-
level interaction stage to work in a pose-aware manner, has a more significant
effect on the performance than the scene tokens (ID3) and the instance-specific
features (ID4), while our full model (ID1) achieves the best performance.
Analysis on Human Quantity Impact. We further investigate whether hu-
man pose knowledge has advantages in scenarios where there are no human par-
ticipants. Table 3 shows that human pose knowledge significantly enhances SOR
performance when the scenarios contain one or more humans (ID7), but it does
not yield benefits when no humans are involved (ID6). Additionally, we analyze
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Table 3: Analysis on Human Quantity Impact. “w/ Pose” means that we train
PoseSOR with pose labels. “w/o Pose” means that we do not use pose labels.

ID Num. of Humans Percentages SA-SOR↑ MAE↓
w/ Pose w/o Pose w/ Pose w/o Pose

6 0 38.5% 0.584 0.596 8.84 9.11
7 ≥ 1 61.5% 0.728 0.709 6.42 6.81
8 1 21.6% 0.722 0.717 6.81 7.21
9 2 13.9% 0.745 0.719 6.17 6.73
10 ≥ 3 26.1% 0.724 0.696 6.24 6.53

Table 4: Analysis on the PDR module. DCL: Directional Cues Learning part. RI:
Rankings Inference part. A ✓indicates that the corresponding part is used.

ID DCL RI SA-SOR↑ SOR↑ MAE↓ ID Num. SA-SOR↑ SOR↑ MAE↓
11 0.666 0.856 7.34 14 D = 8 0.673 0.860 7.35
12 ✓ 0.661 0.861 7.46 15 D = 4 0.673 0.860 7.44
13 ✓ ✓ 0.673 0.860 7.35 16 D = 1 0.670 0.852 7.54

the performance gains in situations involving different numbers of human partic-
ipants (ID8-ID10). In summary, incorporating pose knowledge generally leads to
better performance, especially when humans are present, and the performance
gains are more pronounced in the scenarios with multiple humans (ID9-ID10)
compared to the scenes containing only one person (ID8).
Analysis on the PDR Module. The PDR module contains two parts, i.e.,
directional cues learning and rankings inference. Table 4 (ID11-ID13) shows
that enabling both parts can lead to more competitive results on all metrics.
We suppose that a robust prediction favors both the awareness of the upcoming
attention shift and the modeling of pairwise ranking relations. We also study
the impact of the different number of shifting directions (ID14-ID16). Results
suggest that a larger number of shifting directions leads to better performance.

5 Conclusion

In this work, we have proposed to explore human pose cues to acquire a deeper
understanding of high-level interactions between humans and their surround-
ings for the SOR task. Extensive qualitative and quantitative results demon-
strate the superiority of our method, and the advantages of incorporating hu-
man pose knowledge, especially in scenarios where multiple humans are present.
Our method does present some limitations. For example, our PoseSOR can only
detect coarse pose predictions due to the limited pose data during training. This
may hinder the integration of pose knowledge for the SOR task. We aim to ad-
dress this issue in the future by transferring pose knowledge from existing human
pose models or by training it with more pose data.



PoseSOR: Human Pose Can Guide Our Attention 15

Acknowledgements

This work is in part supported by a GRF grant from the Research Grants Council
of Hong Kong (RGC Ref.: 11205620).

References

1. Aberman, K., He, J., Gandelsman, Y., Mosseri, I., Jacobs, D.E., Kohlhoff, K.,
Pritch, Y., Rubinstein, M.: Deep saliency prior for reducing visual distraction. In:
CVPR (2022)

2. Achanta, R., Hemami, S.S., Estrada, F.J., Süsstrunk, S.: Frequency-tuned salient
region detection. In: CVPR (2009)

3. Bardi, L., Di Giorgio, E., Lunghi, M., Troje, N.F., Simion, F.: Walking direction
triggers visuo-spatial orienting in 6-month-old infants and adults: An eye tracking
study. Cognition 141, 112–120 (2015)

4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-end object detection with transformers. In: ECCV (2020)

5. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention
mask transformer for universal image segmentation. In: CVPR (2022)

6. Cheng, M., Warrell, J., Lin, W., Zheng, S., Vineet, V., Crook, N.T.: Efficient salient
region detection with soft image abstraction. In: ICCV (2013)

7. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annual
review of neuroscience 18(1), 193–222 (1995)

8. Driver IV, J., Davis, G., Ricciardelli, P., Kidd, P., Maxwell, E., Baron-Cohen,
S.: Gaze perception triggers reflexive visuospatial orienting. Visual cognition 6(5),
509–540 (1999)

9. Du, L., Li, L., Wei, D., Mao, J.: Saliency-guided single shot multibox detector
for target detection in sar images. IEEE Transactions on Geoscience and Remote
Sensing 58(5), 3366–3376 (2019)

10. Fan, L., Wang, W., Huang, S., Tang, X., Zhu, S.C.: Understanding human gaze
communication by spatio-temporal graph reasoning. In: ICCV (2019)

11. Fan, R., Cheng, M.M., Hou, Q., Mu, T.J., Wang, J., Hu, S.M.: S4net: Single stage
salient-instance segmentation. In: CVPR (2019)

12. Fang, H., Zhang, D., Zhang, Y., Chen, M., Li, J., Hu, Y., Cai, D., He, X.: Salient
object ranking with position-preserved attention. In: ICCV (2021)

13. Fang, Y., Yang, S., Wang, X., Li, Y., Fang, C., Shan, Y., Feng, B., Liu, W.:
Instances as queries. In: ICCV (2021)

14. Gervais, W.M., Reed, C.L., Beall, P.M., Roberts, R.J.: Implied body action directs
spatial attention. Attention, Perception, & Psychophysics 72, 1437–1443 (2010)

15. Guan, H., Lau, R.W.: Seqrank: Sequential ranking of salient objects. Proceedings
of the AAAI Conference on Artificial Intelligence 38(3), 1941–1949 (2024)

16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV (2017)
17. He, S., Jiao, J., Zhang, X., Han, G., Lau, R.W.: Delving into salient object subitiz-

ing and detection. In: ICCV (2017)
18. Islam, M.A., Kalash, M., Bruce, N.D.: Revisiting salient object detection: Simul-

taneous detection, ranking, and subitizing of multiple salient objects. In: CVPR
(2018)

19. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts
of visual attention. Vision research 40(10-12), 1489–1506 (2000)



16 H. Guan and R. Lau

20. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.: Saliency detection via absorbing
markov chain. In: ICCV (2013)

21. Johnston, W.A., Dark, V.J.: Selective attention. Annual review of psychology
37(1), 43–75 (1986)

22. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying
neural circuitry. Human neurobiology 4(4), 219–227 (1985)

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems 25
(2012)

24. Langton, S.R., Bruce, V.: You must see the point: automatic processing of cues
to the direction of social attention. Journal of Experimental Psychology: Human
Perception and Performance 26(2), 747 (2000)

25. Li, G., Xie, Y., Lin, L., Yu, Y.: Instance-level salient object segmentation. In:
CVPR (2017)

26. Li, H., Zhang, D., Liu, N., Cheng, L., Dai, Y., Zhang, C., Wang, X., Han, J.: Boost-
ing low-data instance segmentation by unsupervised pre-training with saliency
prompt. In: CVPR (2023)

27. Li, X., Lu, H., Zhang, L., Ruan, X., Yang, M.: Saliency detection via dense and
sparse reconstruction. In: ICCV (2013)

28. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR (2017)

29. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

30. Liu, N., Han, J.: A deep spatial contextual long-term recurrent convolutional net-
work for saliency detection. IEEE Transactions on Image Processing 27(7), 3264–
3274 (2018)

31. Liu, N., Li, L., Zhao, W., Han, J., Shao, L.: Instance-level relative saliency rank-
ing with graph reasoning. IEEE Transactions on Pattern Analysis and Machine
Intelligence 44(11), 8321–8337 (2021)

32. Liu, N., Zhang, N., Wan, K., Shao, L., Han, J.: Visual saliency transformer. In:
ICCV (2021)

33. Liu, N., Zhao, W., Shao, L., Han, J.: Scg: Saliency and contour guided salient
instance segmentation. IEEE Transactions on Image Processing 30, 5862–5874
(2021)

34. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

35. Mao, W., Tian, Z., Wang, X., Shen, C.: Fcpose: Fully convolutional multi-person
pose estimation with dynamic instance-aware convolutions. In: CVPR (2021)

36. Miangoleh, S.M.H., Bylinskii, Z., Kee, E., Shechtman, E., Aksoy, Y.: Realistic
saliency guided image enhancement. In: CVPR (2023)

37. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 fourth international confer-
ence on 3D vision (3DV). pp. 565–571. Ieee (2016)

38. Neisser, U.: Cognitive psychology: Classic edition. Psychology press (2014)
39. Pei, J., Cheng, T., Tang, H., Chen, C.: Transformer-based efficient salient instance

segmentation networks with orientative query. IEEE Transactions on Multimedia
(2022)

40. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Gener-
alized intersection over union: A metric and a loss for bounding box regression
(2019)



PoseSOR: Human Pose Can Guide Our Attention 17

41. Shi, D., Wei, X., Li, L., Ren, Y., Tan, W.: End-to-end multi-person pose estimation
with transformers. In: CVPR (2022)

42. Shi, D., Wei, X., Yu, X., Tan, W., Ren, Y., Pu, S.: Inspose: instance-aware networks
for single-stage multi-person pose estimation. In: Proceedings of the 29th ACM
International Conference on Multimedia. pp. 3079–3087 (2021)

43. Shi, J., Weng, X., He, S., Jiang, Y.: Biological motion cues trigger reflexive atten-
tional orienting. Cognition 117(3), 348–354 (2010)

44. Siris, A., Jiao, J., Tam, G.K., Xie, X., Lau, R.W.: Inferring attention shift ranks
of objects for image saliency. In: CVPR (2020)

45. Siris, A., Jiao, J., Tam, G.K., Xie, X., Lau, R.W.: Scene context-aware salient
object detection. In: ICCV (2021)

46. Sun, C., Xu, Y., Pei, J., Fang, H., Tang, H.: Partitioned saliency ranking with dense
pyramid transformers. In: Proceedings of the 31st ACM International Conference
on Multimedia. pp. 1874–1883 (2023)

47. Tian, X., Xu, K., Yang, X., Du, L., Yin, B., Lau, R.W.: Bi-directional object-
context prioritization learning for saliency ranking. In: CVPR (2022)

48. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

49. Wang, Y., Wang, R., Fan, X., Wang, T., He, X.: Pixels, regions, and objects:
Multiple enhancement for salient object detection. In: CVPR (2023)

50. Wei, J., Wang, S., Wu, Z., Su, C., Huang, Q., Tian, Q.: Label decoupling framework
for salient object detection. In: CVPR (2020)

51. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In:
ECCV (2012)

52. Wu, Y.H., Liu, Y., Zhang, L., Cheng, M.M., Ren, B.: Edn: Salient object detection
via extremely-downsampled network. IEEE Transactions on Image Processing 31,
3125–3136 (2022)

53. Wu, Y.H., Liu, Y., Zhang, L., Gao, W., Cheng, M.M.: Regularized densely-
connected pyramid network for salient instance segmentation. IEEE Transactions
on Image Processing 30, 3897–3907 (2021)

54. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR (2013)
55. Zhang, L., Wu, J., Wang, T., Borji, A., Wei, G., Lu, H.: A multistage refinement

network for salient object detection. IEEE Transactions on Image Processing 29,
3534–3545 (2020)

56. Zhang, L., Zhang, J., Lin, Z., Lu, H., He, Y.: Capsal: Leveraging captioning to
boost semantics for salient object detection. In: CVPR (2019)

57. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background
detection. In: CVPR (2014)


	PoseSOR: Human Pose Can Guide Our Attention

