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Abstract. 3D dense captioning stands as a cornerstone in achieving a
comprehensive understanding of 3D scenes through natural language. It
has recently witnessed remarkable achievements, particularly in indoor
settings. However, the exploration of 3D dense captioning in outdoor
scenes is hindered by two major challenges: 1) the domain gap between
indoor and outdoor scenes, such as dynamics and sparse visual inputs,
makes it difficult to adapt existing indoor methods directly; 2) the lack
of data with comprehensive box-caption pair annotations specifically
tailored for outdoor scenes. To this end, we introduce the new task of
outdoor 3D dense captioning. As input, we assume a LiDAR point cloud
and a set of RGB images captured by the panoramic camera rig. The ex-
pected output is a set of object boxes with captions. To tackle this task,
we propose the TOD3Cap network, which leverages the BEV represen-
tation to generate object box proposals and integrates Relation Q-Former
with LLaMA-Adapter to generate rich captions for these objects. We also
introduce the TOD3Cap dataset, the first million-scale dataset to our
knowledge for 3D dense captioning in outdoor scenes, which contains
2.3M descriptions of 64.3K outdoor objects from 850 scenes in nuScenes.
Notably, our TOD3Cap network can effectively localize and caption 3D
objects in outdoor scenes, which outperforms baseline methods by a sig-
nificant margin (+9.6 CiDEr@0.5IoU). Code, dataset and models are
publicly available at https://github.com/jxbbb/TOD3Cap.

Keywords: 3D dense captioning · 3D scene understanding · 3D vision
language · Dataset

1 Introduction

Recently, the community has witnessed significant progress in 3D dense cap-
tioning. By explicitly formulating the understanding of 3D scenes with nat-
ural language, it exhibits diverse applications in cross-modal retrieval [8, 23],
robotic navigation [21,41,47,55], interactive AR/VR [35] and autonomous driv-
ing [26,37,42,43]. In this challenging setting, an algorithm is required to localize
all of the objects in a 3D scene and caption their diverse attributes.
⋆ indicates the corresponding author.

https://github.com/jxbbb/TOD3Cap
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Fig. 1: We introduce the task of 3D dense captioning in outdoor scenes (right). Given
point clouds (right middle) and multi-view RGB inputs (right top), we predict box-
caption pairs of all objects in a 3D outdoor scene. There are several fundamental
domain gaps (middle column) between indoor and outdoor scenes, including Status,
Point Cloud, Perspective, and Scene Area, bringing new challenges specific to outdoor
scenes. Meanwhile, our outdoor 3D dense captioning (right bottom) contains more
comprehensive concepts than indoor scenes (left bottom).

Some previous works [4, 7, 11, 12, 25, 46, 51] have explored the 3D dense cap-
tioning task and achieved promising results. However, these methods primarily
focus on 3D dense captioning in indoor scenes, while outdoor 3D dense cap-
tioning has been rarely explored. Besides, taking a closer look at the significant
differences between indoor and outdoor scenes (shown in Fig. 1), we argue it is
sub-optimal to directly adapt these indoor methods to outdoor scenes, because:

• Dynamic, not static. Outdoor scenes are typically dynamic, necessitating
the detection and tracking of objects with temporally changing status.

• Sparse LiDAR point clouds. The utilization of sparse point clouds col-
lected through LiDAR for outdoor scenes presents significant challenges in
shape understanding. What’s worse, the sparsity level is spatially varying.

• Fixed camera perspective. While indoor scene scanning allows free cam-
era trajectories (e.g., around an object of interest), outdoor scenes typically
feature a fixed 6-camera rig, presenting a higher degree of self-occlusion.

• Larger areas. Outdoor scenes usually cover a significantly larger area.

These domain gaps pose significant challenges for successful 3D dense cap-
tioning in outdoor scenes. In this paper, we first formalize the new task of outdoor
3D dense captioning. It takes LiDAR point clouds and panoramic RGB images as
inputs and the expected output is a set of object boxes with captions. Then, we
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Table 1: Overview of existing 3D captioning datasets. The App., Mot., Env., Rel.
denote Appearance, Motion, Environment and Relationship, respectively.

Dataset Domain Dense Capt. App. Mot. Env. Rel. ♯Scenes ♯ Frames ♯Sentences

Objaverse [17] Object ✗ ✓ ✗ ✗ ✗ - N/A 800K

SceneVerse [24] Indoor ✓ ✓ ✗ ✓ ✓ 68K N/A 2.5M

SceneFun3D [18] Indoor ✗ ✗ ✓ ✗ ✓ 710 N/A 14.8K

ScanRefer [6] Indoor ✓ ✓ ✗ ✗ ✓ 800 N/A 51.5K

ReferIt3D [1] Indoor ✓ ✓ ✗ ✗ ✓ 800 N/A 41.5K

Multi3DRefer [53] Indoor ✓ ✓ ✗ ✗ ✓ 800 N/A 61.9K

nuCaption [49] Outdoor ✗ ✗ ✓ ✓ ✓ 265 34.1K 420K

Rank2Tell [39] Outdoor ✗ ✓ ✓ ✓ ✓ 116 5.8K -

TOD3Cap (Ours) Outdoor ✓ ✓ ✓ ✓ ✓ 850 34.1K 2.3M

propose a transformer-based architecture, named TOD3Cap network, to address
this task. Specifically, we first create a unified BEV map from 3D LiDAR point
clouds and 2D multi-view images. Then we use a query-based detection head to
generate object proposals. We also employ a Relation Q-Former to capture the
relationship between object proposals and the scene context. The object proposal
features are finally fed into a vision-language model to generate dense captions.
Thanks to the usage of adapter [52], TOD3Cap network does not require re-
training of the language model and thus we can leverage the commonsense in
language foundation models pre-trained on a large corpus of data.

Apart from the fact that indoor-outdoor domain gaps render indoor archi-
tectures unsuitable for outdoor scenes, successfully addressing outdoor 3D dense
captioning also suffers from the data hungriness [50] issue, i.e., the lack of aligned
box-caption pairs for outdoor scenes. To facilitate future research in outdoor 3D
dense captioning, we collect the TOD3Cap dataset, which provides box-wise nat-
ural language captions for LiDAR point cloud and panoramic RGB images from
nuScenes [3]. In total, we acquire 2.3M captions of 63.4k outdoor instances. To
the best of our knowledge, our TOD3Cap dataset is the first 3D dense captioning
effort of million-scale sentences, the largest one to date for outdoor scenes. To
summarize, our contributions are as follows:

• We introduce the outdoor 3D dense captioning task to densely detect and
describe 3D objects, using LiDAR point clouds along with a set of panoramic
RGB images as inputs. Its unique challenges are highlighted in Fig. 1.

• We provide the TOD3Cap dataset containing 2.3M descriptions of 63.4k
instances in outdoor scenes and adapt existing state-of-the-art approaches
on our proposed TOD3Cap dataset for benchmarking.

• We show that our method outperforms the baselines adapted from represen-
tative indoor methods by a significant margin (+9.6 CiDEr@0.5IoU).
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2 Related Work

3D Dense Captioning. Recently, the community has witnessed significant
progress in 3D dense captioning [4, 7, 11, 12, 25, 46, 51]. There are mainly two
paradigms in previous research: “detect-then-describe” [4, 7, 12, 25, 46, 51] and
“set-to-set” [11]. The “detect-then-describe” paradigm first utilizes a detector to
generate proposals and then employs a generator to generate captions. For ex-
ample, Scan2Cap [12] utilizes a VoteNet [36] to localize the objects in the scene,
a graph-based relation module to model object relations and a decoder to gener-
ate sentences. [7,13] delve deeper to demonstrate the mutually reinforcing effect
of dense captioning and visual grounding tasks. Another approach to address
the problem is the “set-to-set” paradigm, like Vote2Cap-DETR [10] and its sub-
sequent work [11]. These methods treat the 3D dense captioning as a set-to-set
problem and utilize the one-stage architecture to address it. Additionally, several
works [9,19,49,56] focus on large-scale pretraining by multitask settings to solve
the 3D dense captioning task. However, these methods are mainly focused on
indoor scenarios and are difficult to adapt directly to outdoor scenes. In contrast,
our proposed TOD3Cap network is aimed at outdoor 3D dense captioning.

3D Captioning Datasets. Obtaining 3D language descriptions that are both
object-centric and context-aware is a difficult job. Most commonly used datasets
for 3D dense captioning are ScanRefer [6] and ReferIt3D (Nr3D) [1], based
on the richly-annotated 3D indoor dataset - Scannet [15]. Notably, although
recent developments like Objaverse [16, 17] have attempted large-scale object
captioning for 3D-language alignment, they lack scene context information. Re-
cently proposed indoor scene datasets like SceneVerse [24], SceneFun3D [18], and
Multi3DRefer [53] focus on large-scale scene-graph captioning, object part-level
captioning, and multi-object relationship captioning, respectively. However, ex-
isting datasets are mostly based on indoor scenes, which fail to cover unique
scientific challenges of outdoor scenes as shown in Fig. 1. nuCaption [49] and
Rank2Tell [39] are designed for outdoor scenes, but they focus only on event-
centric scene captioning instead of dense captioning. By contrast, our proposed
TOD3Cap dataset provides dense object-centric language descriptions in out-
door scenes. We show the statistical comparison of our dataset with existing 3D
captioning datasets in Tab. 1, highlighting its unique value.

BEV-based 3D Perception. In recent years, there has been a rapid de-
velopment and an increasing interest in BEV-based 3D perception techniques
[22, 27, 28, 40], because BEV representation has proven to be highly beneficial
for outdoor perception tasks such as 3D object detection and tracking. The Lift-
Splat-Shoot [34] and its subsequent research [20,27] project image features into
BEV pillar using predicted depth probabilities. BEVFormer [28] utilizes a spatial
cross attention to aggregate 2D image features into the BEV space and employs
a temporal self attention to fuse temporal feature to model object motion. BEV-
Fusion [30] combines point cloud features from LiDAR and image features to
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enhance the geometric information in the BEV space. Inspired by them, our
method fuses features from LiDAR and multi-view images and utilizes temporal
fusion for obtaining richer contextual information and modeling object motion,
which helps to address the challenges of outdoor dense captioning.

3 TOD3Cap Dataset

To facilitate research on outdoor 3D dense captioning task, we introduce TOD3Cap,
a million-scale multi-modal dataset that extends the nuScenes [3] with dense cap-
tioning annotations. We introduce the data collection pipeline in Sec. 3.1, and
show the overall statistics of our proposed dataset in Sec. 3.2.

3.1 Data Collection

In this section, we introduce the data collection pipeline of the proposed dataset.
We leverage a popular and large outdoor dataset nuScenes [3] encompassing 850
scenes for 3.4k frames. Each frame comprises 6 images taken from 6 cameras and
point clouds from one LiDAR. The original dataset provides 3D bounding box
annotations of 23 classes. We extend it to 3D dense captioning by annotating
the appearance, motion, environment and relationship for all of the objects.

Collection Principle. When describing an object in outdoor scenes, humans
consider a series of questions [14]: “What is it and what does it look like?”,
“What is it doing?”, “Where is it?”, “What is around it?”, which we refer to as
their appearance, motion, environment and relationship, respectively.

Appearance: The ability to describe what an object looks like is a hallmark
of human intelligence. To answer the question, human annotators should recog-
nize both the category of the object and its visual attribute (color, material, etc).
For example, there is a person wearing blue shirts and black jeans.

Motion: Different from the static indoor scenes, outdoor scenes are gener-
ally dynamic. In our annotation, we focus on the movement of the object. For
example, a cat is moving away quickly or a dog is approaching slowly.

Environment: For outdoor scenes, an object’s relative position in its envi-
ronment is critical. So we ask the annotators to position the object roughly with
its environment. For example, there is a car in the parking lot.

Relationship: Humans tend to find a reference to describe an object, like
“the motorcycle next to the white truck” or “the stroller in the back left of the
ego car”. Following [1], we use the following compositional template for relation:

<target-object> <spatial-relation> <anchor-object>, (1)

where the target object represents the object to be described and the anchor
object represents the anchor to describe the target.
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Fig. 2: The statistical properties of TOD3Cap dataset. (a) The word cloud visualization
of TOD3Cap. (b) The visualization of object-environment relationship. (c) Statistics
(in percentage) of the top 70 frequent words. (d) Sentence length Distribution.

Annotation and Verification. With multiple annotation and validation steps,
expert annotators make high-quality annotations for the object-level captions.

Notably, considering the significant success of large foundation models in
language auto-labeling, we deploy a semi-automatic pipeline. Specifically, we
first project the pre-labeled 3D bounding box to 2D. The 2D bounding box is
then used to crop the camera image to an image patch that primarily consists
of one object, which is then passed as input to a pre-trained captioning model
(i.e., LLaMA-Adapter [52]) to generate the captions for each object. Afterwards,
we employ human annotators to perform strict correction and refinement of the
generated sentences. After labeling all of the four parts of the caption, we utilize
GPT-4 [32] to summarize them. Subsequently, the human workers are employed
to check the correctness, fluency and readability of the captions. The annotation
will not be reserved until three annotators reach an agreement. We elaborate the
details of the annotating process in the Appendix.

3.2 Data Statistics

In total, we employ ten expert human annotators to work for about 2000 hours.
The total number of language descriptions is about 2.3M, with an average of
67.4 descriptions per frame and 2705.9 descriptions per scene. We showcase the
properties of our dataset in Fig. 2. The descriptions cover over 500 types of
outdoor objects with a total vocabulary of about 2k words. We find that the
appearance of the object is generally more diverse than other attributes. The
proportion of vocabulary for the appearance, motion, environment, and rela-
tionship is 69.7%, 2.6%, 7.1%, and 20.6%. Moreover, we find that humans use
more words to describe the relations of objects. The average words of differ-
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ent parts are 3.7, 2.0, 2.9 and 11.2. Since our captions are very diverse and
complex, successful dense captioning involves understanding the object-centric
properties, object dynamics, object-object interactions, and object-environment
relationships. More details about the dataset are provided in the appendix.

4 TOD3Cap Network

To deal with the challenging outdoor 3D dense captioning problem, we propose
a new end-to-end method named TOD3Cap network. An overview of TOD3Cap
network architecture is shown in Fig. 3.

Firstly, BEV features are extracted from 3D LiDAR point cloud and 2D
multi-view images, followed by a query-based detection head that generates a
set of 3D object proposals from the BEV features (see Sec. 4.1). Secondly,
to capture the relationships between object proposals and scene context, we
utilize a Relation Q-Former where the objects interact with other objects and
the surrounding environment to get the context-aware features (see Sec. 4.2).
Finally, with an Adapter [52], the object proposal features are processed to be
prompts for the language model to generate dense captions. This formulation
does not require a re-training process of the language model and thus we can
leverage the commonsense of large foundation models pre-trained on a large
corpus of data (see Sec. 4.3).

4.1 BEV-based Detector

Given multi-view camera images I = {Ii}Ni=1 ∈ RN×Hc×Wc×3 and LiDAR point
clouds L ∈ RNp×3, we first transform them into the unified BEV features Fb ∈
RHb×Wb×C and generate object proposals.

For multi-view images I, following [28], a spatial-temporal BEV encoder is
used to lift image features to BEV space and effectively fuse the history BEV fea-
tures to model dynamics. Specifically, we first extract multi-view image features
from I with an image backbone. A set of learnable BEV queries Qc ∈ RHb×Wb×C

specific to camera are then updated by interacting with these features via spatial
cross-attention layers [28] to capture the spatial information, resulting in Fc:

Fc = Spatial-Cross-Attention(Qc,Backbone(I)).

To model temporal dependency and capture dynamic features, if the preserved
BEV features F p

c of the previous timestamp exist, the BEV queries Qc will first
interact with F p

c through temporal self-attention layers, resulting in Q′
c:

Q′
c = Temporal-Self-Attention(Qc, F

p
c ).

For the initial timestamp, the BEV queries Qc are duplicated and fed into
the temporal self-attention layers. The resulted Q′

c are then taken as the input
of the spatial cross-attention layers as a substitute for Qc.
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Fig. 3: Architecture of our proposed TOD3Cap network. Firstly, BEV features
are extracted from 3D LiDAR point cloud and 2D multi-view images, followed by
a detection head that generates a set of 3D object proposals from the BEV features.
Secondly, to capture the relationship information, we utilize a Relation Q-Former where
the objects interact with other objects and the surrounding environment to get the
context-aware features. Finally, with an Adapter, the features are processed to be
prompts for the language model to generate dense captions. This formulation does not
require a re-training process of the language model.

For multi-modal input, we utilize BEVFusion [30] to obtain unified BEV rep-
resentation. Specifically, a LiDAR backbone is first employed to extract voxelized
LiDAR features. Then, the features are flattened along the height dimension,
leading to the BEV features Fl ∈ RHb×Wb×C . Finally, the BEV features of the
two different modalities are fused together with a convolutional fusion module
to acquire the unified BEV features Fb.

Subsequently, we exploit a query-based object proposal generation module
that takes the BEV features Fb as input to generate the object box proposals
B̂ = {B̂i}Ki=1 ∈ RK×D, where K is the preset number of object queries and
D corresponds to the dimension of proposal feature. The process of proposal
generation aligns with that in traditional detection head like DETR [5].

4.2 Relation Q-Former

After obtaining the BEV features Fb and object proposals B̂, a relation query
transformer (Relation Q-Former) is designed to extract context-aware features
for each object. Specifically, we first create object queries by encoding the object
proposals B̂ with a learnable MLP, resulting in object features with the same
feature dimension as Fb. These features are then concatenated and fed into
the Relation Q-Former, which comprises several self-attention layers for feature
interaction. As shown later, this module improves performance significantly.

QB = Relation Q-Former(MLP(B̂), Fb).

The resulting object queries QB are taken as input to a captioning decoder for
natural language generation, which will be elaborated in the next section.
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4.3 Captioning Decoder

Inspired by the recent advancements of LLMs in contextual reasoning, we employ
a frozen LLM as our language generator, which takes object queries QB as input
and output descriptions for each object. To ensure the dimension consistency
between QB and the hidden layers of the LLM, we first use an MLP to transform
the dimension of QB , resulting in Q′

B . We further employ an Adapter [52] to
align the object proposal representation with the feature space of the pre-trained
language model, which bridges the modality gap. The adapted object features
serve as prompts V for the LLM to generate corresponding captions.

Q′
B = MLP(QB), V = Adapter(Q′

B),

Ĉ =LLM(T ,V),

where T is the system text prompt (as shown in the left-bottom corner of Fig. 3)
and Ĉ = {ŵi}Mi=1 is the resulting caption, which consists of M words.

During training process, we take the standard cross-entropy loss as the cap-
tioning loss Lcap and train the model in the teacher-forcing1 manner:

Lcap =

M∑
i=1

Lcap(wi) = −
M∑
i=1

log p̂
(
wi | w[1:i−1], T ,V, θLLM

)
, (2)

where C = {wi}Mi=1 is the ground truth caption, θLLM represent the weights of
the LLM and p̂ is the predicted probability. Note that θLLM are frozen to reduce
the computation cost and mitigate the catastrophic forgetting problem of LLM.

Moreover, considering the memory burden and optimization difficulty when
generating hundreds of sentences during training, we do not feed all the object
queries into the captioning decoder at once. Instead, we filter the queries by
a 3D hungarian assigner [48] to get those matched with the ground truth and
then randomly sample a subset during training. During inference, we apply non-
maximum suppression (NMS) to suppress overlapping proposals.

4.4 Loss Function

We utilize L1 loss as Lobj to supervise 3D bounding box regression for object
proposal generation and use Lcap for captioning. Then the overall loss for dense
captioning is calculated as the weighted combination:

L = αLobj + βLcap. (3)

where hyper-parameters α and β are set to α = 10 and β = 1 in our experiments.

1 It means using ground truth words as the conditioning during training, which differs
from the auto-regressive testing setting that uses predicted words for conditioning.
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5 Experiments

We conduct a comprehensive evaluation of adapted state-of-the-art baseline
methods and ours on TOD3Cap dataset. In Sec. 5.1, we describe the evalua-
tion metrics, the implementation details of our model and adapted baselines.
In Sec. 5.2, we compare adapted indoor baselines with our proposed method on
the introduced dataset. Finally in Sec. 5.3, we conduct a comprehensive ablation
study to validate the effectiveness of TOD3Cap network design.

5.1 Experimental Setup

Dataset and Metrics. We inherit the official nuScenes split setting for TOD3Cap,
where the train/val scenes are 700 and 150, respectively. The reported results
are calculated on the val split for all following experiments. The m@kIoU met-
ric [12] is leveraged for the evaluation of the 3D outdoor dense captioning task.
Specifically, we denote each ground truth box-caption pair as (Bi, Ci), where Bi

and Ci are the bounding box label and the ground truth caption for the i-th ob-
ject. The predicted box-caption pair matched with the ground truth is denoted
as (B̂i, Ĉi). For all (Bi, Ci) and (B̂i, Ĉi), the m@kIoU is defined as:

m@kIoU =
1

Ngt

Ngt∑
i=1

m
(
Ĉi, Ci

)
· I

{
IoU

(
B̂i, Bi

)
≥ k

}
, (4)

where Ngt is the number of the ground truth objects and m represents the
standard image captioning metrics, including CIDEr [44], BLEU [33], METEOR
[2], Rouge [29], abbreviated as C, B, M, R, respectively.

Table 2: Quantitative results on TOD3Cap dataset. The “*” represents that we replace
the scene encoder with BEV encoder for adaptation. All of the methods are trained to
full convergence on the TOD3Cap dataset for fair comparison. Our TOD3Cap network
outperforms other methods with a clear margin, using various inputs.

Method Input C@0.25 B-4@0.25 M@0.25 R@0.25 C@0.5 B-4@0.5 M@0.5 R@0.5

TOD3Cap (Ours) 2D 96.2 45.0 34.2 67.4 94.1 47.6 33.3 65.4

Scan2Cap* [12] 3D 50.6 34.3 25.2 57.9 43.3 31.3 22.8 50.8
Vote2Cap-DETR* [11] 3D 72.8 41.6 29.5 60.6 62.6 35.9 27.4 55.8

SpaCap3D [46] 3D 58.8 36.3 25.2 58.1 51.2 32.0 23.5 51.6
TOD3Cap (Ours) 3D 85.3 43.0 29.9 60.5 74.4 39.4 27.2 55.4

Scan2Cap* [12] 2D+3D 60.6 41.5 28.4 58.6 62.5 39.2 26.4 56.5
X-Trans2Cap* [51] 2D+3D 99.8 45.9 35.5 66.8 92.2 43.3 34.7 65.7

Vote2Cap-DETR* [11] 2D+3D 110.1 48.0 44.4 67.8 98.4 46.1 41.3 65.1
TOD3Cap (Ours) 2D+3D 120.3 51.5 45.1 70.1 108.0 50.2 48.9 69.2
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Baselines. From existing methods for 3D dense captioning, we take mile-
stone methods and state-of-the-art methods [11, 12, 46, 51] for benchmarking:
(1) Scan2Cap [12] utilizes the VoteNet [36] detector to localize objects in a
scene and uses a graph-based relation module to explore object relations. (2)
X-Trans2Cap [51] utilizes a teacher-student framework to transfer the rich ap-
pearance information from 2D images to 3D scenes. (3) Vote2Cap-DETR [11]
adopts a one-stage architecture that applies two parallel prediction heads to de-
code the scene features into bounding boxes and the corresponding captions. (4)
SpaCap3D [46] uses a spatiality-guided encoder and an object-centric decoder
to generate spatially-enhanced object captions in 3D scenes.

Adaptation. These methods involve domain-specific design choices for 3D in-
door scenes. However, directly applying them to outdoor scenes leads to sub-
optimal performance. A major challenge is that their detectors cannot effectively
locate outdoor objects because of the varying sparsity of LiDAR point clouds and
the limited number of camera viewpoints. For a fair comparison, we adapt these
methods to the outdoor setting by (1) replacing their detector with the same
one as ours and (2) loading our pre-trained detector weights. In this way, these
methods obtain the same localization capabilities as ours. All these methods
are then trained on the TOD3Cap dataset until convergence. In Tab.2, adapted
baseline methods are marked with *. The comparison between baseline methods
before and after adaptation is provided in the appendix, showing a substantial
upgrade.

Protocol. For the proposed TOD3Cap network, we train the network in three
stages to facilitate the optimization process. Firstly, the BEV-based detector is
pre-trained on object detection task. We train the detector on the train split
of nuScenes with 24 epochs and a learning rate of 2e-4. Then the weights of
the BEV-based detector are frozen and the object box proposals are utilized to
generate captions. We train this stage with 10 epochs and a learning rate of 2e-4.
Finally, the entire model is finetuned with a smaller learning rate of 2e-5 for 10
epochs. We employ AdamW [31] with a weight decay of 1e-2 as the optimizer.
The pre-trained LLaMA-7B [52] is taken as the LLM in our captioning decoder.

5.2 Comparing with State-of-the-art Methods

Quantitative Results. We show results separately for different input modal-
ities, including (1) multi-view RGB images (denoted as 2D), (2) LiDAR point
clouds (denoted as 3D), and (3) both images and point clouds (denoted as
2D+3D). The quantitative results are shown in Table. 2, demonstrating:
(1) TOD3Cap network outperforms prior arts. Specifically, when taking
2D images and 3D point clouds (2D+3D) as input, the proposed TOD3Cap net-
work outperforms Vote2Cap-DETR by 10.2 (9.26%) on C@0.25 and 9.6 (9.76%)
on C@0.5. When taking only point clouds as input, our TOD3Cap network
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Fig. 4: Qualitative results for our proposed TOD3Cap network. In the top left, we
show our predicted bounding boxes and corresponding captions in the first row and
ground truth in the second row. In the top right, we show our predicted bounding
boxes in blue and the ground truth bounding boxes in red. In the bottom, we mark
the wrong descriptions in yellow. The TOD3Cap network produces impressive results
except for a few mistakes.

achieves 12.5 (17.17%) and 11.8 (18.85%) improvement over Vote2Cap-DETR.
These results indicates the effectiveness of the proposed TOD3Cap network.

(2) The multi-modal input improves captioning performance. The per-
formance of TOD3Cap network with multi-modal input outperforms that with
the camera-only or LiDAR-only input, indicating that the information from the
camera and LiDAR are complementary to each other. For LiDAR-only results,
the sparsity of LiDAR point clouds makes it challenging to capture the visual at-
tributes and textures of objects. For camera-only results, it is difficult to capture
distance information of objects solely based on images, which results in the poor
captioning related to motion and environment. We provide qualitative results in
the appendix to support the complementary nature of multi-modal inputs.

Qualitative Analysis. We show some qualitative results in Fig. 4, including
the detection results and corresponding descriptions. We can see TOD3Cap net-
work accurately localizes most objects and provides sound descriptions, except
for a few mistakes in small and remote objects, calling for future algorithmic
development in this novel and important outdoor 3D dense captioning problem.



TOD3Cap: Towards 3D Dense Captioning in Outdoor Scenes 13

Table 3: Comparison of different relation modeling modules. The Relation Q-Former
outperforms other relation modeling modules for its good context awareness.

Relation Module C@0.25 B-4@0.25 C@0.5 B-4@0.5

Relational Graph 88.8 41.8 82.7 38.4
Transformer Decoder 94.9 44.3 90.0 41.7
Relation Q-Former (Ours) 96.2 45.0 94.1 47.6

5.3 Ablation Study

We conduct a comprehensive ablation study to investigate the effectiveness of the
TOD3Cap network design. Unless specified, we utilize the 2D images as input.

Effectiveness of Relation Q-Former. The relation modeling module is cru-
cial for 3D dense captioning to model the intricate interactions between ob-
jects [50]. Prior arts focus on modeling the relation between different specific
objects with “Graph” [7,12,25] or transformer decoder [4,11,46,54]. In this sec-
tion, we conduct experiments to compare different relation modules. As shown
in Tab. 3, the Relation Q-Former outperforms other relation modules, which is
attributed to the good context awareness of the Relation Q-Former and the fact
that relational graph and transformer decoder fail to incorporate information
from BEV queries.

Comparisons with Different Language Decoders. The large foundation
models have been proved effective for their generalization and commonsense
understanding abilities. These abilities help TOD3Cap network to well resolve
long-tailed cases. To investigate the impact of the LLM decoder on TOD3Cap
network, we conduct experiments on different language decoders utilized in for-
mer dense captioning methods, including S&T [45] and GPT2 [38], apart from
LLaMA in our original setting. The results in Tab. 4 shows that the model
with LLaMA achieves higher performance than other language decoders. This
demonstrates that our network design can fully unleash the the superior lan-
guage generation capabilities of large language models. Note there exist domain
gaps as the original LLaMA-adapter is meant to process visual features from
RGB images and language prompts, while our design processes BEV queries
from multi-modal inputs and object prompts.

Impact of Different Training Strategies. A critical issue in our network de-
sign is the alignment between object proposal prompts with language prompts.
Thus it is difficult to directly optimize the entire network from the scratch.
We utilize the training strategy that divides the optimization process into sev-
eral stages. We take three steps to optimize the network, (1) we pre-train the
BEV-based detector on object detection task; (2) we freeze the detector weights
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Table 4: Comparison of different language decoders. The LLaMA achieves the best
performance, demonstrating our network design can fully unleash the superior language
generation capabilities of large language models, despite domain gaps.

Decoder Adapter C@0.25 B-4@0.25 C@0.5 B-4@0.5

S&T Yes 81.2 32.0 78.6 29.8
GPT2 Yes 89.4 41.2 85.6 38.6
LLaMA (Ours) Yes 96.2 45.0 94.1 47.6

Table 5: Comparison of different training strategies. We can see that the pretraining
of detector and captioner could benefit the 3D dense captioning in outdoor scenes.

Detector Captioner Entire Model C@0.25 B-4@0.25 C@0.5 B-4@0.5

✓ ✓ 74.2 39.2 69.5 37.4
✓ ✓ 87.4 41.9 85.3 39.1
✓ ✓ ✓ 96.2 45.0 94.1 47.6

and train the caption generation module; (3) the entire model is finetuned with a
smaller learning rate. In this section, we investigate the effectiveness of the strat-
egy we use, as shown in Tab. 5. We can see that the removal of each training
phase leads to a significant performance decrease. For example, the results de-
crease by 8.8 on C@0.25 and by 8.8 on C@0.5 without the captioner pre-training
stage. This indicates the necessities of all the pre-training.

6 Conclusions

In this study, we present the task of generating dense captions for outdoor 3D
environments, utilizing both LiDAR-generated point clouds and RGB images
from a panoramic camera rig. To support this task, we introduce the TOD3Cap
dataset, featuring 2.3 million detailed descriptions for over 64,300 outdoor ob-
jects across 850 scenes, derived from the nuScenes dataset. Our approach lever-
ages the TOD3Cap network, which employs a Relation Q-Former to understand
the inter-object relationships and their contexts within a scene, and integrates
with the LLaMA-Adapter for efficient caption generation without necessitating
retraining of the underlying large language model. Through our contributions,
we aim to facilitate advancements in outdoor 3D visual language research.
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