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Abstract. Human Pose Forecasting is a major problem in human inten-
tion comprehension that can be addressed through learning the historical
poses via deep methods. However, existing methods often lack the mod-
eling of the person’s role in the event in multi-person scenes. This leads
to limited performance in complicated scenes with variant interactions
happening at the same time. In this paper, we introduce the Interaction-
Aware Pose Forecasting Transformer (IAFormer) framework to better
learn the interaction features. With the key insight that the event often
involves only part of the people in the scene, we designed the Interaction
Perceptron Module (IPM) to evaluate the human-to-event interaction
level. With the interaction evaluation, the human-independent features
are extracted with the attention mechanism for interaction-aware fore-
casting. In addition, an Interaction Prior Learning Module (IPLM) is
presented to learn and accumulate prior knowledge of high-frequency
interactions, encouraging semantic pose forecasting rather than simple
trajectory pose forecasting. We conduct experiments using datasets such
as CMU-Mocap, UMPM, CHI3D, Human3.6M, and synthesized crowd
datasets. The results demonstrate that our method significantly out-
performs state-of-the-art approaches considering scenarios with varying
numbers of people. Code is available at https://github.com/ArcticPole/
IAFormer
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1 Introduction

Human Pose Forecasting (HPF) has emerged as a focal point in contemporary
research, finding applications across diverse domains such as autonomous driving
and human-machine collaboration. The significance of HPF lies in its pivotal role
in enhancing machines’ understanding of human behavior. By discerning the
historical patterns of human actions, machines can proactively deduce future
intentions, facilitating improved collaboration with humans.
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Fig. 1: We extract interaction features from the trajectory and pose amplitude, which
reveals the person’s role in the event rather than the global information from all the
subjects. Moreover, we also find that interaction priors are essential for pose forecasting,
so we introduce an interaction knowledge space for prior learning.

Numerous studies have delved into HPF [3,4,7,29]. While these methodolo-
gies have shown progress in addressing the correspondence problem. However,
human pose development is complex and encompasses various influencing fac-
tors. Understanding each person’s movements in isolation does not capture the
intricacies of interactions within a group, which highlights the need for a more
comprehensive approach. Some studies [15,26,34] have explored the integration
of human interaction within multi-person scenarios, aiming to enhance perfor-
mance in this challenging task. These approaches treat all individuals equally in
a global event, which is too simple to model the scene. In reality, people tend
to vary in the degree to which they influence interactions. Unfortunately, these
considerations are often absent in current HPF research.

On the other hand, valuable information is embedded in human interaction,
exemplified by scenarios where an individual reciprocates a handshake gesture
in response to another person’s extended hand. Such human gesture responses
are ingrained in the human brain as common knowledge in social interactions.
Similarly, some tasks benefit significantly from incorporating prior knowledge
as a key factor in the model [31, 36]. The accumulation of prior knowledge,
specifically social common sense, remains overlooked in current HPF research.

Based on the above insights, we propose a novel architecture IAFormer. As
shown in Fig. 1, this work considers the amplitude matrix and root sequence
for measuring the person’s role in an interaction. To achieve this, we employ
the Interaction Perceptron Module (IPM), a key component in the framework.
The IPM consists of the Interaction Amplitude Weight constructed based on the
Amplitude Matrix of human poses, and the Interaction Trajectory Weight con-
structed based on the root sequence of individuals. Furthermore, this work also
places a strong emphasis on interaction prior learning. The interaction knowledge
acquired during the training phase is effectively encapsulated through the Inter-
action Prior Learning Module (IPLM). The IPLM summarizes and consolidates
interaction-related insights to build up Interaction Knowledge Space.

Subsequently, we conducted extensive validations of the IAFormer frame-
work on multiple datasets for Human Pose Prediction experiments, encompass-
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ing multi-person and single-person scenarios. Diverse datasets, including CMU-
Mocap [5], UMPM [1], CHI3D [13], Human3.6M [16], Mix1 and Mix2 [26], were
selected for these experiments. Our contributions can be summarized as follows:

1. We introduce a novel framework, Interaction-Aware Pose Forecasting Trans-
former (IAFormer). This framework is designed to learn the person-independent
interaction features and prior knowledge, providing a general solution to
multi-person pose prediction challenges.

2. We present a novel module, the Interaction Perceptron Module (IPM), which
utilizes Interaction Amplitude Weight and Trajectory Weight to measure
people’s role and influence in the interaction.

3. We propose a knowledge-based module, the Interaction Prior Learning Mod-
ule (IPLM), contributing to learning Human Interaction prior. Notably, our
work marks the early attempt at a method incorporating prior knowledge
into Human Pose Forecasting.

4. Through extensive experiments on single-person and multi-person datasets,
our method outperforms state-of-the-art methods. The demonstrated effec-
tiveness of our approach reaffirms its capability to achieve superior perfor-
mance across diverse scenarios.

2 Related Work

2.1 Single-Person Human Pose Forecasting

Human Pose Forecasting plays a crucial role in applications like automatic driv-
ing, facilitating machines in comprehending human actions. Early endeavors in
this domain utilized RNN. Fragkiadaki et al . adopted an Encoder-Recurrent-
Decoder framework to recognize and predict human body poses in videos and
motion capture scenarios [14]. Subsequent advancements by Martinez et al . im-
proved the standard RNN model’s efficiency for HPF [23]. However, RNN-based
models often suffer from error accumulation due to their recurrent nature. More-
over, the HPF task extends beyond being a time-series problem, involving kine-
matic and anatomical constraints.

Recent efforts [6, 8, 20, 41] have shifted towards convolutional networks such
as Graph Convolutional Networks (GCN) [28] and Temporal Convolutional Net-
works (TCN) to enhance performance by modeling both temporal and spatial
information of human pose. Dang et al . [8] introduced a multi-scale approach,
compressing original human poses and using GCN to extract pose features at
different scales. Sofianos et al . [30] addressed the lack of understanding of human
pose’s spatio-temporal dynamics with a Space-Time-Separable Graph Convolu-
tional Network. Ma et al . [20] proposed a multi-stage prediction approach for
human pose, employing a combination of Spatial Dense Graph Convolutional
Networks and Temporal Dense Graph Convolutional Networks to extract spatio-
temporal features.

Attention-based methods, inspired by the popularity of Transformers in var-
ious tasks [12,27,40], have also been employed in recent HPF research. Diller et
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al . [9] introduced a characteristic pose and used attention-based and volumet-
ric heatmap methods for modeling and generating poses. While these methods
exhibit effectiveness in single-person human pose forecasting, their performance
diminishes in complex scenarios involving an unlimited number of individuals.

2.2 Multi-Person Human Pose Forecasting

Multi-person scenarios pose a greater challenge than single-person scenarios,
given the intricate influence of one’s pose on others. Recent advancements in
Multi-Person Human Pose Forecasting concentrate on addressing the complexi-
ties of human interactions. Adeli et al . [2] delve into HPF in wild environments,
modeling both human and human-object interactions to predict human trajec-
tory and pose. They employ an attention-based method to extract features from
interactions and utilize an RNN-based method for prediction. Guo et al . [15] cen-
ter their attention on extreme collaborative tasks, leveraging cross-attention to
model the mutual influence exerted by actors on each other. Meanwhile, Peng et
al . [26] consider the impact of historical trajectories on HPF, comprehensively
modeling both inter-human and human interactions. Although these works ex-
hibit commendable performance and innovation in their respective tasks, they
primarily focus on interaction as a key factor while overlooking the individual’s
role in the interaction. Moreover, these approaches are tailored to scenarios with
interactions and often lack experimentation in single-person scenarios.

In this study, we introduce the IAFormer framework, incorporating the In-
teraction Perceptron Module. Our framework is designed to address both multi-
person and single-person scenarios within unlimited-person settings. By consid-
ering not only the occurrence of interactions but also the degree of individual
involvement, our proposed framework provides a more comprehensive approach
to Human Pose Forecasting.

3 Method

Preliminary. We denote the historical pose sequence as P i
1:t = {P i

1, P
i
2, ..., P

i
t }

and the sequence of the future poses as P i
t+1:T , where i represents the number

of humans, t represents the number of the last historical frame and T represents
the number of last future frame. To enable the model to learn how human poses
change in the future, we follow the [8,20,22] to pad the last historical pose T − t
times and append to P i

1:t, resulting in the input poseP i
input = {P i

1, ..., P
i
t , ..., P

i
t }.

Our goal is to predict future pose P i
t+1:T from the padded sequence.

Framework Overview. In IAFormer (as shown in Fig. 2), there is a main
transformer branch for specific human pose forecasting and an interaction-aware
branch for learning interaction information and prior. The skeleton will be con-
verted to feature space from spatial space through Discrete Cosine Transform
(DCT) [22] and Multi-Pose Encoder. Inverse Discrete Cosine Transform (iDCT)
and Multi-Pose Decoder will convert the skeleton feature back to spatial space.
To extract latent information in feature space, IAFormer employs the Interaction
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Fig. 2: Overview of Interaction-aware Pose Forecasting Transformer (IAFormer). In
IAFormer, given a sequence of poses for several people, the future poses of each person
are predicted by combining single-person information and multi-person interaction in-
formation separately.

Perceptron Module (IPM) to understand the interaction influence. Additionally,
the Interaction Prior Learning Module (IPLM) is utilized to construct interaction
knowledge space and assess the reliability of the extracted interaction feature.
Further details on these components will be presented in subsequent sections.
Multi-Pose Encoder and Decoder. GCN [18] are particularly well-suited for
graphically structured data, excelling at exploring potential connections among
nodes [35]. Notably, Mao et al . [22] demonstrated strong performance in human
pose forecasting by employing multiple GCN Blocks. Inspired by their success,
we construct the Multi-Pose Encoder and Decoder in our method, with the GCN
Block based on [20] serving as the main body. Such architecture combines DCT
and iDCT and is designed for mapping pose information between 3D spatial
space and the feature space. For example,

F i
input = Encoder(P i

input), (1)

where Encoder(·) represents a function including DCT and Multi-Pose Encoder
and F i

input represents the pose feature in the feature space of the No.i human.

3.1 Interaction Perceptron Module (IPM)

This paper predicts human pose by considering the people’s role in interaction.
In the interaction, each participant has a different influence. For example, the
person presenting in a meeting has a higher influence on the entire meeting
interaction. This leads to a different weight for each participant in the model.

Therefore, we should quantify the influence of each person in the interaction
instead of treating all participants identically. We designed the Interaction Per-
ceptron Module (IPM), which analyzes each person’s historical actions to obtain
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Amplitude Weight and Trajectory Weight and derives the degree of participation
of each person in the current interaction.

�1:�� ∈ ℝ�×�×�

�1,1:�−1� ∈ ℝ�×�×�

�푎��
� ∈ ℝ�×�×�

Self-Attention Fully 
Connected

Interaction Amplitude 
Weight

…

…
�푎��

� ∈ ℝ�×�×�

Fig. 3: Interaction Amplitude Weight is constructed by subtracting the motion from
the previous frame and mapping function. B means the batchsize, D represents the
dimension of the pose also equal to joints J × 3.

Interaction Amplitude Weight. In this paper, we believe that individuals
who show more movement within an interaction are more likely to be actively
participating and exerting more influence—a phenomenon analogous to people
being drawn to moving objects.

Building on this insight, we introduce the concept of Interaction Amplitude
Matrix which is denoted as M i

amp, and leverage it as raw information for extract-
ing details about each person’s interaction amplitude. We chose to use the coordi-
nate transformation of the previous and next frames of historical pose P i

1:t to ob-
tain the M i

amp. To obtain the subtraction of the last frame from a specific histori-
cal frame, we duplicate the first historical frame, creating P i

1,1:t−1 = [P i
1;P

i
1:t−1},

which maintains the same size as P i
1:t. Then M i

amp = P i
1:t − P i

1,1:t−1.
Interaction Amplitude Weight corresponding to the M i

amp is denoted as
W i

amp (as shown in Fig. 3). The M i
amp in 3D space cannot fully and directly

correspond to the information in the feature space. We design mapping mod-
ules for extracting deeper features in M i

amp ∈ RB×D×t and mapping Amplitude
Matrix in 3D space to Amplitude Weights W i

amp ∈ RB×D×T in feature space.
The mapping modules include 5 Self-Attention Layers and 2 Fully-Connected
Layers, which Self-Attention Layers follow the classic design [32]. The W i

amp is
calculated as:

W i
amp = FC(SA(M i

amp)), (2)
where SA(·) and FC(·) corresponds to the Self-Attention and Fully-Connected
modules in Fig. 3.
Interaction Trajectory Weight. Grounded in real-world observations, we
posit that proximity to the center of a human interaction correlates with active
participation and strong influence in this interaction. Accordingly, our proposed
Interaction Trajectory Weight W i

traj is designed to reflect a person’s degree of
dominance in a particular human interaction, which tends to reflect the domi-
nance and influence of an individual within the interaction.

In obtaining W i
traj , we recognize the potential weakness introduced by as-

sessing dominance based solely on the last frame position. Instead, we better
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Fig. 4: Interaction Trajectory Weight was calculated by subtracting the center of the
interaction from the set of historical root coordinates for each individual.

reflect the person’s position changes in the historical sequence by considering
all frames. We propose a computational approach for W i

traj illustrated in Fig.
4. This approach focuses on the root point of each pose skeleton which is suf-
ficient to represent global position information in historical poses, denoted as
P i
1:t,root = {P i

1,root, ..., P
i
t,root} and P i

m,root signifies the root coordinate of the
mth frame. To compute the center coordinates of the interaction Pc ∈ R1×1, we
utilize the root coordinates of the last frame for all individuals and calculate as:

Pc =

∑N
i=1 P

i
t,root

N
. (3)

To calculate the W i
traj ∈ R1×1, the Pc will be duplicated to the same size as

P i
root ∈ R1×t, which Pcenter = {Pc, ..., Pc} ∈ R1×t. W i

traj ’s calculating method is
shown as follows:

LSi = MSE(P i
root, Pcenter), W i

traj = log(
LSi∑N
i=1 LS

i
+ 1), (4)

where MSE(·) represents the Mean Squared Error function. LSi is an interme-
diate variable representing how far an individual’s historical trajectory is to the
interaction center. When a person is far from the interaction center in the his-
torical period, the corresponding W i

traj will close to zero, and the further from
the interaction center the closer to zero.
Individual Information Fusing. This paper focuses on predicting human pose
within an interaction, with the view that different individuals within a human
interaction contribute to varying degrees. After obtaining W i

amp and W i
traj , IPM

applies individual information fusing, adding individual information based on the
calculated weight:

Fipm =

N∑
i=1

W i
ampW

i
trajF

i
input, (5)

where Fipm represents the fusion of individual information and F i
input stands for

individual information from Multi-Pose Encoder.
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3.2 Interaction Prior Learning Module (IPLM)

This paper considers that human interactions encapsulate societal conventions
and knowledge. Such knowledge is essential to a machine’s comprehension of hu-
man social life and is treated as prior in the machine. Individuals develop an un-
derstanding of norms and knowledge in social life. To systematically organize and
apply interaction knowledge within the model, we design the Interaction Prior
Learning Module (IPLM). This mechanism categorizes the extracted interaction
information and transforms it into prior. IPLM also provides a corresponding
confidence level specific to each kind of interaction.

We built the Interaction Knowledge Space K = {k1, k2, ..., ks} based on the
Embedding Space mechanism [31]. This mechanism achieves training strong prior
on discrete random variables by modeling features in the latent space. Where s
represents the space size of K. Our prior learning is achieved by vectorizing the
extracted interaction information and categorizing and storing it.
Initialization and Training Phase. As described in Algorithm 1, We first
initialize Interaction Knowledge Space K and Learning rate lr. In the training
phase, the input of IPLM is the original interaction feature Fipm. For each input
Fipm, IPLM finds the closest vector k1 in Interaction Knowledge Space K and
obtains the loss of K Lk = MSE(k1, Fipm). Then update the k1 using Fipm.

Algorithm 1 Interaction Prior Learning Module

INIT Interaction Knowledge Space K, Learning rate lr
TRAIN(interaction features Fipm)

To Fipm :
Find the nearest embedding vector k1 in K
Update k1 using sample Fipm and learning rate lr:
Lk = fmse(k1,Fipm); k1,new = k1 + Fipm ∗ lr

return Lk

PREDICT
To Fipm :

Find the first and second nearest embedding vector k1, k2 in E
Save the distance d1, d2 between Fipm and k1,k2
Confidence C = 1− d1/d2

return Fiplm = C ∗ k1

Prediction Phase. In the prediction or inference phase, IPLM computes the
distance between Fipm and each vector in K and identifies the first and second
nearest vectors and corresponding distances. IPLM obtains confidence concern-
ing the Fipm according to C = 1 − d1/d2, in which d1 and d2 respectively
indicate the shortest and second shortest distances. The obtained confidence C
represents the model’s familiarity with the extracted interaction information.
IPLM also utilizes the knowledge stored in K to provide a trusted vector Fiplm

as a feature reference.
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3.3 Interaction-Aware Pose Forecasting Transformer

The previous part collects interaction features through IPM and IPLM. We
design Interaction-Aware Pose Forecasting Transformer (IAFormer) draws in-
spiration from the original Transformer architecture [32] for considering both
interaction features and individual features. The classic attention formula is
shown:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V. (6)

A complete IAFormer may include many blocks depending on the difficulty of the
task. For a clearer description, we consider one block when introducing IAFormer
in the method part, please refer to the experiment section for the architecture
details. IAFormer Block includes three procession parts. The first part extracts
individual features:

Iiin = Attention(WQ
1 F i

input,W
K
1 F i

input,W
V
1 F i

input), (7)

where W y
x represents the y weight of xth attention part and Iiin represents the

intermediate value output. The second part can fuse individual and interaction
features in a two-branch structure. We design to consider both features from
IPM and IPLM:

Iiipm = Attention(WQ
2 Iiin,W

K
2 Fipm,WV

2 Fipm),

Iiiplm = Attention(WQ
3 Iiin,W

K
3 Fiplm,WV

3 Fiplm),

Iiout = 0.5 ∗ Iiipm + 0.5 ∗ Iiiplm.

(8)

Both the IPM Attention and IPLM Attention are shown in Fig. 2. The third
procession part is based on Fully Connected Layers and Normalization, denoted
as FeedNorm(·). We also build up a feature residual between the Multi-Pose
Encoder/Decoder. Finally the future pose is predicted with the learned features:

P i
pred = Decoder(F i

input + FeedNorm(Iiout)), (9)

where Decoder(·) represents a function including iDCT and Multi-Pose Decoder,
P i
pred represents the final predicted pose in 3D space of the No.i human.

3.4 Optimization

In this work, we designed the spatial loss of the model based on the JPE metric:

Ls =
1

J ∗N

N∑
i=1

J∑
j=1

∥P̂ i
j − P i

j∥2, (10)

where P̂ i
j represents the predicted coordinate of the j joint of the No.i human,

P i
j represent the ground truth, N represents the number of humans, J represents

the number of body joints.
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Temporal consistency is widely utilized across various domains to enhance
content generation in time series [39] and is effective in mitigating time-series jit-
ter in generated content. We incorporate temporal consistency by concatenating
all frames in the ground truth and prediction. These concatenated frames are
then input into the same CNN fconv for feature mapping. The mapped features
are used to calculate Mean Squared Error (MSE), yielding the temporal loss:

Lt = MSE(fconv(Ppred), fconv(Pgt)). (11)

In IAFormer, IPLM updates k1 in Knowledge Space K and generates a loss Lk.
Compared to previous studies just using the spatial loss, the IAFormer uti-

lizes multiple losses for comprehensive updates:

Lfinal = αLs + βLt + γLk. (12)

4 Experiment

To demonstrate the superiority of our IAFormer method across scenarios in-
volving varying numbers of individuals, we conduct evaluations on six widely
used public human pose datasets: CMU-Mocap [5], UMPM [1], CHI3D [13],
Human3.6M [16], Mix1 and Mix2 [26]. In what follows, we briefly introduce
datasets and performance metrics. Then, we compare IAFormer with state-of-
the-art methods. Finally, we conduct ablation experiments.

4.1 Datasets

CMU-Mocap (UMPM) is a mixed 3-person dataset. To ensure that the com-
parison conditions are consistent, we used the same data CMU-Mocap (UMPM)
as [26], which merges UMPM into CMU-Mocap for dataset expansion. In this
paper, we set the input frame as 50 and the output frame as 25.
CHI3D is a dataset covering multiple sets of two-person interactions and is
suitable for validating the model’s ability to perceive interactions. In this paper,
we set the input frame as 10 and the output frame as 25.
Human3.6M is one of the most widely used human data sets in the world. In
this article, we validate the model’s effectiveness in single-person Human Pose
Forecasting with this dataset. In this paper, we set the input frame as 10 and
the output frame as 25.
Mix1 and Mix2 are a crowded dataset involving a larger number of individuals.
Peng et al [26] amalgamated MuPoTS-3D [24], 3DPW [33], and test data from
CMU-Mocap and UMPM into two datasets, namely Mix1 and Mix2. The Mix1
dataset comprises 6 individuals and primarily features multi-person interactive
motion sequences. On the other hand, the Mix2 dataset involves 10 individuals,
encompassing some individuals with minimal or no interaction with others. Each
mixed dataset comprises 1000 motion sequences, each including 75 frames.
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4.2 Metrics

JPE Metric. We use mean per Joint Position Error (JPE) as the main com-
parison metric in all experiments, which is a widely used metric in Human Pose
Forecasting and Estimation. The calculation formula of JPE is as follows:

JPE(Ppred, Pgt) =
1

J ∗N

N∑
i=1

J∑
j=1

∥P̂ i
j − P i

j∥2. (13)

APE Metric. We remove global movement on the skeleton of each human pose
and use the Aligned mean per joint Position Error (APE) to measure pure pose
position error, which is calculated by:

APE(Ppred, Pgt) = JPE(Ppred − Ppred,r, Pgt − Ppred,r), (14)

where Ppred,r and Pgt,r are predicted and g round-truth of reference human body.

4.3 Implementation Details

We implement our framework in PyTorch [25], and the experiments are per-
formed on GeForce RTX 4090 GPU. We train our model for 80 epochs using the
Adam [10, 11, 17] optimizer with a batch size of 96, and a dropout of 0.1. For
optimization, we choose to α = β = γ = 1. There are 5 stacked GCN blocks
in the Multi-Pose Encoder/Decoder. There are 5 stacked IAFormer blocks and
attention layers with 5 heads in the IAFormer.

In the experiment with CMU-Mocap (UMPM), CHI3D, Mix1 and Mix2, the
historical sequence is 50 frames (2s), the predicted sequence is 25 frames (1s),
the size of the embedding vector and Interaction Knowledge Space in IPLM is 75
and 256. In the experiment with Human3.6M, a historical sequence is 10 frames
(0.4s) and the predicted sequence is 25 frames (1s), size of the embedding vector
and Interaction Knowledge Space in IPLM are 35 and 256.

4.4 Comparison with State-of-the-art Methods

To validate the prediction performance of IAFormer, we follow the setting of
the most multi-person methods to conduct the comparison experiment between
IAFormer and multi-person methods on multi-person datasets (i.e., CMU-Mocap
(UMPM) [1,5], Mix1, Mix2 [26], CHI3D [13]). Additionally, to demonstrate the
generalizability of our approach, we further conduct a comparative analysis be-
tween IAFormer and single-person methods, employing a popular single-person
dataset (i.e., Human3.6M [16]) for evaluation. This comprehensive evaluation
strategy allows us to assess the performance of IAFormer across different person
scenario datasets.
Result on CMU-Mocap (UMPM). From Table 1, we can find that IAFormer
outperforms the previous Human Pose Forecasting method. For example, IAFormer
exceeds JRFormer [38] by 3mm JPE and 5mm APE in averaging time. IAFormer
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Table 1: Performance comparison Results (in mm) on different multi-person datasets.
We compare our method with the previous SOTA methods for short-term and long-
term predictions. * means multi-person motion prediction method.

METHOD
CMU-Mocap (UMPM)

(3 persons)
Mix1

(6 persons)
Mix2

(10 persons)
0.2s↓ 0.6s↓ 1.0s↓ Avg ↓ 0.2s↓ 0.6s↓ 1.0s↓ Avg↓ 0.2s↓ 0.6s↓ 1.0s↓ Avg↓

JP
E

MSR-GCN [8] 53 146 231 143 49 132 220 134 60 153 243 152
HRI [21] 49 130 207 129 51 141 233 142 52 140 224 139

MRT∗ [34] 36 115 193 114 37 122 212 124 38 126 214 126
TBIFormer∗ [26] 30 109 182 107 34 121 209 121 34 118 198 117
JRFormer∗ [38] 32 104 161 99 32 109 184 108 36 125 211 124

IAFormer (Ours) ∗ 32 96 159 96 36 112 193 114 36 108 181 108

A
P

E

MSR-GCN [8] 46 106 137 96 41 92 120 84 48 110 148 102
HRI [21] 41 97 130 89 38 92 122 84 41 100 133 91

MRT∗ [34] 36 108 159 101 36 109 166 104 38 115 178 110
TBIFormer∗ [26] 27 84 118 76 28 81 113 74 30 89 124 81
JRFormer∗ [38] 20 78 114 71 21 73 105 66 22 82 120 75

IAFormer (Ours)∗ 23 71 103 66 23 71 101 65 24 76 108 69

Table 2: JPE Results (in mm) on CHI3D [13].

METHOD 0.2s↓ 0.4s↓ 0.6s↓ 0.8s↓ 1s↓ Avg↓

JP
E PGBIG [20] 69 130 181 223 258 172

TBIFormer∗ [26] 45 95 145 192 233 142
IAFormer (Ours)∗ 39 83 129 176 218 129

outperforms TBIFormer [26] by 11mm JPE and 10 mm APE in averaging time.
These results indicate that our method achieves state-of-the-art performance in
the 3 person scenario.
Result on Mix1 and Mix2. From Table 1, it is evident that IAFormer main-
tains state-of-the-art performance even as the number of individuals in the scene
increases. This is attributed to the superior feature extraction capabilities of IPM
and IPLM, enabling a more effective analysis of complex scene interactions. For
example, on Mix1, IAFormer exceeds TBIFormer [26] by 7mm JPE and 9mm
APE in averaging time. On Mix2, IAFormer outperforms JRFormer [38] by 1mm
JPE and 6mm APE in averaging time. These comparison results demonstrate
our method’s enhanced capacity to discern complex human interactions, high-
lighting its unique advantages in addressing such intricate interaction scenarios.
Result on CHI3D. Given that CHI3D involves interactions between two in-
dividuals close, it provides an ideal scenario for assessing the efficacy of infor-
mation extraction at its maximum potential. Consequently, the multi-person hu-
man pose forecasting method significantly outperforms single-person human pose
forecasting on the CHI3D dataset, owing to its enhanced capability to extract
interaction-related information at the highest level. Table 2, TBIFormer [26] out-
performs PGBIG [20] by 30.1 JPE in average forecasting time. Since IAFormer
can learn from the prior knowledge hidden in the interaction, our IAFormer ex-
ceeds TBIFormer [26] by 13.3 JPE. These experiment results show the significant
advantage of our method in people with close interaction scenarios.
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Table 3: JPE Results (in mm) on Human3.6M [16].

METHOD 80ms↓ 160ms↓ 320ms↓ 400ms↓ 560ms↓ 1000ms↓

JP
E

DMGNN [19] 17.0 33.6 65.9 79.7 103 137.2
LTD [22] 2.7 26.1 52.3 63.5 81.6 114.3
MSR [8] 12.1 25.6 51.6 62.9 81.1 114.2

PGBIG [20] 10.3 22.7 47.4 58.9 76.9 110.3
AuxFormer [37] 9.5 20.6 43.4 54.1 75.3 107.0
IAFormer (Ours) 8.4 18.1 39.8 50.8 72.6 130.4

Table 4: Ablation Studies on CMU-Mocap(UMPM) in JPE.

IPM (IAW) IPM (ITW) IPLM 200ms↓ 600ms↓ 1000ms↓ Avg↓
Backbone 42.1 112.8 179.1 111.3
With IPM ✓ ✓ 35.2 100.2 162.2 99.2
With IPLM ✓ 35.2 99.3 163.2 99.2

IPLM+IPM(IAW) ✓ ✓ 35.1 99.7 161.2 98.7
IPLM+IPM(ITW) ✓ ✓ 33.2 98.7 161.6 97.8
IAFormer (Ours) ✓ ✓ ✓ 32.1 96.5 159.2 95.9

Result on Human3.6M. To verify the versatility of IAFormer, we follow the
time point setting as the previous work to compare IAFormer with recent single-
person methods on a most popular single-person dataset (i.e., Human3.6M [16]),
as shown in Table 3. From Table 3, we can find that IAFormer outperforms
previous single-person methods. For example, IAFormer outperforms the best
single-person method (i.e., AuxFormer [37]) by 3.6mm JPE when forecasting
time is 320ms. Furthermore, IAFormer exceeds PGBIG [20] by 8.1mm JPE when
forecasting time is 400ms. These results that our method performs well in short-
term (≤ 400ms) forecasting compared with other single-person methods.

4.5 Ablation Studies

To comprehensively verify the critical role played by each novelty component
of the model, we undertake exhaustive ablation experiments using the CMU-
Mocap (UMPM) dataset, as shown in Table 4. The “Backbone” case refers to
the framework consisting solely of the multi-pose encoder/decoder, devoid of any
information from IPM and IPLM.
Effectiveness of IPM. From Table 4, it is evident that the “With IPM” case
exceeds the “Backbone” case across all forecasting time. This is because the IPM
module is conceived to gauge the influence of each person in human interactions,
assessing their amplitude through the intensity of historical actions and domi-
nance through the historical movement trajectories. Specifically, the “With IPM”
case outperforms the “Backbone” 16mm JPE in 1000ms. We have also added two
parts of IPM to “With IPLM”, and these combinations show better performance,
which can achieve 1.4mm JPE decrease. These results show the effectiveness of
the designed IPM module.
Effectiveness of IPLM. The IPLM module is crafted to comprehend human
interaction by constructing the Interaction Knowledge Space. It achieves this by
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Fig. 5: The influence of three hyper-parameters on average forecasting time.

assessing the degree of understanding of interaction information extracted by the
IPM. As depicted in Table 4, the “With IPLM” case outperforms the “Backbone”
12mm JPE in average forecasting time. These results affirm the role of IPLM in
helping machines better understand human interaction.
Effectiveness of jointly Employing IPM and IPLM. From Table 4, when
IPM and IPLM are used together, the performance of IAFormer is further im-
proved. For example, IAFormer outperforms “With IPM” by 5mm JPE in 1000ms
forecasting time. These results show the effectiveness of the proposed IAFormer.

4.6 Hyper-parameter Analysis

The analysis of hyper-parameters α, β, γ in Eq. (12) are conducted in Fig. 5.
When a loss corresponds to a small hyper-parameter, it reflects the case of ignor-
ing the loss; while the hyper-parameter is large, it reflects the case of strengthen-
ing the effect of the loss. When the three losses are orders of magnitude different
from each other, the overall performance of IAFormer decreases. This reflects
the rationality of the three losses in the setting.

5 Conclusion

This paper introduces the IAFormer, a multi-person forecasting framework that
could learn the potential components prior to interaction. Within IAFormer,
the IPM module boosts the efficiency of interaction information extraction by
quantifying each person’s influence. Additionally, the IPLM module facilitates
the accumulation and analysis of commonalities in interaction patterns. Exper-
iments demonstrated that our method outperformed state-of-the-art methods
and our method’s versatility on multi-person and single-person datasets.
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