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A Implementation Details

A.1 Model Configuration

In our TPA3D, we set N = 6 layers in the configuration of our sentence-level
triplane generators G. As for embedding text inputs, we employ the pre-trained
CLIP ViT-B/32 [8] as our encoder, keeping its weight frozen during training.
In all experiments, we employ 8 NVIDIA V100 GPUs with a batch size of 32
to train both the generator and discriminator, completing the total training
duration in approximately three days. Specifically, we use the Adam [6] opti-
mizer with β = 0.9, setting the learning rate to 0.001 for the generator and
0.002 for the discriminator. Finally, the whole model is implemented with the
PyTorch [7] framework, and we render and visualize the generated 3D objects
using Blender [2].

A.2 More Details about Datasets

In Sec. 5.1, we detail the preparation for datasets of ShapeNet [1] and OmniOb-
ject3D [10]. Specifically, we render 179,928, 162,672, 37,700, 19,200, and 9900
images with a resolution of 1024x1024 for Car, Chair, Motorbike, Vehicle, Ac-
cessory, respectively. And following the setting provided by GET3D [4], we split
the training, validation, and testing set with the ratio of 7:1:2. Note that we also
run the official implementation of TAPS3D [9] and GET3D with the same data
split for comparison.

A.3 More Details about GET3D

In Sec. 3 of our main paper, we provide a brief review of GET3D [4]. Here,
we detail the generator architecture of GET3D in Fig. A1. With modulated
convolution layers [5] (denoted as Mod Conv) conditioned on latent vectors wgeo
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Fig.A1: Detailed architecture of GET3D [4]. Referenced from the original paper
of GET3D, the design of GET3D processed the produced triplane features, where
Mod Conv denotes the generator layers in GET3D, and cgi and cti represents the i-th
geometry and texture triplane, respectively. Note that the upsampling algorithm is
bilinear upsampling.

a yellow sports car with a black
stripe down the middle of its body.

a 1950s-style Harley Davidson.
It has a red and white color scheme.

the chair is made of wood
and has a brown leather seat.

the toy truck is orange and white.
It has a crane on top of it.

the gloves are pink and have a
flower design.

a  black sneaker
with purple accents

Fig.A2: Rendered images of 3D objects and their corresponding pseudo
captions predicted by InstructBLIP [3].

and wtex, the geometry triplane cgi and texture triplane cti are generated from
each layer i. By bilinear upsampling, the triplanes can be added together with
the same resolution, and the final triplanes fg
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are used for generating the output 3D textured mesh.

A.4 More Details of Pseudo Captioning

As for the production of pseudo captions, we generate them using Instruct-
BLIP [3] with NVIDIA V100 GPUs beforehand to reduce the required compu-
tational resources during training. To elaborate, we load a pre-trained Instruct-
BLIP (Vicuna-7B) and specify the input prompt as “In the image, the back-
ground is black. Describe the design and appearance of the {category} in detail.”
Subsequently, we refine the generated pseudo captions for each rendered image
by filtering out redundant information. This involves eliminating background-
related phrases like “in the black background” and “with a black background” to
maintain focus on the geometry and texture of the 3D object. Additionally, dis-
tracting phrases such as “This is a 3D model of” or “This is a 3D rendering of”
are removed to ensure a more precise and relevant description. In Figure A2, we
sample several pseudo caption pairs with rendered RGB images of 3D objects
from ShapeNet [1] and OmniObject3D [10].
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Table A1: Ablation studies to the components in TPA blocks. Note that FID
and CLIP R-precision@5 are reported.

Method FID ↓ CLIP R-precision ↑

Car Chair Motorbike Car Chair Motorbike

Ours 18.5 38.1 77.7 80.94 38.58 24.76
w/o cross-word attn 20.4 42.4 78.7 70.94 30.96 21.36
w/o cross-plane attn 30.0 47.7 80.9 79.73 35.49 23.04
w/o TPA 32.6 51.1 82.5 68.72 26.90 20.82
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Fig.A3: The architectures for the ablation study in Sec. B.1. (a) Without
cross-plane attention, the word features might be attended to the region with incom-
plete spatial information, which leads to a lower visual quality. (b) Without cross-word
attention, triplanes lack detailed information in the description and only contain global
information from sentence features.

B Ablation Study

Since the proposed TPA module serves as the major contribution to our TPA3D,
we conduct an ablation study on TPA blocks to quantitatively assess the impact
of this module. In addition, we also conduct an ablation study on the training
losses we introduced to analyze how training objectives influence the training
process. All results are presented in Table A1 and Table A2. Note that the
baseline model (i.e., w/o TPA) removes both TPAgeo and TPAtex and generates
the final triplanes only using sentence-level triplanes conditioned on sentence
features.

B.1 Components in TPA blocks.

To verify the function of each component in TPA blocks as our claim, we singly
remove cross-plane attention or cross-word attention in TPA blocks (as shown in
Figure A3). From Table A1, we can see that the removal of cross-plane attention
leads to a significant decrease in FID. This result indicates that without the
enhancement of plane features before cross-word attention, the visual quality
severely decreases due to incomplete spatial information. On the other hand, the
removal of cross-word attention brings a large drop in CLIP-R precision. This
result verifies that cross-word attention promotes the correspondence between
the detailed input text and the generated 3D object.
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FID ↓ CLIP-R ↑

Ours 18.5 80.94
w/o TPAtex 18.6 76.85
w/o TPAgeo 20.4 79.46
w/o TPA 32.6 68.72

(a) TPAgeo and TPAtex (Sec. B.2)

FID ↓ CLIP-R ↑

Ours (full) 18.5 80.94
w/ TPA x 3 (half) 20.1 78.07
w/ TPA x 0 32.6 68.72

(b) Block numbers of TPA (Sec. B.3)

FID ↓ CLIP-R ↑

Ours 18.5 80.94
w/o Lclip 56.9 56.62
w/o Lmis 68.6 68.19

(c) Training objectives (Sec. B.4)

Table A2: Other ablation studies of our TPA3D on Car in ShapeNet. Note
that FID and CLIP R-precision@5 are reported.

B.2 TPAgeo and TPAtex.

In order to generate textured meshes while achieving disentanglement of geome-
try and texture, TPA3D utilizes distinct branches to generate the final geometry
and texture triplanes. To assess the efficacy of TPA blocks in these two branches,
we symmetrically remove TPAgeo and TPAtex and compare the results with the
full architecture and baseline model without TPA blocks. The outcomes, pre-
sented in Table A2a, reveal a slight decline in FID and CLIP R-precision when
either geometry TPA blocks or texture TPA blocks are omitted. Compared to
the baseline model without TPA, the additional TPA blocks on either branch
can still enhance visual quality and text-shape consistency.

B.3 Block Numbers of TPA.

In Table A2b, we compare models with varying numbers of TPA blocks. The
original TPA3D applies six TPA blocks across all output resolutions of the
sentence-level triplane generator G. To explore the impact of reducing the num-
ber of TPAgeo and TPAtex, we create a variant with TPA blocks only applied in
the first three resolutions of both the geometry and texture branches. From the
findings shown in Table A2b, it is evident that a reduction in the number of TPA
blocks corresponds to a decrease in both FID and CLIP R-precision metrics.

B.4 Training Objectives.

As noted in [9], training conditional GET3D [4] from scratch often results in
collapsing shapes during training. To enable end-to-end one-stage training, we
introduce additional Lmis in conjunction with Lclip to improve training stability
and text-shape consistency. To investigate the impact of different objectives, we
conduct an ablation study on these two training losses, Lmis and Lclip. The re-
sults, as presented in Table A2c, reveal that the absence of either Lmis or Lclip
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(a)

(b)

(c)

(d)

(e)

(f)

white black brown scarlet amber light green green aqua indigo violet

Fig.A4: More text-guided 3D generation results of TPA3D. We formulate the
input prompts as “a {color} {object}” with various colors and sub-classes for generation.
Specifically, each column stands for a different color, while each row stands for a unique
sub-class: (a) “convertible” (b) “SUV” (c) “stool” (d) “plastic chair” (e) “bicycle” (f)
“sport bike”

leads to degraded performance in both FID and CLIP R-precision. This further
validates our inclusion of additional negative pairs with mismatched text condi-
tions in Lmis significantly benefits the discriminator and enhances the stability
of training, resulting in improvement in FID and CLIP R-precision.

C More Qualitative Results

In this section, we present more qualitative results in terms of styles, subclasses,
and more detailed text prompts to showcase TPA3D’s ability to produce 3D
shapes that closely align with the given text prompt.

C.1 Disentanglement of Geometry and Texture

In Figure A4, our TPA3D demonstrates its ability to disentangle geometry and
texture information, resulting in shapes and textures that match the provided
text prompt. By fixing the random seed and subclass in each row, the geometry
of the generated shapes remains nearly unchanged, showcasing precise modi-
fications to the texture. Similarly, each column illustrates that consistent color
information can be applied to different geometries, even when different subclasses
are specified in the text prompt. Additionally, our TPA3D can interpret rarer
colors such as “scarlet”, “light green”, “aqua”, and “indigo”, generating textures
that visually align with the given commands. In summary, our proposed TPA
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"a red SUV" "a blue pickup truck"

"a wooden chair" "a white plastic chair"

"a green dirt bike" "a black bicycle"

Fig.A5: The interpolation results of our TPA3D. In each row, we use the same
random noises zgeo and ztex, and perform interpolation on latent vectors wgeo and wtex

for different text inputs.

blocks excel in conducting word-level refinement for both texture and geome-
try, enabling precise generation to match the details specified in the given text
prompt.

C.2 Interpolation of Geometry and Texture

In addition to disentanglement, our TPA3D also keeps the continuity of the
latent space for generating 3D shapes and textures. In Figure A5, we use the
same random noises zgeo and ztex for each row, and then generate the shapes and
textures with the interpolation on latent vectors wgeo and wtex for different text
prompts. We can see the continuous shapes and colors match the interpolation
of text prompts, which demonstrates the continuity of the latent space.

C.3 Generation for Detailed Description

We provide more qualitative comparisons with TAPS3D [9] to show the ability
to generate objects with detailed text descriptions in Figure A6. The results
presented in Figure A6 confirm that TPA3D effectively leverages word-level in-
formation to refine the textured shape, ensuring alignment with the specific
details mentioned in the textual description. Considering the generation of a
military-style SUV as an example, TPA3D not only accurately captures the ge-
ometry of the “SUV” but also successfully retrieves detailed requirements such
as “military-style” and “camouflage paint”. With word-level refinement provided
by TPA blocks, our TPA3D also excels in specifying modifications to partic-
ular elements such as “white roof”, “striped seat and backrest” or “with a band
around it”. In contrast, TAPS3D can only generate textured shapes at a more
generalized class and color level. For a comprehensive evaluation of the 3D shape
from various perspectives, a .mp4 file (detailed_text_prompt.mp4 ) is provided
for comparative analysis with TAPS3D.
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a chair with a striped
seat and backrest.

the chair has a red seat
and yellow legs.

motorcycle is black and
white, with a red stripe
on the front of the bike.

a SUV in military-style
with a camouflage

paint job.

Ours
(TPA3D)

TAPS3D

a black police car with
white roof.

a Kawasaki Ninja ZX-
10R. It has a green and

black color scheme.

(a) ShapeNet [1]

a straw hat
with a band around it.

a white bullet train
with a stripe

down the middle.

a baseball cap
with camouflage

pattern.

a white sports car
with orange accents.

Ours
(TPA3D)

TAPS3D

a blue school bus
with white stripes.

 a sneaker, which are
white and blue in color

with black stripes.

(b) OmniObject3D [10]

Fig.A6: More qualitative comparisons with TAPS3D [9] on (a) ShapeNet
and (b) OmniObject3D. Given detailed textual descriptions, our TPA3D generates
accurate shapes aligned to the texts, while TAPS3D only realizes general classes and
simple colors.

a yellow sports car + ___ "with red wheel" "with red wheel and
tinted window" 

a red chair + ___ "with armrests" "with armrests and
wooden legs" 

motorbike is white + ___ "and purple" "and purple with a
yellow headlight"

Fig.A7: More manipulation examples of adding different detailed text de-
scriptions. Each row shows an example of manipulating the left-most object with
detailed descriptions. With the same random seed for sampling zgeo and ztex, two dis-
tinct results are shown along with the original one in each row.
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white black brown scarlet amber light green green aqua indigo violet

(a)

(b)

(c)

Fig.A8: Qualitative results of multi-class 3D generation. We formulate the
input prompts as “a {color} {object}” with various colors and sub-classes for multi-
class generation. Specifically, each column stands for a different color, while each row
stands for a unique sub-class: (a) “sports car” (b) “sofa” (c) “sport bike”

Table A3: Comparisons between single-class and multi-class TPA3D. For
multi-class generation, we train our TPA3D using data of Car, Chair and Motorbike.
Following the single-class evaluation protocol, we assess this multi-class TPA3D for
each class by randomly sampling pseudo captions from the respective test set to gen-
erate rendered images, with both FID and CLIP R-precision@5 as the metrics. With
an equivalent model capacity, the outcomes exhibit a slight degradation but remain
satisfactory.

Class Method FID(↓) CLIP R-precision(↑)

Car Ours (single-class) 18.50 80.94
Ours (multi-class) 20.77 68.79

Chair Ours (single-class) 38.11 38.58
Ours (multi-class) 47.54 20.80

Motorbike Ours (single-class) 77.69 24.76
Ours (multi-class) 74.79 19.00

C.4 Controllable Manipulation

In Figure A7, we present additional manipulation experiments, offering users
the ability to incrementally adjust the generated shape according to their spe-
cific stylistic and geometric preferences by fixing random seeds. For instance,
after generating a “white motorbike”, users can add “purple” decorations to the
same bike or even append “a yellow headlight” to the front of the motorbike.
Likewise, users can incorporate geometry details such as “armrests” to the orig-
inal simplistic “red chair”, maintaining nearly unchanged shapes and textures.
This capability to produce 3D shapes rapidly and accommodate incremental text
prompt requirements without significantly altering the initial shape enhances the
utility of TPA3D as an interactive 3D asset creation tool, providing users with
quick customization and control over the final output.

C.5 Multi-class Generation

To explore the potential of our TPA3D in the multi-class generation, we trained
the model on a combined dataset comprising Car, Chair, and Motorbike. We con-
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Simple captions
(Chair)

Ours (TPA3D)

CLIP R-Precision
TAPS3D

Simple captions
(Car)

Complex captions
(Chair)

Complex captions
(Car)

90.00

65.00

7.52
12.55

80.94

38.58

15.00
22.00

Simple captions
(Chair)

Ours (TPA3D)

FID
TAPS3D

Simple captions
(Car)

Complex captions
(Chair)

Complex captions
(Car)

25.0

59.2

44.7

26.4
18.5

38.1
29.1

61.5

14.1% lower

3.7% lower

29.9% lower

14.8% lower

500% higher

195% higher

545% higher

413% higher

Fig.A9: Performance comparison with TAPS3D [9] using simple and com-
plex captions in terms of FID and CLIP R-precision. Different from complex
captions containing fine-grained descriptions, simple captions are only composed of
color and class. The performance gap is larger when using complex captions, which
validates the effectiveness of our TPA blocks in dealing with detailed text prompts.

ducted both qualitative and quantitative evaluations to assess its performance.
By comparing with the single-class version of TPA3D, the quantitative result in
Table A3 indicates that our TPA3D is capable of multi-class generation. Given
the same model capacity as the single-class version, we anticipate a minor de-
crease in FID and CLIP R-precision scores, but the results remain satisfactory.
Also, as depicted in Figure A8, the multi-class adaptation of TPA3D yields 3D
textured shapes closely matching the detailed text prompts in texture and ge-
ometry.

D Human Evaluation for Verifying Fidelity

We conduct a human evaluation on 40 subjects to support our TPA3D. We use
the same 100 captions for both our method and TAPS3D to generate 40, 40,
and 20 objects for Car, Chair, and Motorbike in ShapeNet, respectively. Out
of 4000 total responses, 2713 (67.8%) favor our method. Besides, our method
is preferred in 73 out of 100 examples. Lastly, all 40 subjects indicate that our
method generates higher fidelity shapes. These results demonstrate our method’s
superior performance in fidelity. It’s worth noting that, quantitative evaluation
has been provided in our main paper, which confirms that our method achieved
better image fidelity than TAPS3D in terms of FID by a significant margin of
7.2 on average on ShapeNet, as shown in Table 1 in our main paper.

E TPA Effectiveness for Simple or Complex Captions

As our major contribution, TPA blocks are designed to enhance triplane features
for capturing fine-grained information from the input text, especially when the
text descriptions are complex and with details. To verify this claim, we test our
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model and TAPS3D [9] with only simple captions (only color + class) from Car
and Chair in ShapeNet [1]. As Shown in Figure A9, we can observe that the
performance gap between our model and TAPS3D increases when we shift from
simple captions to complex captions. For FID, the performance gap increases
from 14.1% to 29.9% for Car and from 3.7% to 14.8% for Chair. As for CLIP
R-precision, the performance gap increases from 500% to 545% for Car and from
195% to 413% for Chair. This result proves that our TPA blocks have better
capability to deal with text prompts with detailed information.

F Limitations

Although our proposed TPA3D performs fast text-guided 3D generation with
satisfactory alignment with text inputs, the retrieved text condition of TPA3D
relies on pre-trained image captioning models and text encoders. While this
suggests that our model does not limit the use of particular pre-trained vision-
language models or text encoders, the quality of the resulting text embedding
outputs would inevitably affect the learning and generation performances.
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