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Abstract. Due to the lack of large-scale text-3D correspondence data,
recent text-to-3D generation works mainly rely on utilizing 2D diffusion
models for synthesizing 3D data. Since diffusion-based methods typically
require significant optimization time for both training and inference, the
use of GAN-based models would still be desirable for fast 3D generation.
In this work, we propose Triplane Attention for text-guided 3D genera-
tion (TPA3D), an end-to-end trainable GAN-based deep learning model
for fast text-to-3D generation. With only 3D shape data and their ren-
dered 2D images observed during training, our TPA3D is designed to
retrieve detailed visual descriptions for synthesizing the corresponding
3D mesh data. This is achieved by the proposed attention mechanisms
on the extracted sentence and word-level text features. In our experi-
ments, we show that TPA3D generates high-quality 3D textured shapes
aligned with fine-grained descriptions, while impressive computation ef-
ficiency can be observed.

Keywords: 3D computer vision · text-to-3D generation

1 Introduction

3D object generation has become a thriving area of computer vision research
in recent years, particularly with the increasing prevalence and requirement of
AR/VR technologies, video game development, movie visual effects, and robotic
simulations [16,23]. In the pursuit of automating the creation of 3D objects, nu-
merous researchers strive to develop approaches for generating high-quality 3D
assets. Early methods in 3D object generation [1, 4, 9, 15, 31, 33, 36, 55] predomi-
nantly focus on learning representations that are both efficient and effective for
generating 3D objects. However, the inherent unconditionality of these methods
not only impedes the customization of generated shapes based on specific pref-
erences or requirements but also limits the ease of subsequent manipulation of
the resulting objects.
* These authors contributed equally to this work.
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Motivated by the recent achievements in text-to-image generative models [20,
41, 42, 48], several studies [30, 51, 52] seek to emulate this success by condition-
ing on particular textual prompts. As a pioneer in the domain of text-guided
3D generation, Text2Shape [7] introduces the first large-scale dataset of nat-
ural language descriptions for 3D furniture objects and combines conditional
WGAN [2] with 3D CNN to achieve supervised training for text-guided 3D
object generation. This 3D dataset with human-annotated captions encourages
various language-guided 3D generation methods [14, 28, 30, 34], especially with
implicit 3D representations. These approaches directly learn the mapping be-
tween captions and corresponding 3D shapes, enabling the production of objects
that align closely with specific details mentioned in the input text. While the
inclusion of human-defined text supervision enhances the correlation between
text prompt and generated shape, the scarcity of human-captioned 3D datasets
for various object types (beyond furniture) restricts their applicability to specific
object classes. Consequently, accurately aligning text descriptions with resulting
3D objects remains a challenging task.

To mitigate reliance on human-annotated datasets and achieve unsupervised
text-to-3D generation, various methods [18, 29, 32, 37, 43, 44, 52] leverage pre-
trained text-driven 2D image synthesis network [41, 42] or large vision and lan-
guage models [11,25,26,38] to address the inherent modality difference between
text and vision element. For instance, some approaches [29,32,37] draw guidance
from powerful 2D diffusion models [41,42] by aligning the rendered RGB images
from a random initialized NeRF [33] with text-guided 2D diffusion priors, en-
suring the optimized NeRF corresponds accurately to the textual description.
Despite enabling zero-shot generation, additional optimization processes of these
methods significantly increase the inference time as noted in [29,37], which limits
real-time responsiveness to user inputs.

Conversely, visual-language-based (V-L-based) methods [18,43,44,52] tackle
this challenge by training a latent generator using either rendered image embed-
dings or pseudo text embedding encoded by CLIP [38]. Leveraging the aligned
latent space of vision and text of CLIP, these methods can generate the correct
latent for shape generation based on text prompt embeddings. While current
V-L-based methods ease the necessity of paired 3D shapes with captions, they
primarily generate shapes and textures at a general class and color level due
to utilizing global (sentence) features of input texts as guidance for generat-
ing 3D objects. This implies the potential loss of detailed information in the
text prompts, leading to similar shapes and textures generated from different
fine-grained descriptions.

In this paper, we propose TriPlane Attention 3D Generator (TPA3D), a
GAN-based text-guided 3D object generation network. Inspired by the uncon-
ditional GAN-based model of GET3D [15], our TPA3D only utilizes 3D objects
and their rendered images for generating high-fidelity 3D textured mesh. With
text features extracted from the pre-trained CLIP text encoder, our proposed
TriPlane Attention (TPA) block performs sentence and word feature refinement
for the geometry and texture triplanes, allowing fine-grained 3D textured mesh
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to be produced via generator-based modules. We note that our TPA3D trains
generators and discriminators in an unsupervised setting, performing instantly
generation of high-fidelity 3D textured triplane corresponding to the detailed
description without the human-annotated text-3D pairs for training supervi-
sion. This also makes GAN-based generation methods [18, 52] preferable over
diffusion-based models [29,37] which require significant optimization costs.

We now highlight the contributions of this work below:

– We propose a GAN-based network, named TriPlane Attention 3D Gener-
ator (TPA3D), performing sentence and word-level refinements of triplane
features for fast text-guided 3D textured mesh generation.

– Our TriPlane Attention (TPA) performs plane-wise self-attention, cross-
plane attention, and cross-word attention, allowing us to preserve intra-plane
consistency, enhance 3D spatial connectivity, and integrate fine-grained in-
formation from the input text prompt for producing triplane features.

– We demonstrate our method outperforms the state-of-the-art GAN-based
text-to-3D method in various evaluation metrics, and has better textual
alignment than SDS-based methods.

2 Related Works

2.1 Text-Guided 2D Image Synthesis

With the advent of large-scale datasets [19, 45] containing text-image pairs, 2D
text-guided generative models are developed, which leverage direct supervision
through RGB images and their corresponding captions. To retrieve desirable in-
formation from the text prompt, recent methodologies [12,40–42] adopt attention
mechanisms [50] as a key strategy to integrate fine-grained text features into their
designs. Specifically, auto-regressive-based models [12,40] utilize transformers [8]
to establish connections between text tokens and image patch tokens. Likewise,
Diffusion Models such as Imagen [42] incorporate multiple cross-attention layers
within the encoder and decoder, facilitating the learning of the denoising pro-
cess. To enhance the resolution of the generated images, the Latent Diffusion
Model (LDM) [41] suggests shifting the denoising process to the latent space
rather than the pixel level.

However, the substantial computation cost incurred during inference still
poses the interactivity concern [20]. GigaGAN [20] thus delves into the prospect
of upscaling conditional StyleGAN [22] to accommodate large-scale datasets [24].
It further integrates cross-attention layers within the generator, focusing on both
textual and visual features. While enabling the extraction of local details from
comprehensive captions, the extension of these 2D methodologies to a 3D context
remains an intricate challenge.

2.2 Text-Guided 3D Object Generation

Based on the success of text-guided image synthesis, numerous works [7, 28–30,
34, 37, 43, 44, 52] thrive in developing approaches for text-guided 3D object gen-
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eration. Notably, Text2Shape [7] pioneers the text-to-3D domain by introducing
the first large-scale 3D dataset with human-annotated captions for 3D furniture
objects in ShapeNet [5] and optimizing a conditional WGAN [2] through super-
vised training. Subsequent studies [28,30,34] adopt similar supervisory strategies
to design text-to-3D networks. For instance, TITG3SG [30] uses Implicit Max-
imum Likelihood Estimation (IMLE) [27] as the latent generator, which mini-
mizes the similarity between the ground truth latent vector and the most similar
generated latent vector from a set of generated results. AutoSDF [34] utilizes a
VQ-VAE [49] to encode 3D objects and updates an additional auto-regressive
Transformer [50] with text-3D pairs in the latent space during training to achieve
text-guided latent vector generation. While these methods successfully achieve
text-driven 3D object generation, the scarcity of human-annotated 3D datasets
confines the applicability of these methods to specific classes. Consequently, re-
cent endeavors share a common objective of reducing dependence on 3D datasets
with human-define captions.

Recent advancements in cross-modality models [11, 25, 26, 38] have been ob-
served. Pre-trained on large-scale image and text-paired data, these models have
become prominent tools for bridging natural language with visual elements. Con-
sequently, several studies [29, 37, 43, 44, 52] are exploring the potential of lever-
aging knowledge from these large language and vision models for text-guided
3D generation. Among these approaches, Magic3D [29] and DreamFusion [37]
utilize diffusion models [41] to align rendered RGB images from a random ini-
tialized NeRF with text-guided 2D diffusion priors. By capturing fine-grained
information from word-level features, these methods can ensure the generated
shape corresponds to the specific requirements in the text prompt. Despite suc-
cessfully achieving zero-shot text-guided 3D generation, additional optimization
is typically required as reported in [29,37]. Such extra computation efforts would
limit their practicality as 3D generation tools.

To address the above issue, alternative approaches [43,44,51,52] aim to cap-
italize on the aligned vision and language latent space of CLIP [38] to generate
text-conditioned latent for 3D objects generation. For instance, CLIP-Forge [43]
introduces a flow-based model to learn the mapping between CLIP image em-
bedding of rendered RGB image and the 3D shape latent. Leveraging the aligned
text-image latent space, the latent generator predicts the suitable shape latent
based on the text features of user input. Conversely, TAPS3D [52] introduces a
novel captioning module to identify the best pseudo caption for the rendered im-
ages of 3D objects in the training set by maximizing the CLIP score between each
image and the formulated text. By obtaining suitable pseudo captions for the 3D
objects, TAPS3D directly fine-tunes a pre-trained conditional 3D generator [15]
with the supervision of generated pseudo captions. Although the above technique
does not require human-defined captions, their reliance on CLIP global text em-
bedding as the primary guidance constrains their ability to precisely generate
3D objects matching detailed text inputs.



TPA3D: Triplane Attention for Fast Text-to-3D Generation 5

w

w

TPA
z

z
TPA

     ...

   InstructBLIP

"a futuristic-looking
sports car. It is red and
has white wheels."

...

CLIP
text

encoder

TPA

TPA

...

TPA

... TPA

TPA

TPA

...

...

...

Fig. 1: Overview of TPA3D for fast text-guided 3D generation. By taking
sentence and word-level features ts and tw as the inputs, TPA3D utilizes generator G
and triplane attention (TPA) modules to predict the associated triplane features for 3D
textured mesh generation, with 3D content information properly observed. Following
GET3D [15], each G contains branches for geometry and texture synthesis. Note that
InstructBLIP [11] is applied to produce pseudo captions from rendered images during
training, while CLIP [38] extracts the resulting text features. And, ci and fi denote
the sentence and word-level triplane features at each layer i, respectively.

3 Preliminary

For the sake of clarity, we provide a brief review of GET3D [15], which gener-
ates textured 3D shapes and serves as the generator backbone for our method.
The model of GET3D is a GAN-based single-class unconditional 3D generator.
Adapted from the generator of StyleGAN2 [22], GET3D first maps random noises
zgeo ∈ N (0, I) and ztex ∈ N (0, I) to latent vectors wgeo ∈ R512 wtex ∈ R512.
Subsequently, for the i-th layer of the generator, wgeo and wtex are utilized to
control the generation of the geometry triplane cgi ∈ RHi×Wi×(3d) and the tex-
ture triplane cti ∈ RHi×Wi×(3d), where d is the feature dimension, Hi and Wi

denote the size of the triplane at that layer. After summing up all cgi and cti,
the final triplanes fg

N =
∑N

i=1(c
g
i ) and f t

N =
∑N

i=1(c
t
i) are fed to DMTet [47]

to generate the output 3D textured mesh. In order to sum up all triplanes, a
bilinear upsampling strategy is applied here (except for the triplanes with a size
equal to HN × WN ) to align the resolution of all triplanes. Please refer to the
supplementary materials for the details.

To train the generator of GET3D via 2D supervision, a differentiable ren-
derer [24] is utilized to render the generated 3D textured mesh into 2D RGB
image Ifake and silhouette mask Mfake. Following the discriminator architecture
of StyleGAN [21], GET3D applies two separate discriminators conditioned on
the camera pose for the RGB and the mask images, respectively.

With the advantage of instant generation of high-fidelity textured shapes,
our method is built on top of GET3D with the modification for text-guided
3D object generation. Specifically, to generate a textured mesh that aligns with
the detailed description from the input text, our approach performs text-guided
refinement on triplanes cgi and cti by applying word-level information. With this
modification, our model is able to generate high-fidelity 3D textured meshes
while ensuring precise correspondences to the fine-grained textual conditions.



6 B. Wu et al.

4 Method

4.1 Problem Formulation and Model Overview

We first define the problem definition and the notation used in this paper. Given
an input text prompt S describing desirable information of an object, our goal
is to generate a 3D textured mesh that matches S without reliance on human-
defined text-3D pairs for training supervision. To achieve this goal, we propose
a novel deep learning framework of TriPlane Attention 3D Generator (TPA3D).

As depicted in Figure 1, our TPA3D contains two network modules. First,
we have sentence-level triplane generators G = {G1, ..., GN} for generating
sentence-level triplanes cgi and cti, with latent vectors wgeo and wtex derived from
sentence features ts. The other module is TriPlane Attention block (TPAgeo and
TPAtex), refining cgi and cti into word-level triplanes fg

i and f t
i with word fea-

tures tw. Given an input text S, we apply a pre-trained CLIP text encoder [38]
to convert S into a sentence feature ts ∈ R512 and word features tw ∈ R77×512

as global and detailed text information, respectively. We concatenate ts to ran-
domly sampled noises zgeo and ztex as conditions to generate latent vectors wgeo
and wtex for G to produce sentence-level geometry triplane cgi and texture tri-
plane cti respectively from each layer Gi. To further enhance the consistency and
connectivity of the generated triplanes and incorporate word-level information
to capture geometric and textured details, the proposed novel TPA blocks are
adopted to refine cgi and cti and derive word-level geometry triplane fg

i and tex-
ture triplane f t

i . Finally, we follow GET3D [15] to produce the 3D textured mesh
from fg

N and f t
N via DMTet [47] as noted in Sect. 3. We now provide a detailed

explanation of our TPA3D in the following subsections.

4.2 Pseudo Caption Generation

As discussed in Sect. 2, traditional text-guided 3D generation approaches [7,30,
34] require human-annotated text-3D pairs to enable supervised training. To mit-
igate the reliance on human-annotated text-3D pairs, we leverage a pre-trained
image captioning model of InstructBLIP [11] to produce the detailed pseudo
caption S(Ireal) for a rendered image Ireal of its 3D version, providing pseudo
text-3D pairs for training. As suggested by [46], it is necessary to remove redun-
dant phrases from generated captions to mitigate potential distraction for 3D
generation (e.g., “in the image”, “This is a 3D model”, and “black background”).
Please refer to supplementary materials for details of this filtering step. With
such pseudo caption S(Ireal) and rendered image Ireal pairs obtained, our TPA3D
is subsequently designed to accommodate and leverage this detailed description.

4.3 Triplane Attention 3D Generator

We now detail how TPA3D realizes text-guided 3D generation, with the ability
to produce 3D content with desirable shape and texture information. Given the
input pseudo caption S(Ireal), we apply the CLIP text encoder [38] to extract
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Fig. 2: Design of TriPlane Attention (TPA). TPA first performs plane-wise self-
attention and cross-plane attention to 3D triplane features to enforce intra-plane con-
sistency and 3D spatial connectivity, respectively. Cross-word attention is subsequently
performed to exploit word-level features for incorporating detailed information. Note
that for TPAtex, additional geometry triplane features fg

i are included to incorporate
geometry information for texture generation.

sentence features ts and word features tw. For ts, we directly use the output
CLIP text embeddings [39]. As for tw, we follow [20,42] and extract the features
from the second-last layer of the CLIP text encoder.

Sentence-Level Triplane Generator. As illustrated in Figure 1, the sentence-
level triplane generator G generates sentence-level triplanes cgi ∈ RHi×Wi×(3d)

and cti ∈ RHi×Wi×(3d) with latent vectors wgeo and wtex, which are conditioned
on sentence features ts, at each layer Gi. Following the generator architecture of
GET3D [15], the sentence-level generator G takes geometry latent vector wgeo
and texture latent vector wtex as inputs to generate the geometry triplane cgi
and the texture triplane cti at each layer Gi. For each layer, Gi takes the layer
features of Gi−1 as the input, and uses modulated convolution layers [22] with
wgeo as style information to generate the layer features, which will be propagated
to the next layer Gi+1 for the subsequent generation. To generate triplanes at
each layer Gi, two additional modulated convolution layers are applied to layer
features and take wgeo and wtex as styles to generate the sentence-level geometry
triplane cgi and the texture triplane cti respectively. Because wgeo and wtex are
conditioned on the sentence features ts, cgi and cti only contain sentence-level
information for textured mesh generation.

Word-Level Triplane Refinement via TPA. To further refine the above
sentence-level triplanes with detailed information matching the text input, we
propose the TriPlane Attention (TPA) block that performs word-level refinement
to generate word-level geometry triplane fg

i ∈ RHi×Wi×(3d) and texture triplane
f t
i ∈ RHi×Wi×(3d) accordingly. As depicted in Figure 2, for a TPAgeo at layer i,

we take the sentence-level geometry triplane cgi generated by Gi and the output
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fg
i−1 of the TPAgeo in the previous layer to obtain three plane input features
fg
i,xy, f

g
i,yz, f

g
i,xz ∈ RHi×Wi×d. For better understanding, we use ⟨·⟩ as an operator

to stack the feature channel (i.e., ⟨fg
i,xy · f

g
i,yz · f

g
i,xz⟩ ∈ RHi×Wi×(3d)). Therefore,

⟨fg
i,xy · f

g
i,yz · f

g
i,xz⟩, the input of the TPAgeo is defined as,

⟨fg
i,xy · f

g
i,yz · f

g
i,xz⟩ = fg

i−1 + cgi . (1)

As for TPAtex, we additionally include the output fg
i from TPAgeo with a weight

α = 0.5 as the input of TPAtex to generate texture matches the corresponding
geometry. Therefore, the input of TPAtex is defined as:

⟨f t
i,xy · f t

i,yz · f t
i,xz⟩ = f t

i−1 + cti + α ∗ fg
i . (2)

Note that the model architectures of TPAgeo and TPAtex are the same except
for their inputs.

Triplane-Feature Consistency and Connectivity. To ensure proper mod-
eling of sentence-level object information through triplane features before incor-
porating word-level fine-grained details, our TPA (taking TPAgeo for example) in
Figure 2 initiates by prioritizing the acquisition of intra-plane consistency. Sub-
sequently, additional efforts can be placed on fostering inter-plane 3D spatial
connectivity across all planes, establishing a foundation for subsequent refine-
ment processes. To inject sentence-level content pertaining to the desired object,
we start from representation learning for each triplane. As depicted in the lower
middle of Figure 2, this is achieved by observing intra-plane consistency for
each triplane feature. That is, we choose to perform plane-wise self-attention on
each plane feature to extract plane-wise content features. To further enhance
the 3D spatial information inherent in our plane-wise content features and en-
sure comprehensive multi-aspect correspondence across different planes, we then
employ a cross-plane attention mechanism to establish inter-plane connectivity.
This involves treating the fused triplane feature fg

i,p (i.e., the output of applying
self-attention on the concatenation of triplane features fg

i,xy, f
g
i,yz, and fg

i,xz) as
both key and value, while employing the three plane-wise content features as
queries to execute attention operations. We note that to decrease the number of
parameters, the weights of cross-plane attention and plane-wise self-attention are
shared between each plane feature. Finally, we concatenate three output plane
features as self-refined features fg

i,q for later fine-grained word-level refinement.

Refinement with Word Features. To incorporate word-level information
into triplane features for 3D generation, we perform the word-level refinement
by cross-word attention. As shown in the right of TPA in Figure 2, the cross-
word attention takes self-refined features fg

i,q as query, word features tw as key
and value, to refine fg

i,q to the output word-level triplane fg
i . Therefore, fg

i will
include 3D spatial information and word-level information. With the refinement
by TPAgeo blocks and TPAtex blocks, we obtain final word-level triplanes fg

N

and f t
N , which are used to generate the 3D textured mesh that matches the

detailed description. Different from DiffTF [3], our TPA blocks have additional
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cross-word attention to utilize word features, so the generated triplanes contain
fine-grained information corresponding to the detailed text prompt.

4.4 Text-Guided Discriminators

To train our TPA3D, we deploy and train the discriminators conditioned on the
text inputs. Following GET3D [15], we use the same architectures of two discrim-
inators Drgb and Dmask for RGB images and masks, respectively. To properly
design text-guided discriminators, we concatenate the sentence features ts to the
camera pose condition as a new condition. In this case, the discriminators not
only need to know whether the input rendered image is real or fake, but also
have to judge whether the image matches the given detailed caption. For Drgb
and Dmask, the adversarial objective is formulated as,

L(Drgb, G) = Ets∈T g(Drgb(Ifake, ts))

+ Ets∈T,Ireal∈prgb (g(−Drgb(Ireal, ts))

+ λ∥∇Drgb(Ireal)∥22),
(3)

L(Dmask, G) = Ets∈T g(Dmask(Mfake, ts))

+ Ets∈T,Mreal∈pmask (g(−Dmask(Mreal, ts))

+ λ∥∇Dmask(Mreal)∥22),
(4)

where g(x) = − log(1+ exp(−x)). Note that prgb and pmask represent the distri-
butions of real rendered RGB images and silhouette masks, and λ is a hyperpa-
rameter.

To introduce additional discriminative ability during training, we use addi-
tional negative pairs in the mismatching objective Lmis to make the model more
sensitive to mismatched text conditions. Therefore, the mismatching objective
is formulated as,

Lmis = Et′s∈T ′ g(Drgb(Ifake, t
′
s))

+ Et′s∈T ′,Ireal∈prgb g(Drgb(Ireal, t
′
s))

+ Et′s∈T ′ g(Dmask(Mfake, t
′
s))

+ Et′s∈T ′,Mreal∈pmask g(Dmask(Mreal, t
′
s)),

(5)

where T ′ denotes the set of mismatched sentence features.

4.5 Training and Inference

Training. Since we use InstructBLIP [11] to generate detailed pseudo captions,
we only require rendered image Ireal of the 3D object as our training data. As
a result, the pseudo caption S(Ireal), sentence features ts, and word features tw
can be produced as described above. The generator is trained to generate Ifake
and feed Ireal and Ifake into the discriminators. To stabilize the training process,
we use an additional CLIP similarity score for Ifake and ts as a training objective
Lclip. Therefore, the overall training objective is defined as:

L = L(Drgb, G) + L(Dmask, G) + Lmis + Lclip. (6)



10 B. Wu et al.

Table 1: Quantitative results in terms of (a) FID↓ and (b) CLIP R-
Precision@5↑. Compared to TAPS3D with only sentence-level features, our TPA3D
performs additional word-level refinement and results in better visual quality and im-
proved alignment between generated shapes and given text prompts. Note that Acc.
represents Accessory in tables.

Method
ShapeNet OmniObject3D

Car Chair Motorbike Vehicle Acc.

GET3D [15] 11.50 22.75 49.98 98.15 145.66

TAPS3D [52] 26.37 44.70 84.83 152.34 172.14

Ours (TPA3D) 18.50 38.11 77.69 68.80 83.31

(a) FID↓

Method
ShapeNet OmniObject3D

Car Chair Motorbike Vehicle Acc.

TAPS3D [52] 12.55 7.52 5.00 9.47 6.67

Ours (TPA3D) 80.94 38.58 24.76 65.26 64.44

(b) CLIP R-Precision@5↑

Inference. For inference, one can replace the generated pseudo caption directly
with the desirable input text prompt, fed into the generator for synthesizing the
fine-grained 3D textured mesh that matches the input text prompt.

5 Experiments

5.1 Dataset

We train and evaluate our models on the synthetic 3D ShapeNet [5] dataset
following [10, 15, 52, 54] and further include real-scanned 3D dataset OmniOb-
ject3D [5] to demonstrate its applicability on versatile real-world data. Specifi-
cally, we choose categories with diverse geometric and textural details, including
Car, Chair, and Motorbike for ShapeNet. Since the number of objects for a single
class in OmniObject3D is much smaller than ShapeNet, we combine Toy Bus,
Toy Car, Toy Truck, and Toy Train as Vehicle, and combine Gloves, Hat, Hel-
met, and Shoes as Accessory for OmniObject3D. In our experiments, we generate
images with a high resolution of 1024×1024 by rendering each textured shape
from 24 randomly sampled camera angles. For categories with fewer shapes, like
Motorbike, Vehicle, and Accessory, we increase the view count to 100 to ensure
a comparable volume of rendered images. Finally, for fair comparison purposes,
we generate one pseudo caption for each rendered image for quantitative and
qualitative evaluation.

5.2 Quantitative Results

To quantitatively evaluate the capability of our method, we compare our pro-
posed TPA3D with several existing state-of-the-art works, including GET3D [15]
and TAPS3D [52], with the following evaluation metrics. To evaluate the fidelity
and quality of generated shapes, we render 3D textured shapes into RGB im-
ages from 24 random camera views and compute Fréchet inception distances
(FID) [17] of rendered images. As for the evaluation of consistency between text
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Ours
(TPA3D)

TAPS3D

motorbike is white and
purple with a yellow

headlight.

a blue sports car with
yellow wheels.

a yellow muscle car
with black stripe.

vintage-style motorbike
with a red and white

color scheme.

a wooden chair with
rounded back,

armrests and linen seat

a purple rocking chair
with wooden base

(a) ShapeNet [5]

Ours
(TPA3D)

TAPS3D

a green and white
garbage truck.

a blue toy car with
yellow wheels.

a green train with
yellow stripes.

a black sneaker with
orange accents.

the helmet is red and
has a yellow sticker.

the gloves are made of
leather and have a

brown color.

(b) OmniObject3D [53]

Fig. 3: Qualitative comparisons with TAPS3D on (a) ShapeNet and (b) Om-
niObject3D. Given detailed input prompts, our TPA3D generates accurate shapes
aligned to prompts, while TAPS3D only realizes general classes and simple colors.

prompts and generated objects, we adopt the CLIP R-precision@5 [35] as our
main metric. Lastly, all the models are trained and evaluated with pseudo cap-
tions generated by InstuctBLIP [11]. The results of FID, as presented in Table 1a,
reveal that our TPA3D achieves comparable scores in FID with state-of-the-art
3D generator GET3D (as the performance upper bound for ShapeNet [5]) and
outperforms text-guided 3D generation method TAPS3D in all classes. We note
that, while GET3D excels in producing high-quality shapes, it is limited to un-
conditional shape generation and is hard to deal with high-diversity datasets
composed of multiple classes without further guidance, and thus our TPA3D
achieves higher scores in FID than GET3D on OmniObject3D [53]. As for the
correspondence between input texts and generated objects, Table 1b demon-
strates our TPA3D achieves higher CLIP R-precision across all classes compared
to TAPS3D, which only utilizes sentence features. The result indicates that our
generated shape better aligns with specified input text conditions. This validates
the effectiveness of our approach, which leverages word features to enhance de-
tails in triplane features, resulting in our generated shape and texture retrieving
detailed requirements specified in the text prompt.

5.3 Qualitative Results

To qualitatively evaluate the ability to deal with detailed descriptions, we first
compare our TPA3D with TAPS3D [52]. The results in Figure 3 demonstrate
that our model produces shapes accurately aligned to the text prompt while
TAPS3D only comprehends simple modifiers and affects the output shape with
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(c) (d)(b)(a)

lime

cyan

purple

(e) (f)

Fig. 4: Example text-guided 3D generation results of TPA3D. We consider in-
put prompts of “a {color} {object}” with multiple colors and sub-classes for generation.
Each column stands for a different color, while each row stands for a unique sub-class:
(a)“muscle car” (b)“pickup truck” (c)“sofa” (d)“office chair” (e)“scooter” (f)“dirt bike”.
Note that the same seeds are applied for sampling zgeo and ztex for each row.

different colors. For ShapeNet [5] (see the third column of Figure 3a), TAPS3D
only generates a wooden chair and ignores further details provided in the text
prompt. In contrast, our TPA3D accurately captures all details such as “rounded
back”, “armrests”, and “linen seat”. For OmniObject3D [53] (see the second col-
umn of Figure 3b), TAPS3D mixes the colors and misunderstands the accurate
sub-class. In contrast, our TPA3D separates the colors “green” and “white”, and
constructs the shape of “garbage truck”. This qualitatively verifies the effective-
ness of our design of incorporating word-level triplane refinement in our TPA
blocks. Furthermore, we present additional qualitative results for text-guided
3D generation in Figure 4 with different combinations of color and subclass. In
this figure, we observe that our TPA3D exhibits impressive precision in gener-
ating textured shapes aligned with various combinations of subclass and color
provided in text prompts. By fixing the random seed and subclass in each col-
umn, we can also observe that TPA3D only modifies textures with the changed
color and maintains nearly identical shapes. This further verifies the effective-
ness of word-level refinement in TPA for disentangling geometry and texture
information.

5.4 Further Analysis

Text-Guided Manipulation. With the proper separation of geometry and
texture triplane features, our TPA3D is able to manipulate the generated objects
by simply changing the input text description and fixing the same random seed
for sampling the initial noises zgeo and ztex. As shown in Figure 5, we first
generate a chair object via the input text “a wooden chair”. By adding different
text descriptions to the original one, our TPA3D manipulates the original chair
accordingly without changing details unrelated to the additional descriptions.
Such a manipulation property may improve its practicability as a 3D content
creation tool for users to control the output incrementally.
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a wooden chair + ___ with linen seat with white cushion with rounded back with rounded back
and linen seat

with rounded back
and white cushion

Fig. 5: Examples of chair manipulation by adding different detailed text
descriptions. The left shows a chair generated from the input text “a wooden chair".
With the same random seed for sampling zgeo and ztex, five distinct manipulations are
produced by adding different detailed text descriptions.

Ours (TPA3D)

DreamFusion

Magic3D

(a) (b) (c) (d) (e) (f)

Fig. 6: Qualitative comparisons with SDS-based methods. Each column takes a
unique text prompt of (a)“a yellow sports car with red wheel and tinted window”, (b)“a
white SUV with a blue police light on top of it”, (c)“the chair has a red seat and yellow
legs”, (d)“a black office chair with a blue seat”, (e)“a red bicycle with yellow pedals”,
and (f)“a green and white dirt bike”.

Comparison with SDS-Based Methods. Since score distillation sampling
(SDS) has shown significant performance in high-fidelity text-to-3D generation,
we also compare TPA3D with SDS-based methods of DreamFusion [37] and
Magic3D [29]. As shown in Figure 6, our method exhibits higher correspondence
between complex input texts and generated objects. For example, in the fourth
column of Figure 6, our TPA3D accurately separates the colors of “black office
chair” and “blue seat”, while SDS-based methods either mix the colors or mis-
match the colors to the parts of chairs. This is because, SDS-based methods
heavily rely on pre-trained 2D diffusion models (e.g., Stable Diffusion [41]), and
thus they are not able to generate 3D objects directly from complex textual
descriptions. Such limitations (i.e., dependence on 2D diffusion models) have
been discussed in previous works such as StructureDiffusion [13] and Attend-
and-excite [6].

Ablation Study on TPA. Since the proposed TPA module serves as the
major technical component in TPA3D, we conduct several ablation studies to
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Table 2: Runtime comparisons for diffusion/GAN-based generative models.
We compare the inference time reported in [29, 52]. For TAPS3D and TPA3D, we
calculate the average time by generating 1000 samples with different text prompts.

Method Device Output Time

DreamFusion [37] TPUv4 machine Rendering 90 min
Magic3D [29] NVIDIA A100 x8 Rendering 40 min
TITG3SG [30] Telsa V100-32G Voxel 2.21 sec
TAPS3D [52] Telsa V100-32G Rendering 0.05 sec
TAPS3D [52] Telsa V100-32G Mesh 1.03 sec

Ours (TPA3D) Telsa V100-32G Rendering 0.09 sec
Ours (TPA3D ) Telsa V100-32G Mesh 2.87 sec

verify the design of TPA. In particular, we assess the design of TPA in three
aspects: functions of cross-plane and cross-word attention in TPA, performances
with different numbers of TPA blocks, and the improvement on the shape quality
and the textual alignment with only TPAgeo or TPAtex. Due to page limitations,
please refer to Sect. B, Table A1, and Table A2 in the supplementary materials
for the complete ablation study results.

Inference Speed Comparison. To assess the real-time performance of each
text-guided 3D generative model, we present the inference time of existing meth-
ods (reported from [29,52]) in Table 2. Notably, SDS-loss optimization-based ap-
proaches [29,37] require tens of minutes to complete the inference time optimiza-
tion for each text input. In contrast, our proposed method maintains an instant
inference speed comparable to GAN-based networks. Our approach achieves
high-resolution image renderings at 1024×1024 in just tens of milliseconds and
generates textured meshes within three seconds, similar to the performance of
other GAN-based generators such as TAPS3D [52] and TITG3SG [30].

6 Conclusion

In this paper, we proposed TPA3D, a GAN-based deep learning framework for
fast text-guided 3D object generation. With only access to 3D shape data and
their rendered 2D images, we utilized a pre-trained image captioning model
and text encoder to generate detailed pseudo captions from the above visual
data as the text condition. By observing the text condition, our TPA3D is able
to extract geometry and texture triplane features for generating textured 3D
meshes. Taking the sentence feature of the text description as input, the sentence-
level generator of our TPA3D derives sentence-level triplane features. To enforce
fine-grained details from the word-level descriptions, the introduced TPA block
further performs word-level refinement during generation. From the experiments,
we demonstrate the ability of TPA3D in matching the generated textured mesh
to the detailed description while retaining sufficient fidelity.



TPA3D: Triplane Attention for Fast Text-to-3D Generation 15

Acknowledgement

This work is supported in part by the National Science and Technology Council
via grant NSTC 112-2634-F-002-007 and NSTC 113-2640-E-002-003, and the
Center of Data Intelligence: Technologies, Applications, and Systems, National
Taiwan University (grant nos.113L900902, from the Featured Areas Research
Center Program within the framework of the Higher Education Sprout Project
by the Ministry of Education (MOE) of Taiwan). We also thank the National
Center for High-performance Computing (NCHC) for providing computational
and storage resources.

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: International conference on machine
learning. pp. 40–49. PMLR (2018)

2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International conference on machine learning. pp. 214–223. PMLR (2017)

3. Cao, Z., Hong, F., Wu, T., Pan, L., Liu, Z.: Large-vocabulary 3d diffusion model
with transformer. arXiv preprint arXiv:2309.07920 (2023)

4. Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., De Mello, S., Gallo,
O., Guibas, L.J., Tremblay, J., Khamis, S., et al.: Efficient geometry-aware 3d
generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 16123–16133 (2022)

5. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

6. Chefer, H., Alaluf, Y., Vinker, Y., Wolf, L., Cohen-Or, D.: Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. ACM Trans-
actions on Graphics (TOG) 42(4), 1–10 (2023)

7. Chen, K., Choy, C.B., Savva, M., Chang, A.X., Funkhouser, T., Savarese, S.:
Text2shape: Generating shapes from natural language by learning joint embed-
dings. In: Computer Vision–ACCV 2018: 14th Asian Conference on Computer
Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III
14. pp. 100–116. Springer (2019)

8. Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.: Gen-
erative pretraining from pixels. In: International conference on machine learning.
pp. 1691–1703. PMLR (2020)

9. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 5939–5948 (2019)

10. Cheng, Y.C., Lee, H.Y., Tulyakov, S., Schwing, A.G., Gui, L.Y.: Sdfusion: Multi-
modal 3d shape completion, reconstruction, and generation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4456–
4465 (2023)

11. Dai, W., Li, J., Li, D., Tiong, A.M.H., Zhao, J., Wang, W., Li, B., Fung, P., Hoi,
S.: Instructblip: Towards general-purpose vision-language models with instruction
tuning (2023)



16 B. Wu et al.

12. Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X., Shao,
Z., Yang, H., et al.: Cogview: Mastering text-to-image generation via transformers.
Advances in Neural Information Processing Systems 34, 19822–19835 (2021)

13. Feng, W., He, X., Fu, T.J., Jampani, V., Akula, A., Narayana, P., Basu, S., Wang,
X.E., Wang, W.Y.: Training-free structured diffusion guidance for compositional
text-to-image synthesis. arXiv preprint arXiv:2212.05032 (2022)

14. Fu, R., Zhan, X., Chen, Y., Ritchie, D., Sridhar, S.: Shapecrafter: A recursive text-
conditioned 3d shape generation model. Advances in Neural Information Processing
Systems 35, 8882–8895 (2022)

15. Gao, J., Shen, T., Wang, Z., Chen, W., Yin, K., Li, D., Litany, O., Gojcic, Z.,
Fidler, S.: Get3d: A generative model of high quality 3d textured shapes learned
from images. Advances In Neural Information Processing Systems 35, 31841–31854
(2022)

16. Ha, H., Agrawal, S., Song, S.: Fit2form: 3d generative model for robot gripper form
design. In: Conference on Robot Learning. pp. 176–187. PMLR (2021)

17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems 30 (2017)

18. Huang, T., Zeng, Y., Dong, B., Xu, H., Xu, S., Lau, R.W., Zuo, W.: Textfield3d:
Towards enhancing open-vocabulary 3d generation with noisy text fields. arXiv
preprint arXiv:2309.17175 (2023)

19. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q., Sung, Y.H.,
Li, Z., Duerig, T.: Scaling up visual and vision-language representation learning
with noisy text supervision. In: International conference on machine learning. pp.
4904–4916. PMLR (2021)

20. Kang, M., Zhu, J.Y., Zhang, R., Park, J., Shechtman, E., Paris, S., Park, T.: Scaling
up gans for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 10124–10134 (2023)

21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 4401–4410 (2019)

22. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 8110–8119 (2020)

23. Katara, P., Xian, Z., Fragkiadaki, K.: Gen2sim: Scaling up robot learning in sim-
ulation with generative models. arXiv preprint arXiv:2310.18308 (2023)

24. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primi-
tives for high-performance differentiable rendering. ACM Transactions on Graphics
(TOG) 39(6), 1–14 (2020)

25. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597 (2023)

26. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In: International Con-
ference on Machine Learning. pp. 12888–12900. PMLR (2022)

27. Li, K., Malik, J.: Implicit maximum likelihood estimation. arXiv preprint
arXiv:1809.09087 (2018)

28. Li, M., Duan, Y., Zhou, J., Lu, J.: Diffusion-sdf: Text-to-shape via voxelized dif-
fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 12642–12651 (2023)



TPA3D: Triplane Attention for Fast Text-to-3D Generation 17

29. Lin, C.H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis, K., Fidler,
S., Liu, M.Y., Lin, T.Y.: Magic3d: High-resolution text-to-3d content creation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 300–309 (2023)

30. Liu, Z., Wang, Y., Qi, X., Fu, C.W.: Towards implicit text-guided 3d shape gen-
eration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 17896–17906 (2022)

31. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 4460–4470
(2019)

32. Metzer, G., Richardson, E., Patashnik, O., Giryes, R., Cohen-Or, D.: Latent-nerf
for shape-guided generation of 3d shapes and textures. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12663–
12673 (2023)

33. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

34. Mittal, P., Cheng, Y.C., Singh, M., Tulsiani, S.: Autosdf: Shape priors for 3d com-
pletion, reconstruction and generation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 306–315 (2022)

35. Park, D.H., Azadi, S., Liu, X., Darrell, T., Rohrbach, A.: Benchmark for composi-
tional text-to-image synthesis. In: Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

36. Pavllo, D., Kohler, J., Hofmann, T., Lucchi, A.: Learning generative models of
textured 3d meshes from real-world images. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 13879–13889 (2021)

37. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using
2d diffusion. arXiv preprint arXiv:2209.14988 (2022)

38. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International conference on machine learning. pp.
8748–8763. PMLR (2021)

39. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
1(2), 3 (2022)

40. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M.,
Sutskever, I.: Zero-shot text-to-image generation. In: International Conference on
Machine Learning. pp. 8821–8831. PMLR (2021)

41. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

42. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural
Information Processing Systems 35, 36479–36494 (2022)

43. Sanghi, A., Chu, H., Lambourne, J.G., Wang, Y., Cheng, C.Y., Fumero, M., Malek-
shan, K.R.: Clip-forge: Towards zero-shot text-to-shape generation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
18603–18613 (2022)



18 B. Wu et al.

44. Sanghi, A., Fu, R., Liu, V., Willis, K.D., Shayani, H., Khasahmadi, A.H., Srid-
har, S., Ritchie, D.: Clip-sculptor: Zero-shot generation of high-fidelity and diverse
shapes from natural language. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 18339–18348 (2023)

45. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M.,
Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al.: Laion-5b: An open large-
scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems 35, 25278–25294 (2022)

46. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In: Proceed-
ings of the 56th Annual Meeting of the Association for Computational Linguistics.
pp. 2556–2565 (2018)

47. Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a
hybrid representation for high-resolution 3d shape synthesis. Advances in Neural
Information Processing Systems 34, 6087–6101 (2021)

48. Tao, M., Bao, B.K., Tang, H., Xu, C.: Galip: Generative adversarial clips for text-
to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 14214–14223 (2023)

49. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning.
Advances in neural information processing systems 30 (2017)

50. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

51. Wang, C., Chai, M., He, M., Chen, D., Liao, J.: Clip-nerf: Text-and-image driven
manipulation of neural radiance fields. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 3835–3844 (2022)

52. Wei, J., Wang, H., Feng, J., Lin, G., Yap, K.H.: Taps3d: Text-guided 3d textured
shape generation from pseudo supervision. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 16805–16815 (2023)

53. Wu, T., Zhang, J., Fu, X., Wang, Y., Ren, J., Pan, L., Wu, W., Yang, L., Wang,
J., Qian, C., et al.: Omniobject3d: Large-vocabulary 3d object dataset for realis-
tic perception, reconstruction and generation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 803–814 (2023)

54. Xu, J., Wang, X., Cheng, W., Cao, Y.P., Shan, Y., Qie, X., Gao, S.: Dream3d:
Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion
models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 20908–20918 (2023)

55. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow:
3d point cloud generation with continuous normalizing flows. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 4541–4550 (2019)


	TPA3D: Triplane Attention forFast Text-to-3D Generation

