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Abstract. In monocular depth estimation, it is challenging to acquire a
large amount of depth-annotated training data, which leads to a reliance
on synthetic datasets. However, the inherent discrepancies between the
synthetic environment and the real-world result in a domain shift and
sub-optimal performance. In this paper, we introduce SEDiff which firstly
leverages a diffusion-based generative model to extract essential struc-
tural information for accurate depth estimation. SEDiff wipes out the
domain-specific components in the synthetic data and enables structural-
consistent style transfer to mitigate the performance degradation due to
the domain gap. Extensive experiments demonstrate the superiority of
SEDiff over state-of-the-art methods in various scenarios for domain-
adaptive depth estimation.

Keywords: unsupervised domain adaptation · monocular depth esti-
mation · denoising diffusion models

1 Introduction

Monocular depth estimation, which aims to estimate a dense depth map from
a single image, plays a critical role in various computer vision and robotics
applications such as VR/AR (Virtual/Augmented Reality), autonomous driving,
and navigation. The advent of deep learning has revolutionized this field which
enables generating high-quality depth predictions through supervised training on
large datasets paired with densely annotated ground truth (GT) depth labels.

However, the challenge often lies in the arduous and costly acquisition of
datasets containing the annotated depth labels that require depth sensors like
LiDAR or RGB-D cameras. In response to this challenge, unsupervised learning
algorithms have emerged as promising alternatives, utilizing geometric cues such
as stereo images or monocular sequences, thereby mitigating the dependence on
ground-truth depth labels. Unfortunately, the availability of stereo images and
monocular image sequences is also not always guaranteed.

To overcome data limitations, some studies shift their focus to training neural
depth estimators using data from graphics-based synthetic environments, where
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Fig. 1: Visualization of SEDiff outputs. We set the synthetic data as images from
Virtual-KITTI [6] and real data from KITTI [7]. Syn2Real and Real2Syn denote
synthetic-to-real depth-consistent style trasnfer and vice versa respectively.

obtaining densely annotated depth labels is more feasible. Despite this advan-
tage, a critical issue arises due to inherent disparities between synthetic environ-
ments and the real-world, i.e., domain gap, resulting in sub-optimal performance
of neural depth estimators when they are deployed in real-world applications.

In recent studies, a compelling solution has emerged to address the challenge
of domain shift in depth estimation. Researchers propose a novel domain adapta-
tion strategy that involves the style transfer of synthetic images to closely resem-
ble their real-world counterparts [42, 43]. On the other hand, some approaches
adopt a dual-domain projection technique, wherein images from synthetic and
real domains are mapped onto a unified, shared domain [2, 27]. The underlying
objective for these methods is to narrow the domain gap between training and
inference environments, facilitating more accurate depth estimation. The effec-
tiveness of these methods hinges on their ability to adeptly disentangle domain-
specific style components irrelevant for depth estimation from synthetic images,
while preserving structural content for accurate depth estimation.

In this paper, we introduce a novel domain adaptive depth estimation frame-
work, SEDiff, which employs a diffusion-based generative model to extract the
domain-invariant structural content for depth estimation. By incorporating the
domain-specific learnable style parameters and the alternate adaptive instance
normalization (AdaIN) layers into the U-Net-based denoising network, SEDiff
enables disentangling domain-specific style components which only aggravates
domain shift from the input image.

Furthermore, SEDiff achieves high-quality depth-consistent style transfer,
presenting a distinct advantage in estimating attention maps for domain-invariant
structural contents with style-transferred images from synthetic to the real do-
main. The resulting attention map, based on this depth-consistent style transfer,
contributes to the performance of domain adaptive depth estimation alongside
the domain-invariant structure extraction.

It is important to note that our proposed framework, SEDiff, harnesses the
power of structure-style disentanglement in diffusion-based models restrictively
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during the training phase. This strategic approach ensures that the computa-
tional complexity and prolonged inference times associated with the iterative
denoising process of diffusion-based models do not affect the inference speed of
our domain adaptive depth estimation framework.

We demonstrate the effectiveness of SEDiff in domain adaptive depth esti-
mation through extensive experimentation across both indoor and outdoor sce-
narios. In addition, we extend the applicability of our method to scenarios where
real-world geometric cues, such as stereo images, are available. We also validate
better domain generalization performance of SEDiff on unseen dataset compared
to competitive domain adaptation methods.

In short, our contribution can be summarized as follows:

– We propose SEDiff which firstly integrates diffusion models into the domain-
adaptive depth estimation framework, facilitating the extraction of domain-
invariant structural content from synthetic images.

– SEDiff leverages depth-consistent style transfer to estimate attention maps
by minimizing the domain gap between synthetic environments and the real-
world.

– We demonstrate the performance of SEDiff over existing domain-adaptive
depth estimation methods in both indoor and outdoor environments, ex-
hibiting better domain generalization performance on unseen datasets.

2 Related Work

2.1 Domain Adaptation for Depth Estimation

As it is difficult to acquire the data for training the depth estimation network
in the real-world, there emerge some methods which try to collect the training
data in the synthetic environment where it is much easier to collect data for
training even with densely paired depth labels compared to the real-world. The
problem is that there is a domain gap between the synthetic environment and the
real-world, which leads to sub-optimal performance when the depth estimation
network trained with synthetic data is deployed in the real-world applications.
Therefore, several studies [2, 22, 27,40,42, 43] focus on reducing the domain gap
between the synthetic environment and real-world.

T2Net [43] introduces a domain adaptation strategy by jointly training an
unsupervised image translation network to transform synthetic images to a re-
alistic domain and a depth estimation network that utilize the style-transferred
images from synthetic to real as inputs. Building upon this, GASDA [42] in-
corporates epipolar geometric constraints for both image translation and depth
estimation using stereo-pair images from the real-world, augmenting the syn-
thetic data with additional geometric cues. Similarly, SharinGAN [27] also uti-
lizes stereo pairs as additional geometric cues, but instead of translating images
from synthetic to real environments, it projects both synthetic and real images
into a shared domain. Meanwhile, 3D-PL [40], which is a current state-of-the-
art method, adopts an AdaIN [15]-based style transfer approach and generates
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pseudo-labels for real-world images using a pre-trained depth estimation net-
work. Some recent approaches have extended beyond synthetic and real-world
data improve the domain adaptation performance. S2R-DepthNet [2] proposes
a structure extraction module inspired by multi-modal image translation (MU-
NIT [38]) trained on synthetic data and the WikiArt dataset [17], which contains
images from various styles of paintings. DESC [22] utilizes semantic segmenta-
tion labels to detect cars in images and utilizes the car height as depth priors.

In this paper, we leverage synthetic images with depth labels and indepen-
dently sampled real-world images in order to extract domain-invariant structural
information for domain-adaptive depth estimation via diffusion-based generative
models.

2.2 Diffusion Probabilistic Models

Recently, diffusion-based generative models [33], represented by DDPM [13],
have achieved significant success across various computer vision tasks, includ-
ing image generation [4, 14, 34], editing [1, 24], inpainting [23, 37], text-to-image
synthesis [11, 26, 30, 31], and 3D rendering [25, 28, 32]. These approaches have
demonstrated remarkable performance on producing high-quality image outputs
compared to earlier generative models such as VAEs [18], GANs [10], and Nor-
malizing Flows [29].

In this paper, we firstly leverage the capabilities of diffusion-based denoising
models to extract domain-invariant structural information and enable depth-
consistent domain translation from synthetic environments to the real-world for
domain adaptive depth estimation. Our work shares the similar motivation to
StyleDiffusion [36], which harnesses diffusion models to extract image content
for style transfer. However, unlike StyleDiffusion which involves an iterative de-
noising process inherent to diffusion-based models, our proposed method, SEDiff,
performs the iterative denoising process only during the training phase. It means
that SEDiff does not entail any iterative denoising process during its deployment,
having advantages in time and computational complexity.

3 Preliminaries

3.1 Diffusion Probabilistic Model

Diffusion Probabilistic Models (DPMs) belong to the class of latent variable
models which are designed to estimate the target distribution from Gaussian
distribution through iterative denoising processes. It consists of two essential
stages: the forward diffusion process and the reverse denoising process.

The forward diffusion process gradually adds infinitesimal Gaussian noise ϵ
into the data as follows:

q(x1, · · · , xT |x0) :=

T∏
t=1

q(xt|xt−1)

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI)

(1)
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Here, T represents the total diffusion steps, and I denotes the identity matrix.
βt is a fixed noise scheduling strategy for diffusion process. This process can be
alternatively represented to directly sample xt from x0 as:

q(xt|x0) := N (
√
ᾱtx0, (1− ᾱt)I)

xt :=
√
ᾱtx0 + (1− ᾱt)ϵ

(2)

where α := 1− βt and ᾱt :=
∏t

s=1 αs.
The reverse denoising process estimates the target distribution from the

Gaussian distribution by estimating the reverse process q(xt−1|xt). By Bayes’
Theorem, the posterior q(xt−1|xt, x0) is formulated as:

β̃t :=
1− ᾱt−1

1− ᾱt
βt

µ̃t(xt, x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

q(xt−1|xt, x0) := N (µ̃t(xt, t), β̃tI).

(3)

Unfortunately, a direct calculation of the posterior requires knowledge of x0,
which is usually unavailable. Thus, DPM employs a neural network pθ to estimate
the posterior as:

pθ(xt−1|xt) ≃ q(xt−1|xt, x0). (4)
To train the DPM, the model minimizes a loss function formulated as a

re-weighted variational lower bound:

L = Et,x0,ϵ[||ϵ− ϵθ(xt, t)||22]. (5)

Here, ϵθ(xt, t) represents the estimated infinitesimal noise between consecutive
timesteps.

3.2 Latent Diffusion Model

As DPMs require the iterative denosing process to generate the target data from
the noise sampled from the Gaussian distribution, it requires a huge amount of
computation and time, i.e., DDPM requires 1000 denoising steps.

To address these challenges, Latent Diffusion Model (LDM) [30] has emerged
as a promising alternative. LDM enhances computational and memory efficiency
by conducting denoising in a lower-dimensional latent space, rather than directly
in pixel space. First, LDMs train a compression model, typically a regularized
autoencoder, which maps the input image to a spatially reduced latent represen-
tation. This compression is achieved through encoding the input x into a latent
vector z, followed by decoding z back into x as follows:

x̂ = D(E(x)) ≈ x, (6)

where E and D indicate the encoder and the decoder of regularized autoencoder
respectively. To ensure photo-realistic reconstructions, LDM utilizes a GAN-
based framework, incorporating a patch-based discriminator [16] and preceptual
loss [41]. By replacing x in DPMs with the latent vector z = E(x), LDM obtains
efficiency gains in both time and computational complexity.
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Fig. 2: SEDiff Overview. We extract the domain-invariant structural content Ss from
the grayscale synthetic image x′

s. We decouple the domain-specific style component
and domain-invariant structural content via domain AdaIN layer in the denoising net-
work. In addition, to preserve the depth information in Ss, we adopt auxiliary depth
supervision. ⊗ denotes a channel-wise concatenation.

4 Method

In this section, we provide a comprehensive overview of SEDiff for extracting a
domain-invariant structural content for depth estimation through latent diffusion
models (LDMs). Additionally, we delve into the process of a depth-consistent
style transfer and employ its output to accurately estimate the attention map
for the structural content.

4.1 Structure Extraction

To facilitate the training of diffusion probabilistic models in the latent space, we
first train an autoencoder-based encoder E and decoder D following [30] with
KL-regularization. The input images acquired from both synthetic environments
xs and real-world scenarios xr are compressed using the pre-trained E , which
effectively reduces the spatial dimensions of the input image:

xd ∈ RH×W×3, zd = E(xd) ∈ R
H
4 ×W

4 ×3, (7)

where d indicates a domain label, i.e., synthetic domain s and real domain r.
Subsequently, we employ a geometric feature network G to extract domain-

invariant geometric features, zgeos , zgeor ∈ RH
4 ×W

4 ×3, from xs and xr in the latent
space. To ensure compatibility across domains, we first preprocess the inputs,
xs and xr, by removing color information and converting them to grayscale im-
ages, x′

s and x′
r, using the ITU-R 601-2 luma transform [9]. This approach is

grounded in the understanding that color distribution often embodies integral
aspects of domain-specific image styles [20,36], and this grayscale transformation
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can roughly wipe out domain-specific components within the image. These fea-
tures are then concatenated with the noisy diffusion outputs, zts and ztr, and fed
to the denosing network ϵθ such that it can provide a domain-invariant structure
information of input images from different domains to the LDM. By doing so,
LDM can synthesize images which share the same structural (or depth) repre-
sentations as the input image.

Even though we extract geometric features irrelevant to domain-specific com-
ponents from grayscale input, there could be remaining domain-specific compo-
nents in the output of geometric feature network G. Therefore, in order to dis-
entangle the domain-invariant geometric features, zgeos and zgeor , from domain-
specific style components, denoted as ws and wr, we introduce two learnable pa-
rameters where each parameter encapsulates components specific to the synthetic
and real domains, respectively. These parameters are then processed through a
shared domain MLP to estimate ws and wr. Following, these domain-specific
style components are utilized to estimate the scale and the shift parameters, γw
and βw, for the domain Adaptive Instance Normalization (domain AdaIN) layer
of the denoising network ϵθ.

Specifically, we implement an alternating arrangement of time AdaIN and
domain AdaIN layers to strongly condition the diffusion time information and
domain-specific components to the denoising network ϵθ. This arrangement en-
sures that the time AdaIN layer effectively injects denoising timestep information
using the temporal scale and shift parameters, γt and βt, while the domain AdaIN
layer proficiently removes any remaining domain-specific components present in
the geometric features, zgeos and zgeor . Additionally, the inputs of the domain
AdaIN layer are re-stylized based on domain embeddings, ws and wr, facilitat-
ing domain transfer to either the synthetic or real domain.

The denoising function ϵθ estimates the noise between two successive diffusion
timesteps following LDM. It achieves this by utilizing noisy latent variables ztd
from the previous denoising step, the current diffusion timesteps t, geometric
features zgeod of the input image xd, and the target domain-specific component
wd, where d denotes the domain label, synthetic domain s or real domain r. This
comprehensive integration allows LDM to generate an image that aligns with the
geometric features of the input image, irrespective of its domain. Furthermore, by
incorporating domain-specific styling through the parameter wd, SEDiff ensures
that the generated images include the stylistic characteristics inherent to the
specified domain, thereby enhancing the fidelity of the generated outputs.

The loss function to train this geometry-domain-conditioned LDM, i.e., SED-
iff, can be formulated as below:

Lldm = ||ϵ− ϵθ(z
t
d, z

geo
d , t, wd)||22 (8)

From the domain-invariant geometric features zgeod , we construct the structural
content Sd ∈ RH×W×1 with structural decoder S, specifically tailored to include
only the essential elements of the input image xd for accurate depth estimation.

In order to ensure that the derived structural content S indeed encapsu-
lates essential information for precise depth estimation, we jointly train auxiliary
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Algorithm 1 Depth-consistent style transfer
Input: A synthetic image xs, real domain embedding wr, total diffusion step T
Load: geometric feature network G, noise predictor ϵθ, and LDM decoder D
Extract zgeos = G(xs)
Sample zT ∼ N (0, I)
for t = T, T − 1, · · · , 1 do

Sample znoise ∼ N (0, I) if t > 1, else znoise = 0
Compute xt−1 using Eq. (3):
zt−1 = 1√

αt

(
zt − 1−αt√

1−ᾱt
ϵθ(z

t, zgeos , t, wr)
)
+ σtznoise

end for
Decode xs→t = D(z0)
return xs→t as depth-consistent style transfer

depth estimation network which estimates the depth value from S. We leverage
the availability of dense depth labels ys paired with synthetic images xs and
train the auxiliary depth estimation network in a supervised manner as

Ss = S(zgeos ), ŷaux = faux(Ss)

Laux = ||ŷaux − ys||1,
(9)

where faux indicates the auxiliary depth estimation network.
We opt for an end-to-end training approach for all networks within the struc-

ture extraction module of SEDiff, except for E and D. This methodology allows
us to train the framework, facilitating the extraction of domain-invariant geomet-
ric features zgeo essential for domain-adaptive depth estimation, while ensuring
structural consistency between the conditioned input xd and the output image
of LDM. The total loss function is formulated as the linear combination of two
loss functions,

Lse = Lldm + λauxLaux, (10)

where λaux is set to 0.1.

4.2 Attention Map via Depth-Consistent Style Transfer

After training the feature extraction network G and the structural decoder S,
we can extract the domain-invariant structural content, Ss and Sr, from both
synthetic images xs and real-world images xr. Subsequently, we proceed to train
the depth estimation network in a supervised manner, which utilizes the domain-
invariant structure Ss as input and its paired dense depth labels ys as ground
truth.

To mitigate the domain gap between synthetic and real-world images and
thus minimize potential performance degradation due to domain shift, we remove
color information from input images through grayscale transformation before
they are fed into the feature extraction network G. However, it is worth noting
that the rich semantic information for depth estimation is often embedded in
the RGB color space. For instance, the sky is typically blue, while paved roads
in urban or highway settings tend to appear gray.
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Fig. 3: A pipeline for training the domain-adaptive depth estimation network with
the domain-invariant structural content and depth-consistent style-transfer-based at-
tention map. ⊗ and ⊙ denote a channel-wise concatenation and a Hadamard product
respectively.

Hence, we also integrate RGB images to provide additional cues for accu-
rate depth estimation. However, to prevent potential adverse effects of domain-
specific content inherent in RGB images on domain adaptation performance, we
restrict their use solely to deriving the attention map [2], A ∈ RH×W×1, of the
domain-invariant structural content S. This approach ensures that RGB images
contribute exclusively to refining the focus for accurate depth prediction without
directly influencing the estimation of the value of S itself.

Furthermore, instead of directly leveraging synthetic images xs to estimate
the attention map A, we employ the outputs of depth-consistent style transfer
xs→r utilizing the geometry-domain-conditioned LDM trained for the structure
extraction module. During the iterative denoising process of LDM for image
synthesis, we incorporate the geometric features zs of the synthetic image xs and
the domain embedding wr that represents the real-world stylistic characteristics
as described in Algorithm 1. This approach helps minimize the domain shift
by ensuring that the output of the style transfer xs→r shares the same depth
information as the input synthetic image xs, while also including the visual style
characteristic of the real-world.

The loss function to train the structure-based depth estimation network and
the style-transfer-based attention map is formulated as:

Ss = S(G(xs)), A = fattn(xs→r),

ŷs = fdepth(A⊙ Ss),

Ldep = ||ŷs − ys||1,
(11)

where fattn and fdepth indicate the attention network and the depth estimation
network respectively, and ⊙ denotes the Hadamard product.

4.3 Inference

Integrating diffusion-based generative models into depth estimation tasks de-
mands careful consideration due to the iterative denoising process inherent in
such models, which often entails significant time and computational complexity.
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SEDiff also incorporates the iterative denoising process for depth-consistent style
transfer from the synthetic environment to the real-world during training. It is
important to note, however, that during the inference phase, SEDiff streamlines
the process by excluding any iterative denoising steps, thereby avoiding the as-
sociated slowdown in inference time. Instead, we directly estimate the structure
Sr and the attention map A from the real-world image xr, ensuring efficient and
rapid depth estimation,

Sr = S(G(xr)), A = fattn(xr),

ŷr = fdepth(A⊙ Sr).
(12)

5 Experiment

In this section, we present the effectiveness of our proposed framework, SED-
iff, in both single-view depth estimation and stereo-pair settings. We perform
an extensive experiment on synthetic-to-real domain adaptive depth estimation
which shows the superiority of SEDiff over existing methods across indoor and
outdoor scenarios. Additionally, we validate the contributions of each component
within SEDiff to the overall depth estimation performance and better domain
generalization capabilities in the unseen environments.

5.1 Dataset

For outdoor scenarios, we utilize Virtual KITTI (vKITTI) [6] as our synthetic
dataset and KITTI [7] as the real-world dataset. vKITTI offers 21,260 synthetic
images paired with dense depth labels, which we leverage for training alongside
KITTI’s 22,600 training images. For indoor scenarios, Replica [35] serves as our
synthetic dataset, while NYU Depth v2 [3] serves as the real-world dataset. We
evaluate the domain generalization performance on unseen real-world datasets,
we employ DrivingStereo [39] and DDAD [12], specifically collected from outdoor
scenes, for evaluation purposes only.

5.2 Comparison to state-of-the-art

In our evaluation on KITTI with 697 test images from Eigen’s train/test split [5],
we conduct a thorough comparison between SEDiff and existing domain-adaptive
depth estimation methods. We observe that our proposed SEDiff achieves com-
pelling improvements over competitive methods which employs domain adap-
tation strategies across a range of evaluation metrics. Especially compared to
current state-of-the-art, i.e., 3D-PL [40], we validate that our method outper-
forms the current state-of-the-art in majority of the metrics.

Furthermore, we demonstrate that SEDiff produces comparable performance
to methods such as S2R-DepthNet [2] and DESC [22], which leverage addi-
tional data beyond synthetic images paired with depth labels from vKITTI and
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Table 1: Performance on KITTI. All results are computed using the test split
from [5]. The Dataset column specifies the data sources: V for synthetic supervision
with vKITTI, K(M) for monocular images from KITTI, K(sem) for semantic labels
from KITTI, and W for the WikiArt dataset [17]. The best results are highlighted in
bold, while the second-best are underlined. Methods incorporating domain adaptation
without requiring additional data are shaded in gray.

Higher is better Lower is betterMethod Dataset cap
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSElog

All synthetic V 80m 0.635 0.856 0.937 0.253 2.303 6.953 0.328
AdaDepth [19] V + K(M) 80m 0.665 0.882 0.950 0.214 1.932 7.157 0.295

T2Net [43] V + K(M) 80m 0.757 0.918 0.969 0.171 1.351 5.944 0.247
3D-PL [40] V + K(M) 80m 0.753 0.918 0.968 0.169 1.262 6.034 0.249

SEDiff (ours) V + K(M) 80m 0.773 0.932 0.973 0.165 1.301 5.686 0.237
S2R-DepthNet [2] V + W 80m 0.781 0.931 0.972 0.165 1.351 5.695 0.236

DESC [22] V + K(Sem) 80m 0.787 0.924 0.970 0.156 1.067 5.628 0.237
All synthetic V 50m 0.647 0.866 0.943 0.244 1.771 5.354 0.313

AdaDepth [19] V + K(M) 50m 0.687 0.899 0.958 0.203 1.734 6.251 0.284
T2Net [43] V + K(M) 50m 0.773 0.928 0.974 0.164 1.019 4.469 0.231
3D-PL [40] V + K(M) 50m 0.770 0.932 0.975 0.161 0.936 4.398 0.230

SEDiff (ours) V + K(M) 50m 0.786 0.939 0.977 0.159 1.013 4.417 0.225

RGB Ground Truth 3D-PLT2Net SEDiff
Fig. 4: Qualitative results on KITTI test split. Compared to T2Net [43] and 3D-PL [40],
SEDiff produces better depth estimation results with distinct object boundaries.
randomly sampled monocular images from KITTI . Notably, these methods in-
corporate data sources like additional images featuring various paintings with
diverse styles from various artists, i.e., WikiArt [17], or employ semantic labels
from KITTI.

In addition to quantitative results, we validate the superiority of SEDiff in a
qualitative way by visualizing the predicted depth maps in Fig. 4. Our proposed
method not only exhibits clear boundaries between objects and backgrounds but
also accurately captures the depth values of small objects critical for autonomous
driving, such as traffic signs or traffic lights.

5.3 Training with Stereo-Pairs

Recent domain-adaptive depth estimation algorithms, such as GASDA [42],
SharinGAN [27], and DESC [22], have integrated stereo images from the real-
world as additional geometric cues. These algorithms employ self-supervised
stereo supervision [8] alongside synthetic supervision to ensure geometric con-
sistency between virtual and real domains. We also leverage additional stereo
images from real-world datasets in SEDiff to validate its effectiveness in diverse
domain adaptation scenarios. As demonstrated in Table 2, SEDiff consistently
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Table 2: Performance on KITTI with additional stereo pairs during training.
All results are computed on KITTI Eigen [5] test split. K(S) and V denote stereo self-
supervision with KITTI and synthetic supervision with vKITTI respectively. The best
results are marked in bold.

Higher is better Lower is betterMethod Dataset cap
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSElog

All synthetic V 80m 0.635 0.856 0.937 0.253 2.303 6.953 0.328
All real K(S) 80m 0.811 0.934 0.970 0.158 1.151 5.285 0.238

GASDA [42] V + K(S) 80m 0.824 0.941 0.973 0.149 1.003 4.995 0.227
SharinGAN [27] V + K(S) 80m 0.850 0.948 0.978 0.116 0.939 5.068 0.203

3D-PL [40] V + K(S) 80m 0.859 0.952 0.979 0.113 0.903 4.902 0.201
SEDiff (ours) V + K(S) 80m 0.871 0.956 0.980 0.110 0.899 4.816 0.195
All synthetic V 50m 0.647 0.866 0.943 0.244 1.771 5.354 0.313

All real K(S) 50m 0.824 0.940 0.973 0.151 0.856 4.043 0.227
GASDA [42] V + K(S) 50m 0.836 0.946 0.976 0.143 0.756 3.846 0.217

SharinGAN [27] V + K(S) 50m 0.864 0.954 0.981 0.109 0.673 3.770 0.190
3D-PL [40] V + K(S) 50m 0.872 0.958 0.982 0.106 0.641 3.643 0.189

SEDiff (ours) V + K(S) 50m 0.884 0.962 0.982 0.104 0.649 3.617 0.184

outperforms not only the methods trained solely on synthetic data (All synthetic)
and real stereo pairs (All real) but also the existing state-of-the-art methods that
utilize both synthetic data and real stereo pairs during training [27,40,42] across
a majority of evaluation metrics.

5.4 Ablation Study

For better understanding of our proposed SEDiff, we perform an ablation study
in Table 3. This study includes three key variations: (a) the input of the depth
estimation network, (b) the training method for the geometric feature extractor
G, and (c) the domain of the input for the attention network fattn.

To demonstrate the effectiveness of domain-specific style removal process
in the input image of the depth estimation network, we conduct a compara-
tive analysis including three different representations: the raw RGB image xs,
the grayscale image x′

s obtained through the ITU-R 601-2 luma transform [9],
and the structural content Ss extracted using SEDiff, as shown in Table 3(a).
Our findings reveal that the proposed structural content Ss yields the most
promising results, surpassing both the RGB and grayscale images due to its su-
perior domain-invariant properties. Furthermore, the result that grayscale input
outperforms RGB input validate the adoption of grayscale transformation as a
pre-processing step before feeding the RGB image into the geometric feature
extractor G. By converting the RGB image to grayscale, we can roughly wipe
out the influence of domain-specific information containing in the RGB space.

We evaluate the impact of the geometric feature extractor G on the depth esti-
mation results, as presented in Table 3(b). Three methods are compared: Firstly,
we directly employ the encoder E of LDM for image compression, assuming that
the domain-invariant features may stem from the robust data compression capa-
bility of E rather than the intrinsic properties of diffusion probabilistic models.
Secondly, we train G using pixel-level diffusion-based probabilistic models such
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Table 3: Ablation. Results for different variants of SEDiff on Eigen [5] test split.
Best results are marked in bold.

Higher is better Lower is betterMethod cap
δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSElog

(a) RGB 80m 0.630 0.859 0.940 0.268 3.302 7.839 0.327
Gray 80m 0.682 0.888 0.953 0.231 2.451 6.776 0.297

SC (S) 80m 0.773 0.932 0.973 0.165 1.301 5.686 0.237
(b) Encoder (E) 80m 0.735 0.921 0.971 0.183 1.416 5.864 0.249

Pixel 80m 0.767 0.930 0.974 0.166 1.230 5.629 0.236
Latent 80m 0.773 0.932 0.973 0.165 1.301 5.686 0.237

(c) Synthetic 80m 0.761 0.924 0.970 0.173 1.481 5.952 0.247
Syn2Real 80m 0.770 0.928 0.971 0.168 1.366 5.899 0.243
Ensemble 80m 0.773 0.932 0.973 0.165 1.301 5.686 0.237

Method Abs Rel RMSE log 10 δ < 1.25

Li et al. [21] 0.232 0.821 0.094 0.621
Eigen et al. [5] 0.215 0.907 - 0.611
All synthetic 1.717 0.983 0.133 0.499
T2Net [43] 0.293 0.843 0.115 0.585
SharinGAN [27] 0.339 0.795 0.101 0.613
SEDiff (ours) 0.221 0.762 0.096 0.638

Table 4: Performance on NYU Depth
RGB SEDiffGround Truth SharinGANT2Net

Fig. 5: Qualitative results on NYU Depth v2
as DDPM, instead of in the feature space. Our observations indicate that uti-
lizing E as the geometric feature extractor G produces sub-optimal performance
compared to diffusion-based approaches, including both pixel-level and latent-
level diffusion. This suggests that while the encoder E excels at compressing
data, it does not directly contribute to domain generalization performance. Fur-
thermore, we find no significant performance difference between pixel-level and
latent-level diffusion models. This implies the influence of the denoising process
on the domain-invariant properties of geometric features zgeo, irrespective of
whether the diffusion process operates at the pixel or latent level. Given the
comparable performance, we opt for latent-level diffusion for its faster sampling
capabilities during the training phases.

In Table 3(c), regarding the attention map, we observe that estimating it
using the style-transferred output xs→r shows better performance compared to
using the raw synthetic image xs, primarily because xs→r exhibits a reduced
domain gap with real-world images. Also, we find that leveraging images from
both domains, xs and xs→r, further enhances performance. To this end, we
employ two distinct attention networks fattn and depth estimation networks
fdepth, with each network processing xs and xs→r, respectively. By ensembling
the depth estimation results from both inputs, we achieve optimal performance
compared to methods that utilize a single domain input.

5.5 Indoor Environment

The indoor environment usually exhibits unique challenges distinct from outdoor
settings, and therefore, we compare SEDiff with existing supervised [5, 21] and
domain-adaptive depth estimation algorithms [27,43] on the NYU Depth v2 [3]
test split. As shown in Table 4, SEDiff consistently outperforms existing domain
adaptation-based depth estimation algorithms across all metrics in a quantitative
manner. Furthermore, qualitative evaluations in Fig. 5 show that SEDiff also
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Method Dataset Abs Rel Sq Rel RMSE RMSElog

T2Net [43] DS 0.419 4.802 9.870 0.660
3D-PL [40] DS 0.243 3.491 9.551 0.307

SEDiff (ours) DS 0.193 2.295 8.363 0.250
T2Net [43] DDAD 0.475 5.591 10.474 0.731
3D-PL [40] DDAD 0.220 2.564 10.348 0.315

SEDiff (ours) DDAD 0.216 2.449 10.048 0.302

Table 5: Quantitative results on unseen
dataset, i.e., DrivingStereo (DS) [39] , and
DDAD [12]

RGB Ground Truth T2Net 3D-PL SEDiff

Fig. 6: Depth prediction results on Driv-
ingStereo [39] (upper row) and DDAD [12]
(lower row).

produces visually superior depth predictions, closely resembling ground truth
depth labels.

5.6 Domain Generalization

We also evaluate the domain generalization performance of SEDiff in compar-
ison to competitive domain-adaptive depth estimation approaches [40, 43] on
unseen datasets, i.e., DrivingStereo dataset [39] and DDAD dataset [12]. No-
tably, we refrain from training or fine-tuning SEDiff and its competitive methods
on these datasets, opting instead to directly evaluate models trained solely on
vKITTI and KITTI. As illustrated in Table 5 and Fig. 6, our proposed SEDiff
demonstrates superior performance over state-of-the-art domain adaptive depth
estimation methods on unseen datasets, both qualitatively and quantitatively,
despite encountering a larger domain gap.

6 Conclusion

In this paper, we introduce SEDiff, which firstly integrates diffusion probabilistic
models into the domain-adaptive depth estimation framework to extract domain-
invariant structural content, mitigating the domain shift between synthetic envi-
ronments and the real-world. Additionally, SEDiff enables depth-consistent style
transfer to estimate the attention map while minimizing the domain gap. Our
experiments demonstrate SEDiff’s effectiveness over state-of-the-art methods in
both indoor and outdoor scenarios, highlighting its potential across various com-
puter vision applications.
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