
Online Temporal Action Localization with
Memory-Augmented Transformer

Supplementary Material

Youngkil Song∗ Dongkeun Kim∗ Minsu Cho Suha Kwak

Pohang University of Science and Technology (POSTECH), South Korea
{songyk,kdk1563,mscho,suha.kwak}@postech.ac.kr

https://cvlab.postech.ac.kr/research/MATR/

This supplementary material provides contents omitted in the main paper
due to the page limit. In Sec. A, we provide further explanation regarding the
2D temporal positional encoding used in the start decoder of the instance de-
coding module. Sec. B presents the memory queue update procedure. In Sec. C,
we analyze AP scores for each class in the THUMOS14 and MUSES datasets.
Sec. D describes additional experimental details including hyperparameter set-
tings. Sec. E presents in-depth analysis of our framework including the effects
of the hyperparameters and the post-processing. Sec. F gives more qualitative
results of our model on the THUMOS14 dataset.

A About 2D Temporal Positional Encoding

In this section, we provide a more detailed explanation regarding the implemen-
tation of the 2D temporal positional encoding, which is applied to the key for
the cross-attention layers of the start decoder in the instance decoding mod-
ule. As explained in Sec. 3.3, the key for the cross-attention layers consists of
the memory queue concatenated with the current segment features. Therefore,
the 2D temporal positional encoding should encompasses the relative position
of segments within the memory queue and the relative position of the frames
within the segment. Note that the relative position is defined with respect to the
current frame and the position of the current segment features it belongs to.

To be specific, we explain a practical example of illustrating the application
of the 2D temporal positional encoding. Consider a scenario where the memory
queue stores 4 segment features, and each segment is composed of 4 frames. If
the indices of the segments stored in the memory queue are 3, 4, 9, and 10, with
the current segment indexed as 13, then the indices for the memory features
of the start decoder are 3, 4, 9, 10 and 13. In this case, the relative segment
positions from the current segment are 10, 9, 4, 3, and 0, respectively, while the
relative frame positions within each segment are 3, 2, 1, and 0. These two relative
positions are encoded using sinusoidal positional encoding of dimension D/2
each, then concatenated to obtain the D-dimensional positional encoding. By
separating the relative segment positions from relative frame positions, the 2D
* Equal contribution.

https://cvlab.postech.ac.kr/research/MATR/


2 Youngkil Song, Dongkeun Kim, Minsu Cho, and Suha Kwak

Algorithm 1: Pseudocode for memory update.
1 class UpdateMemQueue():
2 self.mem_queue = [] # cached memory queue
3 self.max_len # max memory len
4
5 def forward(self, segment, flag): # update memory queue
6 if flag == True:
7 self.mem_queue.append(segment)
8 if len(self.mem_queue) > self.max_len:
9 self.mem_queue.pop_first()

10
11 if training == True: # select flag type
12 flag = gt_flag
13 else:
14 flag_prob = flag_token.sigmoid()
15 if flag_prob > flag_threshold:
16 flag = True
17 else:
18 flag = False
19
20 if isNewVideo: # reset update module when a new video starts
21 update_mem = UpdateMemQueue()
22
23 update_mem(segment, flag) # update memory queue

temporal positional encoding becomes more efficient in representing positional
encodings for a large number of frames.

B Algorithm of Memory Update Module

We present the details of memory update procedure in Algorithm 1. The al-
gorithm provides pseudocode of an “UpdateMemQueue” function and its usage
in the memory queue update procedure. The input parameters of the function
are segment and flag (line 23), where segment refers to the current segment
features and flag is the Boolean flag to determine whether the current segment
should be stored in the memory queue or not. During training, the ground-truth
flag is used (line 11-12). During inference, the flag is true if the flag probability
exceeds the flag threshold, and false otherwise (line 13-18). Note that the func-
tion is reinitialized at the start of each new video to prevent the mixing of the
memory queues across different videos (line 20-21).

C Analysis of AP scores of MATR

Fig. S1 and Fig. S2 show the Average Precision (AP) scores of MATR on the
THUMOS14 [2] and MUSES dataset [6]. In the THUMOS14 dataset, action



Online Temporal Action Localization with Memory-Augmented Transformer 3

Fig. S1: The Average Precision (AP) for each class at IoU threshold = 0.5 on the
THUMOS14 dataset.

Fig. S2: The Average Precision (AP) for each class at IoU threshold = 0.5 on the
MUSES dataset.



4 Youngkil Song, Dongkeun Kim, Minsu Cho, and Suha Kwak

classes Long Jump, Pole Vault, and Javelin Throw show the highest perfor-
mance, while action classes Cricket Shot and Billiards show the lowest AP. In
the MUSES dataset, the Conversation class has the highest AP of 48.7, while
Singing is measured with the lowest AP of 0.3. Both datasets encompass human-
centric action classes, resulting in small differences between action classes and
making it challenging to classify different action classes, requiring fine-grained
classification. Specifically, the MUSES dataset has confusing action classes such
as quarrel and fight, conversation and telephone conversation.

D Experimental Details

Hyperparameters. We use a frozen two-stream TSN [9] pretrained on Kinet-
ics [1] to extract RGB and flow features for THUMOS14, and an I3D [1] trained
on Kinetics [1] utilizing only RGB features for MUSES, following previous On-
TAL work [3, 4, 8]. The segment size Ls is set to 64 in THUMOS14 and 75
in MUSES. The dimension of the segment feature is set to D = 1024 for both
datasets. For the memory-augmented video encoder, we stack 3 Transformer lay-
ers with 8 attention heads for both datasets. The flag threshold θ is set to 0.5.
For the instance decoding module, we stack 5 Transformer layers with 4 atten-
tion heads for both datasets. The number of the class query and the boundary
query N = 10 for THUMOS14 and N = 6 for MUSES. We set the online NMS
threshold used for post-processing to 0.3. The memory size Lm is set to 7 for
THUMOS14, while 15 for MUSES. For the prediction heads, Td and Ta are set
to 16.
Training. We train our model with Adam optimizer [5] with β1 = 0.9, β2 =
0.999, and ϵ = 1e−8 for 100 epochs on the THUMOS14 dataset and 30 epochs
on the MUSES dataset. We use the CosineAnnealing scheduler [7] with warmup
restarts which have the minimum learning rate of 1e−8, the maximum learning
rate of 1e−5, Tcycle = 10, Tup = 3, and γ = 0.9, where Tcycle is the number
of epochs of one learning cycle, Tup is the number of up-scaling epochs of one
cycle, and γ is the decreasing ratio of the lrmax that decreases with each cycle.
The batch size is set to 64 for THUMOS14, while 75 for MUSES. The focal loss
coefficient is α = 0.25 and γ = 2 for THUMOS14 and α = 1 and γ = 5 for
MUSES. All loss coefficients are set to 1.

E Additional Experiments

Analysis of the number of instance queries. In Table S1, we investigate the
effects of the number of instance queries N in the instance decoding module. The
performance tends to decrease with the number of instance queries in general,
the optimal result is gained when N = 10. Note that 10 is the smallest possible
N , since N should be greater than or equal to the maximum number of action
instances that appear within the specified range [t − Td + 1, t + Ta], where Td

refers to the size of detection regions before the current timestamp t and Ta

refers to the size of anticipation regions after the current timestamp t.



Online Temporal Action Localization with Memory-Augmented Transformer 5

Table S1: Effects of the number of the instance queries N of the instance decoding
module on the THUMOS14 dataset.

N 0.3 0.4 0.5 0.6 0.7 Average
10 (Ours) 70.3 62.7 52.1 38.6 23.7 49.5
20 66.6 61.0 51.4 37.3 23.1 47.9
30 64.8 59.4 48.8 35.9 21.1 46.0

Table S2: Performance analysis according to the NMS threshold on the THUMOS14
dataset.

NMS threshold 0.3 0.4 0.5 0.6 0.7 Average
0.1 68.7 61.1 50.4 37.3 23.7 48.2
0.2 69.8 61.9 51.3 37.9 23.4 48.9
0.3 (Ours) 70.3 62.7 52.1 38.6 23.7 49.5
0.4 69.6 62.3 52.3 38.5 23.4 49.2
0.5 67.8 61.0 51.6 38.6 23.7 48.5
0.6 66.2 60.0 51.0 38.9 24.6 48.1
0.7 62.6 57.0 49.0 37.9 24.4 46.2

Analysis of the post-processing. Table S2 summarizes the effects of the NMS
post-processing. As explained in Sec. 3.4 of the main paper, we adopt two NMS
post-processing for MATR. One is NMS among the action proposals generated at
the current timestamp, and the other is NMS among the highly overlapped action
proposals generated from the past. The NMS threshold in Table S2 represents
the tIoU threshold used by the both NMS post-processing. Action instances
surpassing the tIoU threshold are considered as the same instances and removed.
Our model performs robustly across various NMS thresholds, the optimal result
is obtained when the threshold is 0.3.
Analysis of the Td and Ta. As presented in Table S3, we show the effects of
the hyperparameters Td and Ta, where Td refers to the size of detection regions
before the current timestamp t and Ta refers to the size of anticipation regions
after the current timestamp t. As described in the Sec. 3.5 of the main paper,
MATR is trained to predict action instances with action end time is in the range
[t− Td + 1, t+ Ta]. Comparing A with B and D, E with F, even with the same
total range length Td+Ta, predicting action instances that end after the current
timestamp (em > t) is very effective. In the comparison between B, C, and D with
the same Td, mAP increases as Ta increases. The best performance is achieved
when both Td and Ta is set to 16. Therefore, we adopt the hyperparameter
setting D for the final model.

F More Qualitative Results

Fig. S4 visualizes the predictions of MATR and OAT-OSN [4]. The results
demonstrate that MATR is able to localize action instances better than exist-
ing On-TAL methods. In Fig. S4 (a) and (b), MATR accurately predicting the



6 Youngkil Song, Dongkeun Kim, Minsu Cho, and Suha Kwak

Table S3: Analysis of the detection region size Td and the anticipation region size Ta

on the THUMOS14 dataset.

Method Td Ta 0.3 0.4 0.5 0.6 0.7 Average
A 8 8 67.5 62.1 52.1 38.5 23.1 48.7
B 16 0 60.5 54.1 41.5 29.5 15.4 40.2
C 16 8 67.4 61.8 51.0 37.8 24.1 48.4
D (Ours) 16 16 70.3 62.7 52.1 38.6 23.7 49.5
E 24 8 67.3 60.9 51.7 39.1 24.6 48.7
F 32 0 63.2 54.9 43.1 28.9 17.4 41.5

59.6 65.5Clean and Jerk 69.3 75.5 77.8 84.7Clean and Jerk Clean and Jerk

Mem 
Size=7

Clean and Jerk
58.5

64.8

Mem 
Size=15

64.8
Clean and Jerk

68.4

75.4

75.4
Clean and Jerk

76.8 84.6

84.8

Clean and Jerk
59.0

65.6

65.4
Clean and Jerk

68.0

76.2

76.1
Clean and Jerk

77.6 85.0

85.0

Clean and Jerk
58.7

89.4

88.2

Ground Truth Time (Sec)True Positive
Generated Time

False Positive

Fig. S3: Qualitative results of MATR with different memory sizes on the THUMOS14.

action end time by avoiding uncertain future predictions since MATR removes
action instances where the predicted end time is beyond the current timestamp.
In Fig. S4 (c), MATR predicts instances of different classes having similar time
intervals, such as Cliff Diving and Diving. In Fig. S4 (d), MATR detects the
second Frisbee Catch action, which is challenging to detect solely based on the
visual features from the current segment, by leveraging information regarding
the previous Frisbee Catch action instances stored in the memory queue as long-
term context. In Fig. S4 (e), MATR operates robustly even on instances that
are prone to being segmented into multiple parts.
Limitations As shown in Fig. S3, when the memory queue contains multiple
action instances, there is a risk of action instances being matched with incorrect
start points. When the memory sizes are both 7 and 15, the model predicts
accurate actions and intervals for all three ground-truth instances. However, with
a memory size of 15, the memory queue contain more start timestamps with
similar appearances, leading to additional instance being incorrectly matched
with incorrect start timestamp.



Online Temporal Action Localization with Memory-Augmented Transformer 7

120.8 128.3Javelin Throw

OAT-OSN Javelin Throw120.5 127.7
126

MATR Javelin Throw120.8 128.4
128.2

OAT-OSN Cliff Diving15.5
21.6

18.8

MATR

Diving
20.0

20.2

15.4 20.6Cliff Diving & Diving

Cliff Diving14.9
20.7

21.0

15.0

16.7 Frisbee Catch 27.5 29.7 Frisbee Catch 38.4

OAT-OSN Frisbee Catch
13.7

26.9
22.2

MATR Frisbee Catch18.2
27.2

27.4
Frisbee Catch31.0

40.9

41.0

12.5 Tennis Swing 21.5 25.0 Tennis Swing 32.9

OAT-
OSN

Tennis 
Swing11.8

15.2

MATR Tennis Swing14.2
21.4

21.4

14.0
Tennis 
Swing14.1

16.8
16.2

Tennis Swing
15.0

19.0

20.3

ShotPut
14.8

23.8

20.4

Tennis Swing
25.7

30.8

31.3

ShotPut
25.7

35.4

31.7

Tennis Swing25.1
32.3

32.4

(a)

(c)

(d)

(e)

Ground Truth Time (Sec)
True Positive

Generated Time
False Positive

201.4 212.6

OAT-OSN Clean and Jerk

Clean and Jerk

199.6
216.9211.4

MATR Clean and Jerk200.4
213.2
213.2

(b)

Fig. S4: More qualitative results on the THUMOS14 dataset. Generated time is the
timestamp when the predicted instance is generated.



8 Youngkil Song, Dongkeun Kim, Minsu Cho, and Suha Kwak

References

1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the ki-
netics dataset. In: Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2017)

2. Jiang, Y.G., Liu, J., Roshan Zamir, A., Toderici, G., Laptev, I., Shah, M., Suk-
thankar, R.: THUMOS challenge: Action recognition with a large number of classes.
http://crcv.ucf.edu/THUMOS14/ (2014)

3. Kang, H., Kim, K., Ko, Y., Kim, S.J.: Cag-qil: Context-aware actionness grouping
via q imitation learning for online temporal action localization. In: Proc. IEEE
International Conference on Computer Vision (ICCV). pp. 13729–13738 (2021)

4. Kim, Y.H., Kang, H., Kim, S.J.: A sliding window scheme for online temporal action
localization. In: Proc. European Conference on Computer Vision (ECCV). pp. 653–
669. Springer (2022)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proc. Inter-
national Conference on Learning Representations (ICLR) (2015)

6. Liu, X., Hu, Y., Bai, S., Ding, F., Bai, X., Torr, P.H.: Multi-shot temporal event
localization: a benchmark. In: Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 12596–12606 (2021)

7. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

8. Tang, T.N., Park, J., Kim, K., Sohn, K.: Simon: A simple framework for online
temporal action localization. arXiv preprint arXiv:2211.04905 (2022)

9. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal
segment networks: Towards good practices for deep action recognition. In: Proc.
European Conference on Computer Vision (ECCV). pp. 20–36. Springer (2016)

http://crcv.ucf.edu/THUMOS14/

	Online Temporal Action Localization with Memory-Augmented Transformer 0.3em Supplementary Material

