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Abstract. Online temporal action localization (On-TAL) is the task of
identifying multiple action instances given a streaming video. Since ex-
isting methods take as input only a video segment of fixed size per itera-
tion, they are limited in considering long-term context and require tun-
ing the segment size carefully. To overcome these limitations, we propose
memory-augmented transformer (MATR). MATR utilizes the memory
queue that selectively preserves the past segment features, allowing to
leverage long-term context for inference. We also propose a novel action
localization method that observes the current input segment to predict
the end time of the ongoing action and accesses the memory queue to
estimate the start time of the action. Our method outperformed existing
methods on two datasets, THUMOS14 and MUSES, surpassing not only
TAL methods in the online setting but also some offline TAL methods.

Keywords: Temporal action localization · Online video understanding

1 Introduction

Today, video is one of the most popular types of media, with tons of videos
being created and uploaded to online platforms like YouTube and TikTok every
second. As a result, the demand for video understanding is growing rapidly. In
particular, dealing with untrimmed videos is a key to practical video understand-
ing since most videos in the real world are not trimmed for individual events in
advance. Temporal action localization (TAL) has been extensively studied in
this context [10, 17, 21, 30, 38, 39, 43–45, 47, 49], with the aim of detecting each
action instance in the input untrimmed video by predicting its start time, end
time, and action class.

Recently, online TAL (On-TAL), i.e., TAL for streaming video [14], has
gained increasing attention thanks to its potential applications in video surveil-
lance, sports video analysis, and video summarization. Unlike TAL which de-
mands the entire video as input, On-TAL aims to detect action instances using
only input frames observed so far in an online manner. Moreover, once action
instances are predicted, it is not allowed to modify the results afterward.
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Fig. 1: A conceptual illustration of our model. Our model selectively stores information
about previously occurred actions in the memory queue from streaming video. When
the end of the action is detected in the current input segment, the model retrieves
information from the memory queue to locate the start of the action.

A straightforward solution to this challenging task is to first conduct on-
line action detection (OAD) [7,35], i.e., frame-by-frame action classification for
streaming video, and then build action instances by aggregating the frame-wise
action predictions. In this sense, earlier methods for On-TAL [14,31] follow this
approach by applying OAD and refining per-frame predictions using past obser-
vations. However, this OAD-based approach exploits only frame-level supervi-
sion for training, which is not optimal because On-TAL aims to predict action
instances in the form of time intervals. To alleviate this issue, online anchor
transformer (OAT) has been recently proposed [15], which adopts sliding win-
dow approach and anchor-based method to utilize instance-level supervision.
Although OAT improved performance remarkably, however, it still has several
drawbacks: Since it takes a fixed-size segment of input video at each iteration
and does not consider long-term contexts, its capability is limited in detecting
long action instances, and its performance is sensitive to hyperparameters like
the size of the input segment.

To resolve the above issues, we propose a new end-to-end architecture for On-
TAL, dubbed memory-augmented Transformer (MATR). At the heart of MATR
lies in memory queue, which selectively stores past segment features so that the
model exploits long-term context for inference. Thanks to the memory queue
that contains long-term context and reduces dependence on the segment size,
our model accurately localizes even long-term action instances without the need
for careful hyperparameter tuning for each dataset.

Moreover, we propose a novel approach to action instance localization using
the memory queue as illustrated in Fig. 1. First, it detects the end of an action
using the current segment features and then scans past segment features in the
memory queue to find the action start corresponding to the detected action end.
To achieve this, we adopt two Transformer decoders: one for end detection and
the other for start detection. Specifically, we adopt learnable queries as input to
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the decoders so that each of them learns to localize action boundaries through
the attention mechanism of Transformer [8,32]. In addition, motivated by recent
advances on object detection [6, 37], MATR decouples action classification and
localization to further improve the performance. This is realized in MATR by
using distinct queries for the two subtasks.

The proposed method is evaluated on two datasets, THUMOS14 [13] and
MUSES [22]. Our model achieves the state of the art on both datasets in the
online TAL setting. In addition, surprisingly, it is also comparable to existing
offline TAL methods although it does not employ offline non-maximum suppres-
sion (NMS). In summary, the contribution of this paper is three-fold:

• We propose MATR, a new end-to-end architecture for On-TAL, leveraging
memory queue to utilize long-term context and enabling precise localization
of action instances with less dependence on dataset-specific hyperparameter.

• We introduce a new action instance localization method that first identifies
action end using the input segments and scans past information in the mem-
ory queue to find the action start. Moreover, our method adopts distinct
queries to separate information for action classification and localization.

• Our method outperformed the existing On-TAL methods on the two bench-
marks. Also, extensive ablation studies demonstrate the contribution of each
component of the proposed method.

2 Related Work

Temporal Action Localization. Temporal action localization (TAL) [5,10,17,
21,23,30,38,39,43–45,47,49] which identifies action instances in time and classi-
fying their actions, has given much attention on the video research community.
Earlier attempts employ two-stage approaches that first generate action propos-
als, then classify action class and refine action boundaries [1,9,12,18,19,24,47].
Recent studies have primarily dealt with widening the range of video context
through convolutional neural networks [28], graph neural networks [39,43], Gaus-
sian kernel [25], and utilizing global context [49]. To extend temporal context and
enable end-to-end TAL, Transformer [8,32] has recently been adopted [6,23,44].
These approaches incorporate temporal deformable attention module [23] and
multi-scale features [44] to improve computational efficiency and performance.
Online Video Understanding. Online action detection (OAD), which classi-
fies action classes in a frame-wise manner, is first proposed by Geest et al . [7].
To incorporate long-term context, recurrent neural network [40] and Trans-
former [35] are utilized. These methods predict actions for future frames and
use this information to refine current frame predictions. Yang et al. [42] further
improve the performance by using category exemplars and capturing long-term
dependencies within a video segment. On the other hand, Shou et al . [29] pro-
poses online detection of action start (ODAS), which aims to detect action start
as early as possible. Gao et al . [11] further improves ODAS by adopting rein-
forcement learning.
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Online Temporal Action Localization. Towards practical event understand-
ing, online temporal action localization (On-TAL) has been proposed recently.
Kang et al . [14] first propose On-TAL, which localizes action boundaries and clas-
sifies action classes without accessing future frames and offline post-processing.
Earlier methods [14,31] adopt OAD framework to classify per-frame action class
and group them into action instances to solve On-TAL. Specifically, Kang et
al . [14] utilize Markov decision process to aware prior contexts to group per-
frame predictions. SimOn [31] is proposed as an end-to-end On-TAL method
that leverages past visual context and action probabilities for accurate action
prediction at the current frame. Kim et al . [15] propose a sliding window scheme
and an anchor-based method that adopts Transformer [32] for On-TAL. How-
ever, it only uses a fixed input segment which is highly dependent on the action
length distribution of each dataset. Unlike the previous methods, we utilize a
memory queue for long-term context, which also reduces the dependence on the
input segment size.
Difference between OAD and On-TAL. OAD [2,33, 35, 40–42,46] focus on
predicting action classes at the frame-level, which limits the ability to distin-
guish boundaries of overlapping actions. On the other hand, On-TAL [14,15,31]
predicts entire action instances rather than individual frames, enabling it to pre-
cisely identify the start and end times of actions, making it effective for appli-
cations requiring instance-level action understanding, like sports video analysis.
Using Memory for Video Understanding. Prior work in video understand-
ing employs memory to store contextual information, in the forms of long-term
and short-term memory [2, 33, 36, 41]: short-term memory captures fine details,
and long-term memory stores compressed information of past contexts. Specifi-
cally, Wang et al . [33] divides long-term memory into several groups and com-
presses each group into a single vector. Stream Buffer [2] gradually reduces tem-
poral dimensions of the memory using a compression module. However, unlike
video classification tasks such as action recognition [36] and OAD [2,33, 41, 46],
which requires to store representative information of past frames in the memory
for classifying the action of the current frame, TAL needs to preserve the tem-
poral positional information of past frames in the memory to accurately predict
the exact time. In that sense, MATR preserves temporal information in mem-
ory to accurately localize actions and effectively stores information by using flag
tokens. A comparison with the OAD memory modules is shown in Table 4.

3 Proposed Method

Consider an untrimmed video V = {vi}Ti=1 with T frames and M action in-
stances Ψ = {(sm, em, cm)}Mm=1, where each instance is represented by its start
time sm, end time em and action class cm. Unlike temporal action localization
(TAL), which allows a model to use whole video sequence as input, online tempo-
ral action localization (On-TAL) forces a model to predict action instances using
only input frames seen until the current timestamp. Note that action instances
predicted at previous iterations cannot be modified or deleted afterwards.
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Fig. 2: Overall architecture of MATR. MATR consists of four parts: feature extractor,
memory-augmented video encoder, instance decoding module, and prediction heads.

As shown in Fig. 2, MATR consists of four parts: feature extractor, memory-
augmented video encoder, instance decoding module, and prediction heads. In
line with previous research, the current segment of the input streaming video
is given as a unit input, and its frame-level features, referred to as segment
features, are extracted by a video backbone network and a linear projection
layer (Sec. 3.1). The segment features are then fed to the memory-augmented
video encoder, which encodes temporal context between frames in the current
segment and stores the segment features into the memory (Sec. 3.2). The instance
decoding module localizes action instances via two Transformer decoders: the
end decoder and the start decoder. Specifically, the end decoder references the
encoded segment features to locate the action end around the current time, and
then the start decoder refers to the memory queue to find the action start based
on the past information stored in the memory queue. Queries for each instance
consist of a class query for action classification and a boundary query for action
localization (Sec. 3.3). The outputs of the instance decoding module are used
as inputs to the prediction heads, which consist of end prediction head, start
prediction head, and action classification head (Sec. 3.4). The entire model is
trained in an end-to-end manner (Sec. 3.5).

3.1 Feature Extractor

Given a segment comprising Ls consecutive video frames as input, a pretrained
backbone [4, 34] followed by a linear projection layer extracts the segment fea-
tures Xt = {xi}tt−Ls+1 ∈ RLs×D for each frame within the segment, following
previous work [14,15]. Inspired by Kim et al . [15], MATR employs a sliding win-
dow scheme, which predicts multiple action instances by moving frame by frame
along the temporal axis. Note that the window size is the input segment size.
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3.2 Memory-Augmented Video Encoder

At each time step, the input segment features are fed to two modules of the
memory-augmented video encoder, the segment encoder and the memory update
module. The segment encoder encodes the temporal context across input segment
features, while the memory update module selectively stores the segment features
and updates the memory queue.
Segment Encoder. The segment encoder is a standard Transformer encoder
composed of self-attention layers and a feed forward network (FFN). The combi-
nation of segment features and a learnable flag token is fed into the encoder, and
transformed to queries, keys, and values for self-attention. Sinusoidal positional
encoding Spos ∈ R(Ls+1)×D is added to the queries and keys. Among the out-
put embeddings, the encoded flag token is fed into the memory update module
and the encoded segment features that integrate temporal context across input
frames are used as input to the end decoder.
Memory Update Module. In an online setting, where an input is a streaming
video, efficiently storing information of past frames and accessing it effectively
is crucial for detecting action instances, in particular those of long-term actions
whose temporal extents are beyond the size of input segments. To this end, we
adopt the memory queue for storing information of past input segments in a first-
in-first-out (FIFO) manner. Additionally, we propose an efficient memory update
method employing the flag token. When the input segment features pass through
the segment encoder, the flag token is concatenated into the input segment
features and then employed in the flag prediction head. It is trained to predict
[FLAG], which identifies whether an input segment is relevant to action instances,
so that only relevant segments are stored in the memory. [FLAG] = 1 when there
are overlapping frames between the input segment and action instances, and 0
otherwise. During training, the ground-truth [FLAG] is utilized. During inference,
[FLAG] = 1 if sigmoid(ĝ) > θ where ĝ is the output logit of the flag prediction
head and θ is a predefined threshold, and 0 otherwise. The input segment feature
is added to the memory queue when [FLAG] = 1 and discards it when [FLAG] = 0.
If the memory queue is full, the oldest segment feature is purged.

3.3 Instance Decoding Module

The instance decoding module localizes and classifies action instances by lever-
aging the encoded segment features and the memory queue through the atten-
tion mechanism of Transformer. Given the encoded segment features that have
short-term temporal contexts across input segment and the memory queue that
stores long-term contexts for actions that are potentially ongoing, a set of 2N
instance queries Q = {Qclass;Qbound} ∈ R2N×D is trained to generate N ac-
tion instances for each input segment. Half of these queries pertain to predicting
the action class (class query; Qclass ∈ RN×D), while the other half is used for
predicting the start and end timestamps (boundary query; Qbound ∈ RN×D).
The class and boundary query pairs for the same instance share the same posi-
tional embedding Epos ∈ RN×D to accurately identify and differentiate between
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Fig. 3: Detailed architecture of the instance decoding module.

instances; Q̃ = {Qclass+Epos;Qbound+Epos}. Unlike the previous Transformer-
based On-TAL method [15] that predicts start and end offset for each instance
simultaneously, our method employs separate Transformer decoders for predict-
ing start offset and end offset. As shown in Fig. 3, the start decoder and end
decoders share the same architecture but utilizes different information to predict
action start and action end, respectively.
End Decoder. Given the encoded segment features, instance queries Q is
trained to generate the output embeddings used for detecting action end near
the current timestamp. To this end, we adopt a Transformer [3] composed of
multi-head self-attention layers, multi-head cross-attention layers, and FFNs.
The detailed architecture is illustrated in Fig. 3. The outputs of the end de-
coder, which consist of end boundary embeddings and class embeddings, are
then used as inputs to the start decoder and the prediction heads.
Start Decoder. The start decoder takes the output embeddings from the end
decoder and locates the corresponding action start by utilizing the memory
queue. First, the memory queue is concatenated with the current segment fea-
tures. The concatenated memory features are used as long-term context in the
start decoder. Then, 2D temporal positional encodings are added to the memory
features, and the results are used as the key and value for the cross-attention
layers of the start decoder. The overall architecture of the start decoder is the
same as the end decoder (Fig. 3), but it uses the memory features rather than
the encoded segment features. The output embeddings of the start decoder, start
boundary embeddings and class embeddings, are used as inputs to the start pre-
diction and the action classification head, respectively.

Moreover, we introduce two techniques to efficiently and effectively utilize the
memory queue. First, we conduct a 50% uniform sampling to the memory fea-
tures which enables efficient use of memory since adjacent frames contain similar
information. Second, to expand the scope of positional encoding for streaming
video, whose duration is unpredictable, we separate the temporal positional en-
coding into the two parts: relative segment position and relative frame position.
A relative segment position is the position of a segment within the memory rela-
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tive to the current segment. Meanwhile, a relative frame position is the position
of a frame relative to the most recent frame within the same segment.

3.4 Prediction Heads

To generate N action instances {(ŝi, êi, ĉi)}Ni=1 from the output of the instance
decoding module, we use three prediction heads, which are end prediction head,
start prediction head, and action classification head. Each of the prediction heads
is composed of a 2-layer FFN.
End Prediction Head. The end prediction head estimates the offset between
the end of the target action and the current timestamp. The boundary embed-
dings from the end decoder are fed to the 2-layer FFN, which in turn estimates
the end offset {ûi}Ni=1 ∈ RN .
Start Prediction Head. The start prediction head estimates the offset be-
tween the start of the target action and the current timestamp. Unlike the end
prediction, which finds the end offset around the input segment, the start predic-
tion needs to perform offset regression over a relatively wider range. To narrow
down the scope of the start offset regression, we divide the time horizon into
Lm + 2 regions: the region preceding the coverage of memory, Lm regions cov-
ered by the memory, and the region corresponding to the current input segment.
In that sense, the start prediction head consists of the region classification and
the offset regression, each composed of a 2-layer FFN. They take the bound-
ary embeddings from the start decoder as input to predict the start time. The
region classification identifies the regions to which the start time is assigned,
represented as {ôi|ôi = argmax(r̂i)}Ni=1 ∈ RN . Here, {r̂i}Ni=1 ∈ RN×(Lm+2) are
the output logits from the region classification head. Following this, the offset
regression head is utilized to estimate the offset within the regions, denoted as
{v̂i}Ni=1 ∈ RN×(Lm+2). Note that the start offset v̂i is calculated for all Lm + 2
regions, and the offset from the identified region {v̂i(ôi)}Ni=1 ∈ RN is used in
inference. By combining start classification result ôi and start regression result
v̂i(ôi), the start time is predicted. The effectiveness of the proposed start pre-
diction head is validated in Table 5.
Action Classification Head. For action class prediction, we utilize the class
embeddings from both the end decoder and the start decoder. These embed-
dings are concatenated and fed into the action classification head to derive class
probabilities {p̂i}Ni=1 ∈ RN×(C+1), where C is the number of action class.
Action Instance Prediction. Finally, our model makes N action proposals
{(ŝi, êi, ĉi)}Ni=1 at time t by

ŝi = t− (ôi + v̂i(ôi))× Ls, (1)
êi = t+ ûi × Ls, (2)
ĉi = argmax(p̂i), (3)

where Ls is the segment length. Since the sliding window scheme generates
N action proposals at each timestamp, post-processing is crucial for perfor-
mance improvement by removing redundant or overlapped action instances.
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Non-maximum suppression (NMS) is applied to the action proposals at each
timestamp, subsequently removing those highly overlapped with the proposals
generated from the past. To prevent more reliable prediction made in the fu-
ture from being removed, instances where the predicted end time is beyond the
current timestamp, t < êi, are also removed.

3.5 Training Objective

At timestamp t, the model is trained to detect action instances whose end times
are in the range [t−Td+1, t+Ta], where Td and Ta are hyperparameters. Then,
hungarian algorithm matches the action proposals and the ground-truth action
instances with the lowest matching cost. The matching cost of the ground-truth
group i and the proposal σ(i) is given by:

Ci,σ(i) = p̂σ(i)(yi) + IoU(bi, b̂σ(i)), (4)

where σ is the permutation of N action proposals, p̂i is the class probabilities
of the i-th proposal, bi = {si, ei} is the ground-truth action boundary, and
b̂i = {ŝi, êi} is the predicted action boundary. We adopt the focal loss [20] for
the action classification, the cross entropy loss for the start region classification,
the ℓ1 loss for both the start offset regression and the end offset regression.
The action classification loss Lclass, the start prediction loss Lstart, and the end
prediction loss Lend are defined as follow:

Lclass =

N∑
i=1

FL(p̂i, yi), (5)

Lstart =

Nmatch∑
i=1

{CE(Softmax(r̂i), ri) + |v̂i(ôi)− vi|}, (6)

Lend =

Nmatch∑
i=1

|ûi − ui|, (7)

where yi, ri, vi, ui is the ground-truth action class, start region, start offset, and
end offset, respectively.

To provide instance-level supervision and facilitate the connection between
start and end time prediction, we employ the DIoU loss [48] following Action-
Former [44]:

Ldiou =

Nmatch∑
i=1

1− IoU(b̂i, bi) +
ρ2(ĉi, ci)

d2i
, (8)

where ρ(·, ·) is the Euclidean distance between two points, ĉi and ci are the center
of the proposal and ground-truth instance, and di is the smallest enclosing 1-dim
box length.

To train the memory update module in an end-to-end manner, we employ
the flag loss for training the flag prediction head:

Lflag = BCE(Sigmoid(ĝ), g), (9)
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where ĝ and g is the predicted logit of flag token and ground-truth [FLAG] re-
spectively.

Our model is trained with six losses simultaneously in an end-to-end manner.
The total loss is calculated as follows:

L = Lclass + Lstart + Lend + Ldiou + Lflag. (10)

Note that all loss coefficients are set to 1 and loss balancing is not required.

4 Experiments

4.1 Experimental Setting

Datasets. We evaluate our method and previous methods on two On-TAL
benchmarks: THUMOS14 [13] and MUSES [22]. THUMOS14 contains 200 videos
for training and 213 videos for testing with 20 action classes, while MUSES has
2,587 videos for training and 1,110 videos for testing with 25 action classes.
MUSES consists of multi-shot action instances, which makes action localization
more challenging.
Hyperparameters. We use a frozen two-stream TSN [34] pretrained on Kinet-
ics [4] to extract RGB and flow features for THUMOS14, and an I3D [4] trained
on Kinetics [4] utilizing only RGB features for MUSES, following previous On-
TAL work [14, 15, 31]. The segment size Ls is set to 64 in THUMOS14 and 75
in MUSES. The dimension of the segment feature is set to D = 1024 for both
datasets. For the memory-augmented video encoder, we stack 3 Transformer
layers with 8 attention heads for both datasets. The flag threshold θ is set to
0.5. The memory size Lm is set to 7 for THUMOS14, while 15 for MUSES. For
the instance decoding module, we stack 5 Transformer layers with 4 attention
heads for both datasets. The number of the class query and the boundary query
N = 10 for THUMOS14 and N = 6 for MUSES.
Training. During training, we use Adam optimizer [16], with the initial learning
rate of 1e−8 with CosineAnnealing scheduler [26]. The batch size is set to 64
for THUMOS14, while 75 for MUSES. The focal loss coefficient is α = 0.25 and
γ = 2 for THUMOS14 and α = 1 and γ = 5 for MUSES. All loss coefficients are
set to 1. More details are listed in the supplementary material (Sec. D).

4.2 Comparison with the State of the Art

We compare our method with previous online and offline TAL methods on
THUMOS14 and MUSES dataset. As presented in Table 1, our method out-
performs all previous On-TAL methods in both benchmarks by a substantial
margin: 4.9%p of average mAP in THUMOS14 and 0.7%p of average mAP in
MUSES. The results show that MATR utilizing the memory queue is more effec-
tive than previous OAD-based methods [14,31,33,46] and instance-level method
OAT-OSN [15]. We also evaluate two OAD methods utilizing memory [33,46] in
On-TAL setting by grouping their frame-level predictions into action instances.
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Table 1: Comparison with On-TAL methods on THUMOS14 and MUSES dataset.
The results are reported in mAP measure (%). ’*’ indicates that the result is validated
using the On-TAL ground truth from classification annotation.

Method THUMOS14 MUSES
backbone 0.3 0.4 0.5 0.6 0.7 Average backbone 0.3 0.4 0.5 0.6 0.7 Average

Offline TAL
G-TAD [39] TSN [34] 54.5 47.6 40.2 30.8 23.4 39.9 I3D [4] 19.1 14.8 11.1 7.4 4.7 11.4
ContextLoc [49] I3D 68.3 63.8 54.3 41.8 26.2 50.9 – – – – – – –
P-GCN [43] I3D 63.6 57.8 49.1 – – – I3D 19.9 17.1 13.1 9.7 5.4 13.0
MUSES [22] I3D 68.9 64.0 56.9 46.3 31.0 53.4 I3D 25.9 22.6 18.9 15.0 10.6 18.6
ActionFormer [44] I3D 82.1 77.8 71.0 59.4 43.9 66.8 – – – – – – –
TriDet [27] I3D 83.6 80.1 72.9 62.4 47.4 69.3 – – – – – – –
OAD-based Online TAL
TeSTra [46] TSN 35.6 29.2 21.4 13.4 7.6 21.4 – – – – – – –
MAT [33] I3D 36.0 27.5 19.2 12.3 6.4 20.3 – – – – – – –
CAG-QIL [14] TSN 44.7 37.6 29.8 21.9 14.5 29.7 I3D 8.5 6.5 4.2 2.8 1.9 4.8
SimOn [31] TSN 54.3 45.0 35.0 23.3 14.6 34.4 – – – – – – –
SimOn* [31] TSN 57.0 47.5 37.3 26.6 16.0 36.9 – – – – – – –
Instance-level Online TAL
OAT-Naive [15] TSN 57.6 50.6 43.0 30.0 15.7 39.4 I3D 20.3 16.6 12.9 7.7 3.6 12.2
OAT-OSN [15] TSN 63.0 56.7 47.1 36.3 20.0 44.6 I3D 22.1 18.5 14.2 8.9 4.7 13.7
MATR TSN 70.3 62.7 52.1 38.6 23.7 49.5 I3D 23.5 19.3 14.3 9.4 5.7 14.4

However, their performance is far lower than MATR, which verifies the effective-
ness of the proposed memory queue of MATR. We also compare our model with
several offline TAL methods. Although there is still a performance gap between
online and offline methods, our model achieves comparable performance to of-
fline methods, and even outperforms previous work [39,43]. The performance on
the MUSES dataset is lower compared to THUMOS14 and the reason is twofold:
(1) Action instances in MUSES are captured in multi-shots, making it challeng-
ing to detect action boundaries, and (2) there are confusing action classes such
as “quarrel” and “fight,” making action classification hard. These make MUSES
challenging and limit the upper-bound of performance on it.

4.3 Ablation Studies

We perform ablation studies on THUMOS14 and MUSES dataset to show the
effectiveness of the proposed modules.
Ablation on the Proposed Modules. In Table 2, we conduct an ablation
study to verify the effectiveness of each component of our model. In Table 2)(a),
focuses on the components of the memory-augmented video, both removing the
flag token and the segment encoder led to a performance drop. The results show
the efficacy of selectively storing the past information and the importance of tem-
poral context across the input segment. In Table 2(b), we use a single decoder
and predict both start and end at once, which results significant performance
drop, from 49.5 mAP to 42.7 mAP. The result demonstrates the contribution of
our new action localization method, using two separate decoders for the start
and the end prediction. We also ablate new query design, sampling the memory
for the start decoder, and positional embedding for instance queries. The results
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Table 2: Ablation of the proposed modules
on THUMOS14 dataset. The results are re-
ported in mAP measure (%).
Method 0.3 0.4 0.5 0.6 0.7 Average
Ours 70.3 62.7 52.1 38.6 23.7 49.5
(a) Memory-augmented video encoder
w/o flag token 67.3 61.0 50.1 36.5 22.3 47.4
w/o segment encoder 65.8 59.3 49.9 36.3 21.8 46.6
(b) Instance decoding module
single decoder 65.1 56.4 45.0 30.5 16.7 42.7
w/o splitting query 66.2 61.4 50.9 38.0 23.2 47.9
w/o sampling 66.1 59.6 50.6 39.9 22.5 47.2
w/o pos embedding 67.2 60.5 49.8 36.3 22.7 47.3
(c) Training objective
w/o DIoU loss 62.2 53.4 43.2 31.0 17.4 41.4

Table 3: Analysis of the maximum
length of the memory queue.

Memory size 0.3 0.4 0.5 0.6 0.7 Average
(a) THUMOS14 dataset
w/o mem 65.8 58.9 47.6 36.9 20.8 46.0
1 67.2 59.9 50.7 37.9 22.7 47.7
3 67.3 61.9 51.9 37.9 22.6 48.3
7 70.3 62.7 52.1 38.6 23.7 49.5
11 67.9 60.6 49.8 37.8 23.2 47.9
15 66.9 60.1 50.7 38.4 24.1 48.0
19 67.0 60.1 52.5 40.2 24.6 49.1
(b) MUSES dataset
w/o mem 22.3 17.6 13.1 9.1 4.6 13.3
1 23.0 18.0 13.5 8.6 4.9 13.6
3 23.1 18.3 13.9 8.9 5.1 13.9
7 23.5 18.1 13.5 8.9 4.9 13.8
11 22.9 18.7 14.0 9.4 5.4 14.1
15 23.5 19.3 14.3 9.4 5.7 14.4
19 22.7 18.9 13.8 9.6 5.5 14.1

Table 4: Comparison between different memory modules on the THUMOS14.

Memory module Backbone Segment size Inference time fps Memory parameters Average mAP
MAT [33] TSN [34] 64 191.9ms 5.2 40.1M 46.9

E2E-LOAD [2] TSN 64 196.1ms 5.1 53.1M 47.9
MATR TSN 64 167.1ms 6.0 24.0M 49.5

show that all design choices of the proposed components are important for ac-
tion instance localization. Lastly, training our model without DIoU loss shows a
drastic performance drop, which demonstrates the importance of instance-level
supervision for On-TAL (Table 2(c)).
Impact of the Memory Queue Size. We conduct an ablation study on the
different memory queue sizes. As shown in Table 3, employing the memory queue
enhances the performance compared to the without memory case, and generally
the performance improves as the memory queue size increases. With an ade-
quately large memory queue size covering the top 99% of the instances in the
training split, such as 7 for the THUMOS14 and 5 for the MUSES, the model
shows robust performance and the performance is higher than the previous state-
of-the-art model [15]. The memory queue size of 7 and 15 shows the best on
THUMOS14 and MUSES, respectively.
Comparison of the proposed memory queue with OAD methods using
memory. We compare our memory module with previous memory modules from
OAD tasks [2, 33] by replacing the memory-augmented video encoder (Sec. 3.2)
of our model. For a fair comparison, hidden dimension of the attention blocks for
all methods is set to 1024. As shown in Table 4, MATR outperforms the existing
memory modules in terms of both mAP and space-time complexity. While exist-
ing memory modules use multiple attention blocks, our memory module consists
of a segment encoder and a flag prediction head, making it superior in terms of
parameters and inference speed.
Analysis of the Segment Size. As shown in Fig. 4, our model is less sensi-
tive to the input segment size, which should be carefully tuned across various
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Fig. 4: Average mAP (%) versus
the segment size in THUMOS14.
Red line represents the result of
our model and blue line represents
the result of OAT-OSN.

Table 5: Ablation on the start and the end pre-
diction heads. Reg and Cls refer to the offset re-
gression and the region classification respectively.

Start End 0.3 0.4 0.5 0.6 0.7 Average
Reg Reg 64.2 59.0 50.0 37.8 22.7 46.7

Reg + Cls Reg 70.3 62.7 52.1 38.6 23.7 49.5
Reg + Cls Reg + Cls 64.0 58.9 50.2 38.3 23.2 46.9

Table 6: Ablation on the memory compression
factor on the THUMOS14 dataset.
Compress factor 0.3 0.4 0.5 0.6 0.7 Average
None (Ours) 70.3 62.7 52.1 38.6 23.7 49.5
2 67.3 59.9 49.4 36.9 22.3 47.7
4 68.1 61.5 52.7 39.7 24.5 49.3
8 67.5 61.3 52.0 38.8 23.8 48.7

Table 7: Comparison of the inference time and # parameters on the THUMOS14.

Method Backbone Segment size Inference time fps # Parameters Average mAP
OAT-OSN [15] TSN [34] 64 163.7ms 6.1 128.7M 44.6

MATR TSN 64 167.1ms 6.0 192.8M 49.5
MATR TSN 16 53.8ms 18.6 192.8M 46.3

datasets. While the performance of OAT-OSN drops significantly from 44.6 mAP
to 25.8 mAP when the segment size is reduced from 64 to 8, the performance
drop of ours is only 9.1%p.
Analysis of Start and End Prediction Heads. We investigate various offset
prediction methods for the start prediction and the end prediction (Table 5). For
the first method, start offset regression without region classification, the offset
is normalized using the offset statistics from the training dataset. The second
approach, which adopts region classification and offset regression for the start
prediction, and only offset regression for the end prediction, exhibits the best
performance. The reason for performance drop when using region classification
for the end prediction is that frame-wise end classification is a complex problem,
adversely affects the performance.
Analysis of Memory Compression Factor. We also conduct an experiment
on efficiently storing input segment features in the memory by compressing them.
We utilize a 1D convolution layer to compress the number of segment features.
As shown in Table 6, 4× compression yields competitive results with efficient
memory usage. However, we decide not to use this method due to the efficient
utilization of memory already achieved through the flag token and avoid to use
additional hyperparameters that require optimization for each dataset.
Inference Time. As shown in Table 7, when using the same backbone and
the segment size, the inference time of MATR is almost equal to that of OAT-
OSN, yet its average mAP is significantly better. Moreover, by reducing the
segment length to 16, MATR outperforms OAT-OSN in terms of both mAP and
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Fig. 5: Qualitative results of MATR and OAT-OSN [15] on the THUMOS14. Generated
time is the timestamp when the predicted instance is generated.

the inference time. MATR uses more parameters due to the separation of the
decoder into the start decoder and the end decoders.

4.4 Qualitative Results

Fig. 5 illustrates the predictions of our model and OAT-OSN [15]. The results
show that MATR has the capability to efficiently detect action instances by
identifying intervals immediately after the current action ends. Additionally, the
results show that our model is able to classify and localize action instances more
precisely than OAT-OSN.

5 Conclusion

In this paper, we address online temporal action localization by introducing a
new model, MATR, which leverages the memory queue to exploit long-term
context. We also propose a new action instance localization method based on
Transformer, which separately identifies action starts and action ends. As a re-
sult, MATR not only surpasses existing online TAL methods but also demon-
strates comparable performance to offline TAL methods. The code base will be
open to the public to promote future research on On-TAL.
Limitations: When the memory queue contains multiple action instances, there
is a risk of action instances being matched with incorrect start points. Addi-
tionally, when storing the input segment into the memory queue, MATR only
considers whether the input segment is relevant to action instances but does
not leverage the relationship with the past context stored in the memory. To
address these issues, investigating a method to utilize the information stored in
the memory queue when storing the input segment features, could lead to more
effective memory storage and utilization.
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