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Abstract. Image restoration, encompassing tasks such as deblurring,
denoising, and super-resolution, remains a pivotal area in computer vi-
sion. However, efficiently addressing the spatially varying artifacts of
various low-quality images with local adaptiveness and handling their
degradations at different scales poses significant challenges. To efficiently
tackle these issues, we propose the novel Efficient Cascaded Multiscale
Adaptive (ECMA) Network. ECMA employs Local Adaptive Module,
LAM, which dynamically adjusts convolution kernels across local im-
age regions to efficiently handle varying artifacts. Thus, LAM addresses
the local adaptiveness challenge more efficiently than costlier mecha-
nisms like self-attention, due to its less computationally intensive convo-
lutions. To construct a basic ECMA block, three cascading LAMs with
convolution kernels from large to small sizes are employed to capture
features at different scales. This cascaded multiscale learning effectively
handles degradations at different scales, critical for diverse image restora-
tion tasks. Finally, ECMA blocks are stacked in a U-Net architecture to
build ECMA networks, which efficiently achieve both local adaptiveness
and multiscale processing. Experiments show ECMA’s high performance
and efficiency, achieving comparable or superior restoration performance
to state-of-the-art methods while reducing computational costs by 1.2×
to 9.7× across various image restoration tasks, e.g., image deblurring,
denoising and super-resolution.

Keywords: Image Deblurring · Image Denoising · Image Super-resolution,
Image Restoration

1 Introduction

Image restoration is a pivotal task within computer vision, encompassing a di-
verse array of subtasks with numerous applications [28, 33, 37]. These subtasks
include deblurring [15,37–39,58], denoising [1,28], and super-resolution [3,16,35,
36, 56], each playing a significant role in addressing real-world challenges. The
central objective across these subtasks is to recover a high-quality image from
an initial, degraded, and low-quality input, with implications across various do-
mains and applications [1, 3, 33,37,39].
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Fig. 1: Computation cost comparison of ECMA and corresponding state-of-the-art
methods of similar performance on various image restoration tasks.

Convolutional Neural Networks (CNNs) have emerged as prominent architec-
tures for image restoration, demonstrating impressive performance through hier-
archical feature extraction [19,45]. However, they exhibit certain limitations, no-
tably in local adaptiveness, multiscale processing, and computational efficiency.
Specifically, CNNs [20, 57, 60] use a single uniform convolution kernel across
all spatial regions in each layer, assuming spatial stationarity. This assumption
restricts the ability to effectively handle realistic artifacts that exhibit spatial
non-stationarity. Moreover, CNNs primarily focus on local feature processing at
a small scale. To gather pivotal contextual information from extensive neigh-
borhood regions for image restoration, CNNs often necessitate large convolution
kernels or deeper architectures, increasing computational costs. The advent of
transformer networks, such as SwinIR [25], Restormer [53], and GRL [24], has
alleviated some of the local adaptiveness challenges through their attention mod-
ules [13, 29], since features at different locations are aggregated differently de-
pending on their attention score with respect to other features. However, trans-
formers have not fully addressed issues of fine-grained feature processing and
efficiency. While transformers are capable of building long-range dependencies
to learn global coarse-grained features, they are less effective in capturing lo-
cal, detailed features [13, 51, 61]. Accordingly, they do not inherently consider
varying image degradation scales, thus do not effectively perform multiscale fea-
ture restoration, especially fine-grained features. The computation efficiency is
hindered by the quadratic computational complexity of the self-attention mod-
ules in transformers. Thus, the following issues remain challenging: how to ef-
ficiently achieve both local adaptiveness and multiscale feature processing in
image restoration.

To tackle this challenge, in this work, we introduce the Efficient Cascaded
Multiscale Adaptive (ECMA) network. ECMA first introduces an efficient Local
Adaptive Module, “LAM", whose convolution kernels can adapt across different
local image regions to handle varying degradations effectively. LAM efficiently
implements its local adaptive convolution by first using a standard convolution
to learn context from extensive neighboring regions, then using this context to
guide another convolution for adaptively processing local image regions. This
spatial adaptiveness effectively addresses variations in degradations across dif-
ferent regions in an image. Moreover, compared with expensive mechanisms like
self-attention, LAM achieves local adaptiveness more efficiently, since convolu-
tions are often more computationally cheap. Next, to build an ECMA block,



Efficient Cascaded Multiscale Adaptive Network for Image Restoration 3

ECMA cascades three LAMs whose local adaptive convolution size ranges from
large to small for capturing features at different scales. This cascaded multiscale
learning allows ECMA to handle degradations at different scales, crucial for tasks
like motion blurring which requires large-scale processing, and non-uniform noise
or super-resolution that benefit from local processing. Finally, ECMA blocks are
stacked like a U-Net architecture to build the ECMA network. Thus, ECMA
efficiently achieves both local adaptiveness and multiscale processing through
the proposed LAM and cascaded multiscale learning.

Experimental results validate the superior performance and computational ef-
ficiency of the proposed ECMA across various image restoration tasks, including
deblurring, denoising, and super-resolution. As demonstrated in Figure 1, ECMA
achieves higher or comparable image restoration performance with state-of-the-
art methods while reducing their computational cost by 1.2× to 9.7×. ECMA’s
balance of high performance and low computational cost marks a significant
advancement in the image restoration tasks.

2 Related Works

Image restoration encompasses deblurring, denoising, and super-resolution etc.,
each presenting unique challenges. Traditional methods often rely on mathemat-
ical modeling and optimization techniques, e.g., variational regularization and
Wiener deconvolution [21, 41]. While effective in constrained scenarios, these
techniques struggle with complex and spatially varying degradation.

The advent of deep learning has significantly impacted image restoration,
with Convolutional Neural Networks (CNNs) becoming the cornerstone. In de-
blurring, SRN [45] employs recurrent neural networks for iterative refinement,
and DeblurGAN [19] utilizes GANs to enhance deblurred image quality. For
denoising, DnCNN [46] introduces a deep CNN architecture learning a residual
mapping to remove noise. The representative BM3D [5] uses 3D filtering to effec-
tively remove noise while preserving image details. Regarding super-resolution,
SRCNN [12] is the first one to apply deep learning to this task. It uses a three-
layer CNN to learn end-to-end mapping from low-resolution to high-resolution
images. However, CNNs uniformly apply convolution operations across spatial
regions, potentially limiting effectiveness against spatially varying artifacts. Ad-
ditionally, convolution by default only operates on a small local neighbor region,
which limits its power in processing features at a larger scale. The integration of
contextual information often requires the use of either large convolutional ker-
nels or deep network architectures with many layers, both of which come at a
significant computational cost.

Non-local learning mechanisms have been used to improve image restoration
performance, e.g., the non-local means for deep denoising [14] and self-attention
for super-resolution [60]. Later, transformer models, like Restormer [53] and
GRL [24], have employed innovative self-attention to efficiently handle a variety
of restoration tasks. But transformers neither explicitly nor efficiently address
the varying scales of image degradation, potentially overlooking fine details. Fur-
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Fig. 2: Overall high-level architecture ECMA networks.

thermore, self-attention introduces quadratic computational complexity relative
to image size, thereby limiting their practical efficiency.

3 Methodology

This section elaborates on the detailed structure of Efficient Cascaded Multiscale
Adaptive (ECMA) network for image restoration tasks.

3.1 Overview Architecture

As illustrated in Figure 2, ECMA follows other works [48, 51] to adopt a U-
Net [40] architecture, integrating a specially designed ECMA block. This effi-
ciently addresses the two challenges: local adaptiveness and multiscale feature
processing. Specifically, like most U-Net architectures, ECMA consists of an
encoder and a decoder, each comprising several stages. In each encoder stage,
ECMA halves the spatial size of feature maps through downsampling and dou-
bles the channel number. In the decoder, each stage doubles the spatial size using
transposed convolution and concatenates it with corresponding encoder features,
halving the channel number. This hierarchical structure is effective not only for
image restoration tasks but also for other applications, such as segmentation.

The main components in ECMA are ECMA blocks and fusion blocks. ECMA
block, in particular, processes image features while achieving local adaptiveness
and multiscale processing within each block. The fusion block aligns and fuses
upsampled decoder features with corresponding encoder features for further pro-
cessing. In the following, we will introduce these two key blocks in turn.

3.2 ECMA Block

The ECMA block is designed to enhance both local adaptiveness and multiscale
processing in image restoration. As shown in Figure 3a, ECMA block employs a
Local Adaptive Module (LAM) that uses local adaptive convolution to dynami-
cally process local image features. For multiscale feature processing, the ECMA
block incorporates a Cascaded Multiscale Learning (CML) approach. CML cas-
cades three LAMs with varying convolution sizes, from large to small, to process
features at different scales. Next, we introduce LAM and CML in detail.
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Local Adaptive Module As shown in Figure 3b, the primary component of
the Local Adaptive Module (LAM) is a local adaptive convolution, crucial for
local adaptive feature processing. Each LAM possesses two inputs, I and I ′,
where I ′ denotes the spatial context of I, which is further explained below.
Spatial Context Construction. For any pixel I ′

i,j computed by using the
neighboring features around Ii,j in the input of I, then we say I ′ denotes spa-
tial context of input I. It indeed means that there is spatial correspondence
between I and I ′. To achieve this, in an ECMA block, I ′ and I in the first
LAM are two splits of the same convolution feature along the channel dimen-
sion, thereby having spatial correspondence. For the second and third LAMs, I ′

denotes the output of the preceding LAM, maintaining spatial correspondence
through convolution operations. In this way, each pixel I ′

i,j in the context I ′

contains the overall neighboring spatial information around the pixel Ii,j in the
input I, and can thus be used for local adaptive convolution.
Local Adaptive Convolution. Formally, given the input I and its spatial con-
text I ′, our local adaptive convolution, denoted as ConvW ,W ′ , is parameterized
by two kernels: W ∈ Rm×m and W ′ ∈ Rn×n, and is defined as

F = ConvW ,W ′(I, I ′). (1)

Here each pixel F s,t in the output F is computed as

F s,t =
∑m

i=1

∑m

j=1
W̄ i,jIs−i,t−j , (2)

where W̄ i,j=σs,tW i,j is dynamic convolutional parameter in ConvW ,W ′ , σs,t=∑n
p=1

∑n
q=1 W

′
p,qI

′
s−p,t−q denotes the standard convolution. We omit the chan-

nel dimension for simplicity since it does not affect our local adaptiveness. For
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efficiency, we always set m = 3, and assign the value of n according to the LAM
position in ECMA block. Accordingly, n is called the kernel size of ConvW ,W ′ .

Now we discuss the local adaptiveness induced from Eqn. (2). Specifically,
Eqn. (2) shows that for pixel Is−i,t−j , its convolution parameter W̄ i,j depends
on the n× n-sized neighboring region around the pixel I ′

s−i,t−j of input feature
I ′. This is due to the factor σs,t in the convolution kernel W̄ incorporating
the neighboring region of I ′. Meanwhile, since I′ is spatial context of I, each
feature pixel I′

s,t is computed by convolving feature values from pixels around
Is,t. Consequently, the convolution parameter W̄ i,j for Is−i,t−j depends on the
neighboring region around this pixel, within a specific convolution radius. So
the local adaptive convolution ConvW ,W ′ can adaptively tune the convolution
parameter via learning suitable parameters W̄ i,j for a specific input region. This
approach increases the flexibility of feature processing and enhances the model’s
responsiveness to local variations in the image.
Efficient Implementation of LAM. The overall LAM, as depicted in Fig-
ure 3b, is formulated as follows:

Q =Cat(ConvW ,W ′(I, I ′), ConvW (I), ConvW ′(I ′)),

O =Norm(Q), O′ = Conv1×1(Q), (3)

where Cat denotes concatenation along the channel dimension, and Norm refers
to group normalization [52]. In Eqn. (3), we further use the two kernels W and
W ′ to respectively compute two feature maps ConvW (I) and ConvW ′(I) for two
reasons. First, the convolutions ConvW ′ and ConvW , using different kernel sizes,
capture spatial information at different scales, complementing the local adaptive
convolution. Second, Eqn. (1) can be rewritten in its equivalent formulation:
ConvW ,W ′(I, I ′) = ConvW (I)⊙ ConvW ′(I ′) with element-wise product ⊙ (See
Appendix A for details). So computing ConvW (I) and ConvW ′(I) does not bring
extra computational cost.

Next, following Eqn. (3), we concatenate ConvW (I) and ConvW ′(I) with fea-
ture ConvW ,W ′(I, I ′) given by local adaptive convolution. Finally, we normalize
the concatenated feature Q to obtain O, which is then processed by a 1 × 1
convolution Conv1×1 to reduce the channel dimension. LAM has two outputs, O
and O′. O is concatenated with the outputs of other LAMs at the end of the
ECMA block (see Figure 3a). O′ is used as spatial context for the subsequent
LAM, which will be elaborated in Sec. 3.2.

Compared with complex and expensive mechanisms like self-attention, LAM
achieves local adaptiveness via cheap local adaptive convolution. Concretely, we
compare the computation complexity of our LAM with self-attention operation
which also achieve local adaptive processing. For an input with spatial size s× s
and channel number c, self-attention with h heads costs (2s2c+ 4c2 + 2s2h)s2 ,
while our LAM with kernel size k only costs ((k2 + 10)c+ 3c2)s2 (see Appendix
B for details). Our LAM requires much less computation cost, since the spatial
size s is often much larger than the kernel size k.
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Fig. 4: Qualitative comparison of image deblurring results on GoPro dataset [37].

Cascaded Multiscale Learning In various image restoration tasks, multi-
scale feature processing is essential for effectively learning contextual information
and addressing diverse scales of degradation. Motion blurring, covering large im-
age areas, benefits from large-scale feature processing [48], whereas scenarios like
non-uniform noise or super-resolution of small details require effective local fea-
ture processing [7]. To tackle this, we present the Cascaded Multiscale Learning
(CML) mechanism which cascades three LAMs with different kernel sizes for
efficient multiscale feature learning.

As shown in Fig. 3a, CML first expands the channel number c of input X to
9c/4 via an 1×1 convolution, and separates the features into six parts along the
channel dimension:

I1, I
′
1, I2, I

′
2, I3, I

′
3 = Split(Conv1×1(X)). (4)

Next, CML adopts three LAMs in a cascading manner

O1,O
′
1 = LAM1(I1, I

′
1),

O2,O
′
2 = LAM2(I2, Cat(O′

1, I
′
2)),

O3,O
′
3 = LAM3(I3, Cat(O′

2, I
′
3)),

where LAMi (1 ≤ i ≤ 3) denotes LAM module defined in Eqn. (3). For LAMi(I,C),
I is the input, and C is its associated spatial context (See Sec. 3.2 for details).
Finally, CML reduces the channel number of the concatenated output to c, and
adds it to the input X as a residual:

Y = X + γ · Conv1×1(Cat(O1,O2,O3)),

where γ∈Rc is a learnable vector [47].
Now we discuss how to set the kernel sizes in three LAMs and the splitting

in Eqn. (4). Here, we first use a large kernel size followed by smaller ones in the
three LAMs to enable comprehensive spatial context while maintaining efficiency.
For instance, in LAM2, the context O′

1 in Cat(O′
1, I

′
2) is computed via a LAM

of large convolution size, providing broad spatial context to the input I2, while
the raw feature I ′

2 provides more local spatial context for complementation.
In LAM3, the context O′

2 in Cat(O′
2, I

′
3), which already contains large spatial

context, and thus help guide the smaller LAM to better process local features.
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Table 1: ECMA Network configurations. The #Blocks denotes the number of
ECMA blocks in each stage in the encoder. The number of ECMA blocks in the decoder
stages symmetrically mirrors that of the corresponding encoder stages. Computation
complexities are measured on input size 256×256. ∗The ECMA-SR model is configured
for super-resolution, the GFLOPs is computed for 4× upscaling to size of 1280×720.

Variant #Blocks Width M.Par GFLOPs

ECMA-T 1,1,2,9 32 10.5 15.9
ECMA-S 1,1,1,7 64 31.7 48.4
ECMA-B 2,4,4,3 64 19.5 63.0
ECMA-SR∗ 10,1 64 1.4 50.5

For LAMi(Ii,Ci) (1 ≤ i ≤ 3), the kernel sizes of convolution applied on Ci

decreases as aforementioned. Accordingly, we set channel number c/4, c/2, 3c/4
for I ′

i (1 ≤ i ≤ 3), and c/4 for all Ii (1 ≤ i ≤ 3) to improve overall efficiency.
CML provides effective multiscale feature learning for image restoration tasks.

The first LAM, LAM1, aggregates global context through a large receptive field,
while the subsequent LAMs, LAM2 and LAM3, refine features at finer scales with
the help of the global context provided by LAM1. This novel design allows the
model to adeptly handle diverse scales of degradation, and resolves variations in
artifacts, guided by extensive contextual insights. Consequently, the CML design
facilitates a more comprehensive representation of the multiscale characteristics,
thereby improving the network’s performance in restoring images affected by
complex and diverse degradations. The effectiveness of the CML design is veri-
fied in Section 4.5.

To enhance computational efficiency, we make use of Fast Fourier Transform
(FFT) [4] in the LAM1 of large kernels. This approach transforms image features
into frequency components, simplifying convolutions to multiplications. It cuts
complexity from O(n2) to O(n log n), where n is the spatial size. This method
reduces the computational cost, especially for large kernel size convolutions in
the large LAMs, enhancing our CML’s effectiveness and efficiency to learn large-
scale context for image restoration.

3.3 Fusion Block

The fusion block fuses the previous features from the encoder with the current
upsampled features. It first upsamples the decoder feature D̄i−1 via transposed
convolution with a kernel and stride size of 2×2, concatenates it with the en-
coder input Ei, and finally fuses them using a 1 × 1 convolution. Formally,
to compute the feature Di for the next stage in the decoder, the fusion block
is formulated as: Di = Conv1×1(Cat(TConv(D̄i−1),Ei)), where TConv denotes
transposed convolution.

3.4 ECMA Network

The ECMA networks employ a U-Net architecture, with our efficient ECMA and
fusion blocks, tailored for image restoration tasks. We build ECMA networks in
different sizes, as shown in Table 1. Each ECMA block contains three LAMs



Efficient Cascaded Multiscale Adaptive Network for Image Restoration 9

Table 2: Image Deblurring results on GoPro dataset.
Method GFLOPs PSNR SSIM

DeblurGAN-v2 [20] — 29.55 0.934
SRN [45] — 30.25 0.934
DMPHN [57] — 31.20 0.945
SimpleNet [22] — 31.52 0.950
SAPHN [43] — 32.02 0.953
MIMO [10] 1235 32.45 0.957
IPT [6] — 32.58 -
MPRNet [55] 778 32.66 0.959
Restormer [53] 140 32.92 0.961
Uformer-B [51] 89.5 33.06 0.967
Stripformer [48] 155 33.08 0.962
ECMA-T (Ours) 15.9 (9.7×↓) 33.19 0.962
DeepRFT+ [34] 187 33.23 0.963
MSSNet-L [18] — 33.39 0.964
NAFNet [7] 65 33.69 0.967
GRL-B [24] 281 33.93 0.968
ECMA-B (Ours) 63.0 (4.5×↓) 34.14 0.969

with adaptive convolution kernel sizes: ki, 5, and 3. The ki size begins at 32 and
reduces by 8 at each encoder stage. Conversely, the kernel sizes ki increase along
the stages in the decoder, mirroring the encoder.

The innovative integration of LAM and CML in ECMA facilitates the ef-
fective reconstruction of high-quality images from degraded inputs. ECMA net-
works achieve comparable or superior restoration performance to current leading
methods, while significantly reducing computational costs by 1.2× to 9.7× across
various image restoration tasks, as shown in Figure 1.

4 Experiments

Training Configuration. We train our models with a batch size of 64 for
400K iterations, using the AdamW optimizer [30] with an initial learning rate
of 1× 10−3 and a cosine annealing strategy to a final learning rate of 1× 10−7.
The spatial size during training is 256× 256. We perform data augmentations,
including random cropping, flipping, and rotation, following [7, 48].
Training Loss. Our training loss, similar to previous works [10], combines L1-
Loss in pixel space for pixel-wise reconstruction and L1-Loss in frequency space
for frequency alignment (Refer to Appendix A for details). We empirically set
the weights for pixel loss and frequency loss to 1.0 and 0.05 respectively.
Evaluation metrics. We employ two commonly used metrics for evaluation:
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM). PSNR serves as an objective error measure, while SSIM provides a
perceptually-aligned assessment. Higher values in these metrics indicate better
restoration performance.

4.1 Deblurring Results

Deblurring Results on GoPro We follow the protocols in [37] and evaluate
ECMA on the widely used GoPro dataset. Table 2 shows that ECMA achieves
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Table 3: Image Deblurring results on the HIDE dataset.
Method GFLOPs PSNR SSIM

DeblurGAN-v2 [20] — 26.61 0.875
SRN [45] — 28.36 0.904
SAPHN [44] — 29.98 0.930
MIMO-Unet+ [10] 1235 30.00 0.930
Uformer-B [51] 89.5 30.90 0.953
ECMA-T (Ours) 15.9 (5.6×↓) 30.89 0.937
MPRNet [55] — 30.96 0.940
Stripformer [48] 155 31.03 0.940
MPRNet-local [11] 778 31.19 0.942
Restormer [53] 140 31.22 0.942
NAFNet [7] 65 31.31 0.943
Restormer-local [11] 140 31.49 0.945
ECMA-B (Ours) 63.0 (2.2×↓) 31.59 0.946

the highest PSNR and SSIM values, outperforming existing methods. Compared
to state-of-the-art methods like GRL-B [24], ECMA achieves a PSNR improve-
ment of 0.21dB, while using significantly less computation, i.e. the FLOPs of
GRL-B is 4.5× that of our ECMA-B. Furthermore, compared to CNN represen-
tative methods like NAFNet [7], ECMA shows superior performance while re-
quiring only about 30% of NAFNet’s model size. The results reveal that ECMA
not only attains higher restoration performance but also excels in terms of effi-
ciency. Figure 4 provides visual comparisons between ECMA and other methods
on the GoPro dataset. By observing, Observation reveals that CNN-based meth-
ods [7, 8] suffer from noticeable blur issues, as they may struggle to effectively
explore non-local information for image restoration. Transformer-based meth-
ods, such as [48,53], also fail to recover certain local details. In contrast, ECMA
introduces an efficient local adaptive and multiscale learning approach, better
processing features of blur effects at different scales for image restoration. These
results demonstrate ECMA’s effectiveness and superiority in handling varying
blur scales and its computational efficiency.

Deblurring Results on HIDE We further test ECMA on the HIDE dataset,
which isknown for its emphasis on human subjects [42]. For fair comparison,
we follow [7, 10, 55], and apply our model trained on the GoPro dataset to the
HIDE dataset for evaluation. Table 3 shows that ECMA achieves a PSNR of
31.59 dB and an SSIM of 0.946, offering higher deblurring quality than other
evaluated methods. Notably, ECMA significantly improves efficiency compared
to the state-of-the-art, Restormer-local [53], by only costing 2.2× fewer FLOPs
to achieve better performance.

Deblurring Results on RealBlur We evaluated our ECMA on the RealBlur
dataset [39], which contains images captured under various conditions, includ-
ing low-light and motion scenarios. The RealBlur dataset includes two test sets:
RealBlur-R, derived from raw images, and RealBlur-J, sourced from JPEG im-
ages. For fair comparison, we followed the evaluation settings of [7, 48]. Table 4
shows that ECMA achieves a PSNR of 32.72dB and 39.98dB on RealBlur-J and
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Table 4: Image Deblurring results on RealBlur datasets.

Method GFLOPs RealBlur-J RealBlur-R
PSNR SSIM PSNR SSIM

DeblurGANv2 [20] — 29.69 0.870 36.44 0.935
Restormer [53] 140 28.96 0.879 36.19 0.957
SRN [45] — 31.38 0.909 38.65 0.965
MPRNet [55] 778 31.76 0.922 39.31 0.972
MIMO-UNet+ [10] 1235 32.05 0.921 - -
BANet [49] — 32.00 0.923 39.55 0.971
MSSNet [18] — 32.10 0.928 39.76 0.972
DeepRFT+ [34] 187 32.19 0.931 39.84 0.972
Stripformer 155 32.48 0.929 39.84 0.974
ECMA-B (ours) 63.0 (2.5×↓) 32.72 0.931 39.98 0.974

RealBlur-R, respectively. For efficiency, ECMA requires only 63 GFLOPs, 2.5×
reduction from Stripformer’s 155 GFLOPs.

4.2 Image Super-Resolution Results

Our experiments extend to the task of image super-resolution, where we assess
the ECMA network’s performance on established public benchmark datasets.
Super-resolution, a critical aspect of image restoration, requires precise up-
scaling of image details from low to high resolution. We perform training on
DIV2K [26] and evaluation following recent works [53,62]. In Table 5, we present
results for image super-resolution with upscaling factor of 4×. Computation
costs are measured based on a target image size of 1280×720. The ECMA-SR
network, designed for efficiency, consumes around 1.2× fewer FLOPs than the
SRFormer [62], while delivering comparable or superior PSNR and SSIM metrics.
This balance of reduced computational demand and state-of-the-art performance
underscores the ECMA network’s capability in super-resolution, reinforcing its
applicability in image restoration.

4.3 JPEG Artifacts Results

To assess the robustness of our ECMA network in handling real-world scenar-
ios, we conducted deblurring tests on the REDS dataset, which includes realis-
tic video sequences with dynamic scenes and JPEG compression artifacts. This
dataset is particularly challenging due to its inclusion of various blur types and
compression-induced distortions, providing a rigorous benchmark for evaluat-
ing our model’s adaptability. Following established protocols from prior stud-
ies [7, 8, 50], we trained our network and evaluated it on a subset of 300 images
(REDS-val-300) from the REDS validation set. Table 6 shows the performance
of our ECMA networks compared to other state-of-the-art works. ECMA-T
achieves competitive PSNR of 28.82dB, similar to HINet [8], while being 10 times
smaller in computation cost. Moreover, our ECMA-S variant achieves state-of-
the-art performance with 29.12dB in PSNR and 0.868 in SSIM. Notably, our
ECMA-S model requires 1.3× fewer FLOPs than the NAFNet model, further
demonstrating the efficiency of our ECMA design.
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Table 5: Image Super-resolution results for 4× upscaling. All models are trained on
DIV2k [26] and evaluated on [3, 16,35,36,56].

Method GFLOPs Set5 [3] Set14 [56] B100 [35] U100 [16] M109 [36]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR-baseline [26] 114 32.09 0.894 28.58 0.781 27.57 0.736 26.04 0.785 30.35 0.907
CARN [2] 90.9 32.13 0.894 28.60 0.781 27.58 0.735 26.07 0.784 30.47 0.908
IMDN [17] 40.9 32.21 0.895 28.58 0.781 27.56 0.735 26.04 0.784 30.45 0.907
LAPAR-A [23] 94 32.15 0.894 28.61 0.782 27.61 0.737 26.14 0.787 30.42 0.907
RFDN [27] — 32.28 0.896 28.61 0.782 27.58 0.736 26.20 0.788 30.61 0.910
LatticeNet [32] 43.6 32.30 0.896 28.68 0.783 27.62 0.737 26.25 0.787 - -
ESRT [31] — 32.19 0.895 28.69 0.783 27.69 0.738 26.39 0.796 30.75 0.910
SwinIR-light [25] 63.6 32.44 0.898 28.77 0.786 27.69 0.741 26.47 0.798 30.92 0.915
ELAN [59] 54.1 32.43 0.897 28.78 0.786 27.69 0.741 26.54 0.798 30.92 0.915
SRFormer [62] 62.8 32.51 0.899 28.82 0.787 27.73 0.742 26.67 0.803 31.17 0.916
ECMA-SR 50.5(1.2×↓) 32.50 0.899 28.89 0.788 27.81 0.744 26.82 0.806 31.20 0.917

4.4 Denoising Results

In addition to image deblurring, we perform experiments of RGB Image Denois-
ing on the Smartphone Image Denoising (SIDD) dataset [1]. The SIDD dataset
is unique in its focus on noise patterns found in smartphone photography, pro-
viding a benchmark for practical denoising applications. As shown in Table 7,
the ECMA-T model attains a PSNR of 39.86dB with only 15.9 GFLOPs, which
is 5.6× reduction on UFormer’s [51] computational cost. The ECMA-S model
demonstrates competitive performance with a PSNR of 40.28 dB and an SSIM
of 0.961, on par with the advanced NAFNet [7], while achieving a 1.3× reduc-
tion in computational complexity. These results highlight the ECMA network’s
ability to provide state-of-the-art denoising efficiently, further confirming its ef-
fectiveness and generalizability for diverse image restoration applications.

4.5 Ablation Study

For ablation studies, we train all variants of ECMA-T models for 200K iterations
with batch size of 64 on the GoPro dataset.

Investigation on LAM We achieve efficient local adaptive feature processing
in our method with LAM, via local adaptive convolution. This design choice is
central to our method’s ability to adapt to varying local features within an image,
thereby enhancing its restoration capabilities. To verify the effectiveness of this
local adaptive mechanism, we conduct an ablation study. In this study, we re-
place our proposed local adaptive feature processing with alternative methods for
combining features from two input branches. The results of this ablation study
are presented in Table 8. They reveal a clear advantage of our local adaptive
design. When local adaptiveness is removed or replaced with another operation
(element-wise addition), performance suffers noticeably. Specifically, the PSNR
drops by as much as 0.62dB and 0.68dB respectively. These findings strongly
validate our design choice, demonstrating that the local adaptive feature pro-
cessing is a fundamental component that contributes to ECMA’s effectiveness.
It allows our model to respond to the unique characteristics of different regions
within an image, leading to more accurate restoration results.
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Table 6: Deblurring with JPEG arti-
facts removal on REDS dataset.
Method GFLOPs PSNR SSIM

MPRNet [55] 777 28.79 0.811
HINet [8] 171 28.83 0.862
ECMA-T (Ours) 15.9(10.8×↓) 28.82 0.861
MAXIM [50] 170 28.93 0.865
NAFNet [7] 65 29.09 0.867
ECMA-S (Ours) 48.4(1.3×↓) 29.12 0.868

Table 7: Denoising on the SIDD.
Method GFLOPs PSNR SSIM

MPRNet [55] 588 39.71 0.958
MIRNet [54] 786 39.72 0.959
NBNet [9] 88.8 39.75 0.959
UFormer [51] 89.5 39.85 0.960
ECMA-T (Ours) 15.9(5.6×↓) 39.86 0.960
MAXIM [50] 170 39.96 0.960
HINet [8] 171 39.99 0.958
NAFNet [7] 65 40.30 0.962
ECMA-S (Ours) 48.4(1.3×↓) 40.28 0.961

Table 8: Ablation for LAM.
Variant PSNR SSIM

Local Adaptive Conv 32.98 0.961(Proposed)
Ele-wise Addition 32.36 0.955
Direct concatenation 32.30 0.954

Table 9: Ablation for CML.
Variant PSNR SSIM

cascaded large to small LAM 32.98 0.961(Proposed)
cascaded small to large LAM 32.64 0.957
multiscale without cascading 32.56 0.956
without large LAM 32.28 0.955
without medium LAM 32.69 0.958
without small LAM 32.61 0.957
cascade 3 large LAMs 32.29 0.955
cascade 3 medium LAMs 32.51 0.956
cascade 3 small LAMs 32.26 0.955
large conv in spatial domain 32.47 0.955

Investigation on CML We further conduct an ablation study on the effi-
cient cascaded multiscale learning, another key aspect of the ECMA block’s
design. This cascaded multiscale feature processing allows our method to effec-
tively utilize contextual information and handle varying distortion scales, and
is instrumental in achieving our method’s efficient performance. To assess the
contribution of the cascade multiscale design, we conduct a comprehensive abla-
tion study. To ensure a fair comparison, we modify block and channel numbers
to align the model size and complexity with our original proposed design. The
results of this ablation study are shown in Table 9. Notably, changing the order
of the cascaded design or removing the cascading mechanism completely would
result in a decrease in PSNR by 0.34dB and 0.42dB, respectively. We also exper-
imented with several variants by selectively removing one of the branches, each
would incur a loss of performance. We performed further ablations with cascad-
ing 3 identical LAMs. The results in table 9 shows performances obtained from
using identical LAMs of different sizes are inferior than our cascade design with
large to small LAMs. Moreover, performing the large convolution the standard
way in the spatial domain, while keeping computation cost at the same level,
leads to a substantial reduction in PSNR by more than 0.51dB. These ablation
results demonstrate the effectiveness and efficiency of our cascaded multiscale
learning in ECMA for image restoration.

4.6 Inference Time

Results have shown that ECMA models require greatly reduced computation
FLOPs compared to other state-of-the-art methods. Here, we measure and com-
pare the actual inference time for various image deblurring models on a single
GPU. Table 10 shows the results on single Nvidia A100 GPU, we take the average
inference time of 10 runs with input size of 1280×720 for each model.
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Table 10: Single image inference time comparison.
Model FLOPS Time Model FLOPS Time

Uformer-B 89.5G 42 ms ECMA-T (ours) 15.9G 26 ms
DeepRFT+ 187G 54 ms ECMA-S (ours) 48.4G 27 ms
Restormer 140G 59 ms ECMA-B (ours) 63.0G 39 ms

Fig. 5: Visualization of adaptive kernels (middle) for restoring input with motion blur
(left) to sharp image (right), regions with the same color have similar local adaptive
kernels W̄ generated in our LAM .

4.7 Visualization

To verify the effectiveness of the proposed Local Adaptive Module, we visualize
the kernels generated from a trained ECMA model. Specifically, we perform clus-
tering on the generated adaptive kernels parameters W̄ in Eqn. (2) from trained
ECMA-B model. Fig. 5 shows the visualization of clustering, where each color
represents a cluster of similar kernels parameters. We can see varying adaptive
kernels across an image, and similar kernels within a region of similar blurring
effects. This shows that our LAM can effectively generate dynamic kernels that
adapt to local features and degradations.

5 Conclusion

In this paper, we present Efficient Cascaded Multiscale Adaptive (ECMA), a
new performant and efficient approach for image restoration. ECMA combines
local adaptive processing with cascaded multiscale learning to effectively han-
dle diverse image degradations while maintaining computational efficiency. Our
extensive experiments on standard benchmarks shows that ECMA achieves top-
tier performance with lower computational costs compared to existing methods.
ECMA’s ability to accurately address spatially varying artifacts at a reduced
computational expense makes it a valuable tool for various image restoration
tasks. Future research could extend ECMA’s application to other areas, poten-
tially broadening its impact in the field. This work offers a efficient perspective
on image restoration and promote further innovations in adaptive feature pro-
cessing in computer vision.
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