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Abstract. Panoramic images can broaden the Field of View (FoV),
occlusion-aware prediction can deepen the understanding of the scene,
and domain adaptation can transfer across viewing domains. In this
work, we introduce a novel task, Occlusion-Aware Seamless Seg-
mentation (OASS), which simultaneously tackles all these three chal-
lenges. For benchmarking OASS, we establish a new human-annotated
dataset for Blending Panoramic Amodal Seamless Segmentation, i.e.,
BlendPASS. Besides, we propose the first solution UnmaskFormer,
aiming at unmasking the narrow FoV, occlusions, and domain gaps all
at once. Specifically, UnmaskFormer includes the crucial designs of Un-
masking Attention (UA) and Amodal-oriented Mix (AoMix). Our method
achieves state-of-the-art performance on the BlendPASS dataset, reach-
ing a remarkable mAPQ of 26.58% and mIoU of 43.66%. On public
panoramic semantic segmentation datasets, i.e., SynPASS and DenseP-
ASS, our method outperforms previous methods and obtains 45.34%
and 48.08% in mIoU, respectively. The fresh BlendPASS dataset and
our source code are available at https://github.com/yihong-97/OASS.
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1 Introduction

Panoramic imaging has advanced significantly [32, 82], allowing the capture of
high-quality 360° images with minimalist optical systems [31] suitable for a wide
variety of omnidirectional vision applications [1, 17]. Concurrently, panoramic
scene understanding has advanced in many areas, such as dense visual predic-
tion [44, 60, 64, 83], holistic scene understanding [65, 87], and panoramic scene
segmentation [26,53,73,76]. On the other side, amodal perception [52], a funda-
mental aspect of human vision that forms the basis of our understanding and in-
terpretation of the world, motivates occlusion-aware amodal prediction [2,50,56]
aimed at achieving recognition of an object and its complete spatial extent.
These diverse research endeavors converge toward the common goal of achieving
more comprehensive visual perception and understanding.
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(a) Occlusion-Aware Seamless Segmentation
(OASS) task involves three challenges: (1) unmasking
the narrow field of view, (2) unmasking the occlusion of
perspective, and (3) unmasking the gap of domain.
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(b) Results on our BlendPASS
benchmark. Domain adaptive panop-
tic and panoramic segmentation meth-
ods [57,89,93] are compared.

Fig. 1: The overview, challenges, and comparison on the proposed Occlusion-Aware
Seamless Segmentation (OASS) task.

To unify the aforementioned scene understanding in a seamless form and
advance a more comprehensive perception, we introduce OASS (Occlusion-
Aware Seamless Segmentation). As illustrated in Fig. 1, the OASS task
offers threefold benefits while posing three significant challenges: (1) Panoramic
images offer a broader Field of View (FoV), unmasking the narrow FoV of the
pinhole imagery, e.g ., from 95° to 360°, as compared between 0 and 1 of Fig. 1a.
However, panoramas introduce severe distortions compared to pinhole images,
which will lead to a significant performance degradation [89, 93]. (2) Amodal
prediction [2], in contrast to segmentation limited in visible areas [19, 72], can
unmask the occlusion in the space perspective. For example, compared between
1 and 2 of Fig. 1a, the occluded pedestrian can be completely recognized by
using amodal prediction. Predicting the complete mask of occluded objects, i.e.,
occlusion reasoning, is important to enhance the spatial-wise understanding ca-
pacity [7,33,37,85]. (3) Unsupervised Domain Adaptation (UDA) [57,91] in 3 is
capable of addressing the need for expensive training data, unmasking domain
gaps from label-rich pinhole to label-scare panoramic imagery.

Previous approaches [4,50,56,89,93] are proposed to address the above chal-
lenges separately, resulting in sub-optimal and non-seamless solutions. For exam-
ple, as the comparison depicted in Fig. 2, methods [89, 93] proposed to address
panoramic semantic segmentation cannot handle the object occlusion, whereas
methods [4, 50, 56] proposed for amodal segmentation cannot generalize well to
panoramic imagery and the FoV occlusion remains unsolved. To address the chal-
lenges seamlessly, we propose a novel unmasking transformer framework called
UnmaskFormer. The novelty is three-fold: (1) An Unmasking Attention (UA)
constructed by a self-attention and an enhanced pooling layer for occlusion pre-
diction, is proposed to unmask the object occlusions within the whole Unmask-
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Former framework. (2) We delve deeper into the design of the Deformable Patch
Embedding (DPE) [89] and find an alternative yet better solution for address-
ing the image distortion of panoramas at different stages within the transformer
model. (3) We propose an Amodal-oriented Mix (AoMix) method that aims to
seamlessly integrate the pinhole and panoramic domains, addressing the chal-
lenges posed by inconsistent cross-domain scenes. This method also enhances the
model’s capacity to reconstruct invisible regions of occluded objects, ultimately
allowing it to unmask the occlusion of perspective within a scene. Based on
these crucial designs, our UnmaskFormer can better handle different panorama-
based scene understanding tasks, especially solving object occlusion and image
distortion. Fig. 1b shows that UnmaskFormer has striking performances across
Semantic (mIoU), Instance (mAP), Amodal Instance (mAAP), Panoptic (mPQ),
and Amodal Panoptic Segmentation (mAPQ) tasks by using one model.

Object Occlusion
Panoramic Semantic

Segmentation

FoV Occlusion
Amodal

Instance/Panoptic
Segmentation

Occlusion-Free
OASS

Fig. 2: OASS addresses object occlusion
and FoV occlusion limitations in segmen-
tation tasks.

To facilitate this evaluation, we
spent a large effort to collect and man-
ually annotate a dataset for Blend-
ing Panoramic Amodal Seam-
less Segmentation (BlendPASS).
There are 2, 000 panoramic images
with 360° FoV and a 2048×400 resolu-
tion, captured in street scenes. Blend-
PASS facilitates the learning opti-
mization of segmentation adaptation
in an unsupervised fashion, which un-
folds as efficient for dense predic-
tion in panoramic imagery. To es-
tablish the evaluation benchmark for
the OASS task, 100 panoramic images
have been manually annotated pre-
cisely at the pixel level.

Extensive experiments are con-
ducted on our proposed BlendPASS dataset and other panoramic datasets. Our
UnmaskFormer achieves state-of-the-art performance on BlendPASS, reaching
a remarkable mAPQ of 26.58% and mIoU of 43.66%. On the panoramic se-
mantic segmentation datasets SynPASS [90] and DensePASS [48], our method
outperforms the previous best method and obtains 45.34% and 48.08% in mIoU,
respectively. The significant improvements and results prove the effectiveness
of the proposed UnmaskFormer framework in addressing the panorama-based
scene understanding.

In this work, we propose contributions as follows:

– We introduce a new panorama-based segmentation task, i.e., OASS, aiming
at unmasking the narrow field of view, unmasking the occlusion of perspec-
tive, and unmasking the gap of domain in a seamless manner.

– To address the OASS task, we propose an UnmaskFormer framework with
distortion- and occlusion-aware designs in a transformer-based architecture.
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– An Amodal-oriented Mix (AoMix) method is tailored for improving unsuper-
vised domain adaptation and overcoming the challenges of diverse occlusions
in bridging the gap between pinhole and panoramic domains.

– A new panoramic dataset BlendPASS is created and manually annotated for
benchmarking the blending of panoramic amodal seamless segmentation.

2 Related Work

Domain adaptive panoramic segmentation. Segmentation on wide-FoV
fisheye images [11, 58, 61, 80, 81] and panoramic images [20, 39, 75, 78, 95] en-
ables holistic understanding of 360° surroundings [74]. To address the scarcity of
annotations, researchers have revisited wide-FoV segmentation from the per-
spective of UDA [28, 34, 62, 77, 79] by leveraging rich training sources from
conventional narrow-FoV data. A variety of adaptation methods including self-
training [23–25,70,86,98] and adversarial training [47,48] methods are studied for
panoramic segmentation. In this line, P2PDA [88] employs attention-regulated
uncertainty-aware adaptation. Trans4PASS [89, 90] introduces distortion-aware
transformers and mutual prototypical adaptation with SAM [36]. DPPASS [94]
presents a dual-path solution to overcome style and format gaps. DATR [93]
captures neighboring distributions without any geometric constraints. Moreover,
panoramic panoptic segmentation [15,30,49] is investigated by using techniques
like contrastive learning for harvesting generalization benefits [29]. In this work,
we aim to enable occlusion-informed understanding with both FoV-wise and
spatially amodal reasoning of urban scenes.
Amodal scene segmentation. Amodal instance segmentation is a derivative
task of instance segmentation [3,10,13,21,42,45,63,66], to predict visible regions
of objects and their occluded regions simultaneously. Li et al . [38] introduce the
concept of amodal instance segmentation, achieved through iterative regression.
Qi et al . [56] derive the amodal version of KITTI [18], introducing an indepen-
dent occlusion classification branch. SLN [92] incorporates a semantics-aware
distance map to implement amodal segmentation. ORCNN [14] calculates visible
masks to infer occlusion masks. Further, shape and contour priors are frequently
leveraged for refining amodal segmentation [5,16,40,41,71]. Aside from amodal
instance segmentation, amodal semantic understanding [4, 27, 97] is an impor-
tant direction. Along this line, [50,51] propose a fusion of semantic and amodal
instance segmentation. Sekkat et al . [59] uses the CARLA simulator [12] to cre-
ate a virtual multi-task amodal perception dataset. Different from these works,
we intend to achieve occlusion-aware seamless segmentation, which breaks the
occlusion limits in terms of both field-of-view and in-field object occlusions.

3 Established Benchmark

3.1 Overview of the Benchmark

In this work, we establish a novel benchmark specifically designed for OASS. In
particular, we address OASS from the perspective of UDA by adapting from the
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label-rich pinhole domain to the label-scarce panoramic domain. 360° panora-
mas have a wide FoV and many small objects in the images, which exaggerate
the costs of creating pixel-wise annotations in unconstrained surroundings. Our
benchmark overcomes the scarcity of amodal segmentation testbeds in panoramic
imagery, while addressing three aforementioned challenges: 1 how to address the
severe distortions of panoramas when unmasking the narrow field of view, 2 how
to predict the full segmentation of objects when unmasking the occlusion of per-
spective, and 3 how to facilitate optimization of segmentation adaptation when
unmasking the gap of domain.

Our objective with this benchmark is to provide a comprehensive evaluation
of methods capable of performing both FoV-wise and spatially occlusion-aware
seamless segmentation. We extend the metrics proposed by [35] to the full re-
gions incorporating pixels of the occluded objects. The benchmark metrics cover
three aspects: Intersection over Union (IoU) for semantic segmentation, Average
Precision (AP) and Panoptic Quality (PQ) for instance and panoptic segmen-
tation, Amodal Average Precision (AAP) and Amodal Panoptic Quality (APQ)
for amodal instance and amodal panoptic segmentation.

Semantic Panoptic

Instance

Amodal Panoptic

Amodal InstanceImage

Fig. 3: The established BlendPASS dataset. We provide pixel-level labels for five
segmentation tasks related to OASS on the validation set. Zoom in for a better view.

3.2 BlendPASS

We introduce a novel dataset for Blending Panoramic Amodal Seamless Seg-
mentation (BlendPASS) tailored for OASS. BlendPASS comprises an unlabeled
training set of 2, 000 panoramic images for optimizing domain adaptation and
a labeled test set of 100 panoramic images. These images are captured from
panoramic cameras in driving scenes, all at a resolution of 2048×400 pixels.
As depicted in Sec. 3.1, we have provided pixel-wise annotations for five dis-
tinct visual segmentation tasks, which greatly extends the semantic labels from
DensePASS [48]. Specifically, we have further annotated the instance and amodal
instance labels. These labels cover 19 categories that align with the Cityscapes [9]
and are further categorized into Stuff (road, sidewalk, building, wall, fence, pole,
light, sign, vegetation, terrain, and sky) and Thing (person, rider, car, truck,
bus, train, motorcycle, and bicycle). To ensure the precision of annotations and
the rational handling of occluded object parts, we meticulously conduct manual
annotation for the test set, with three annotators following a cross-checking pro-
cess. Finally, 2, 960 objects are annotated in the Thing class, with 43% of these
objects exhibiting occlusion. More details can be found in the supplementary.
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3.3 KITTI360-APS→BlendPASS

For the labeled source in our UDA benchmark for OASS, we employ the avail-
able KITTI360-APS dataset [50] designed for amodal panoptic segmentation.
This dataset is an extension of KITTI360 [43] and includes annotations for in-
modal/amodal instance and panoptic segmentation. The images in KITTI360-
APS are captured using pinhole cameras from 9 cities, with a resolution of
1408×376. After our careful examination, a total of 12, 320 annotated images
are accessed. These annotations encompass 10 Stuff (road, sidewalk, building,
wall, fence, pole, traffic sign, vegetation, terrain, and sky) classes and 7 Thing
(car, pedestrians, cyclists, two-wheeler, van, truck, and other vehicles) classes. In
our benchmark, we further process the annotations from BlendPASS to ensure
class alignment with KITTI360-APS.

For KITTI360-APS→BlendPASS under OASS, besides the challenges men-
tioned in Sec. 3.1, as illustrated in Fig. 4, the source-target domains exhibit
significant differences in terms of the number of objects per image and the class
distribution. These differences present a greater challenge to UDA models.
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(a) Statistics of object counts per image

(b) Number of object counts in each category of the dataset
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(a) Statistics of object counts per image.

BlendPASS KITTI360
-APS

two-wheeler

truck
other-vehicles
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cyclists

truck

van

car

pedestrianstwo-wheeler
cyclists

pedestriansother-vehicles

(b) Class distribution of the dataset.

Fig. 4: Analysis of test set (BlendPASS) and the training set (KITTI360-APS).

4 Methodology

4.1 UnmaskFormer

Architecture. For the OASS task, the model simultaneously addresses ob-
jectives including semantic, instance, amodal instance, panoptic, and amodal
panoptic segmentation. Similarly to panoptic segmentation, as illustrated in
Fig. 5, we decompose the base model F into a feature extractor and three
branches, i.e., semantic, instance, and amodal instance, to accomplish OASS
goals. The semantic branch predicts the per-pixel semantic category of the input
image, while the instance and amodal instance branches output class-agnostic ob-
ject localization predictions. It is noteworthy that, while the instance branch has
both top-down [57] and bottom-up [91] decoders, the contour-based bottom-up
decoder is impractical for the amodal instance branch in the context of OASS.
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Fig. 5: Overview of the proposed UnmaskFormer framework. The UA-based
backbone consists of the DPE [89] and the proposed UA, addressing image distortion
and object occlusion in panoramas at once. The AoMix is designed to process input
images xs, xt, seamlessly integrating pinhole and panoramic domains while enhancing
the model’s capacity to reconstruct invisible regions of the occluded objects.

This limitation arises from situations where a single pixel is associated with
multiple objects simultaneously. In contrast, the proposals-based top-down de-
coder typically follows Mask R-CNN [22], employing Region Proposal Networks
(RPN) to predict candidate objects. This methodology facilitates simultaneous
and interference-free segmentation of multiple objects. Hence, in UnmaskFormer,
we adopt the top-down decoder for the instance branch and the occlusion-aware
amodal instance branch.

For the final output of the UnmaskFormer, we construct an Occlusion-Aware
Fusion (OAFusion) module to process outputs from three branches, generating
five segmentation maps at once for OASS. The semantic segmentation is directly
predicted by the semantic branch. In instance and amodal instance segmenta-
tion, the semantic label of class-agnostic instance or amodal instance mask is
determined by the majority-voting rule of the predictions from the semantic
branch. For amodal segmentation, only regions where the current object does
not overlap with other objects are considered. The panoptic and amodal panoptic
segmentation are generated by fusing the semantic segmentation with instance
and amodal instance segmentation, respectively.
UA-based backbone. One of challenges in OASS is to address both image
distortion and object occlusion at the same time. For this end, we construct
a UA-based backbone by rearranging previous Deformable Patch Embedding
(DPE) and adding an effective pooling layer, as shown in Fig. 5. Specifically,
for an input target image or features X∈RH×W×C between different stages,
the original DPE calculates the adaptive offsets and performs the patchifying
process. Contrary to inserting DPE in the early stage [89], we perform a new
interleaving arrangement of DPE layers in Stages 2 and 4, which can provide
reinforced distortion-aware modeling for the whole UnmaskFormer framework.
More analysis will be presented in Sec. 5.4.

Apart from the distortion-aware design, we design the UA block by combining
the self-attention layer and the enhanced pooling layer. As shown in Fig. 5, after
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the self-attention layer, the feature X′∈RH×W×C is forwarded to calculate the
pooling query q, the key K′ and the value V ′, where q=GAP (X′) and GAP (·)
is the global average pooling operator. After having the self-attended pooling
feature q′∈R1×1×C , a sigmoid function ϕ(·) is applied to calculate the occlusion-
aware mask ϕ(q′). Then, the pool-attended occlusion-aware mask ϕ(q′) is used
to perform a dot product operation with feature X′ to obtain the occlusion-
aware feature X′′∈RH×W×C . After the UA block, the occlusion-aware feature
X′′ is further forwarded to an MLP layer as self-attention blocks [72,89].

The overall UA-based backbone is constructed as the same four-stage archi-
tecture as the common segmentation methods [69,72,89].

4.2 Cross-Domain Adaptation

UDA strategy. In the OASS setting, the model is assigned to adapt from a
labeled source domain Xs = {xs, ys} to an unlabeled target domain Xt = {xt}
for multiple segmentation tasks, which xs ∈ RHs×W s×3, xt ∈ RHt×W t×3 are im-
ages from pinhole and panoramic cameras respectively. To address the domain
gap arising from dissimilar data distributions between the source pinhole and
target panoramic domains, a comprehensive loss Ltotal = LS +LT is utilized for
training the overall network F , where LS and LT represent the source domain
supervision loss and the target domain adaptation loss, respectively. LS is uti-
lized for supervision to learn fundamental segmentation capacity through labeled
source samples {xs, ys}, whereas the LT leverages unlabeled target images xt to
enhance segmentation in the target panoramic scenario. LS includes semantic
loss, instance loss, and amodal instance loss, each originating from respective
branches. The semantic branch employs cross-entropy loss to assign each pixel
to its respective category. As for the instance and amodal instance branches, we
follow the conventional approach from Mask R-CNN [22], employing supervision
using proposals-based bounding boxes and instance-level masks.

To tackle the challenge posed by the absence of labels in the target domain,
we employ a self-training strategy to facilitate the model’s adaptation from the
source to the target domain. Self-training methods [23–25] typically utilize the
target predictions pt as pseudo-labels ŷt for training. However, due to the noisy
predictions in the early stage, resulting in low-confidence pseudo-labels, we adopt
a confidence estimation mechanism that assigns weights ω of pseudo-labels-based
self-training loss LT . Additionally, we incorporate the Mean-Teacher framework
widely adopted in UDA [23,57,67] to further enhance the quality of the pseudo-
labels. Thus, LT can be expressed as follows:

LT = −ω
∑

h,w,c
p
(h,w,c)
t log ŷ

(h,w,c)
t , (1)

where
ω =

1

Ht ·W t

∑
h,w

(max
c

T (xt)
(h,w,c)

> τ), (2)

ŷ
(h,w)
t = onehot(argmax

c
T (xt)

(h,w,c)
). (3)
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The parameters θ′ of the teacher model T are updated using the parameters θ
of the student model F by the EMA at each iteration.
Amodal-oriented Mix (AoMix). To address the challenges of diverse oc-
clusion cases and inconsistent cross-domain scenes, we propose a new method
AoMix, which processes images from two domains alongside self-training. Ini-
tially, we reconstruct the masked source images x̂s based on a random source
amodal annotations {M i

r}zi=1. Subsequently, we follow the widely-used class-mix
strategy [23, 67] in UDA segmentation tasks to generate masked mixed images
x̂m, incorporating information from both the source and target domains.

Specifically, we randomly sample an amodal instance mask sequence {M (i)
r }zi=1

of an image from the current batch, and subject it to random scaling RS(·) and
peripheral random padding RP (·) to generate a new amodal instance mask se-
quence {M (i)

r

′
}zi=1 with the object of various positions and sizes. Then, a ran-

dom binary mask Mr containing multiple objects is produced by summing these
masks {M (i)

r

′
}zi=1. This operation can be expressed as follows:

Mr = H(
∑

i
RP (RS(M (i)

r ))), (4)

where H(·) denoted as a step function. For a source image xs, we sum the
corresponding amodal instance masks {M i

s}ni=1 to obtain a binary mask Ms of
Thing region. Using the random binary mask Mr and the Thing region binary
mask Ms, we fill the source image to reconstruct the masked source image x̂s =
(1−Mr∩Ms)⊙xs. Amodal-oriented masked image modeling aims to enhance the
model’s ability to reconstruct object regions obscured by realistic object shapes,
enabling it to learn information about invisible parts. To adapt to unlabeled
target scenes, we randomly sample half of the semantic classes from a source
image and paste the corresponding pixels of the masked source image x̂s onto a
target image xt based on the source semantic map, creating a new masked mixed
image x̂m. This approach effectively transfers the model’s capability tailored for
distortion- and occlusion-aware to the target panoramic domain.

5 Experiments

5.1 Experiment Setups

Following DAFomer [23], we train UnmaskFomer using AdamW [46]. The learn-
ing rate is set to 6×10−5, with a weight decay of 0.01 and linear warmup for 1.5k
iterations followed by polynomial decay. The model is trained on a batch size of
4 with a crop size of 376×376 for 40k iterations. More details can be found in
the supplementary.

5.2 Results of OASS on KITTI360-APS→BlendPASS

We deliver the OASS results on the KITTI360-APS→BlendPASS benchmark
in Tab. 1. Representative UDA panoptic segmentation methods UniDAPS [91]
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Table 1: Occlusion-Aware Scene Segmentation results on the KITTI360-APS →
BlendPASS benchmark. For Semantic Segmentation (SS), per-class results are reported
as IoU, and the metric is the mIoU. For Amodal Panoptic Segmentation (APS), per-
class results are reported as APQ for full regions, and the Metric is the mAPQ.
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SS

DATR [93] 71.87 27.24 70.59 22.76 35.98 23.91 00.00 04.52 77.06 37.14 80.06 51.20 02.24 70.15 08.94 06.00 11.02 27.79 34.91
Trans4PASS [89] 72.79 33.80 78.38 33.53 37.07 26.56 05.31 05.35 77.43 37.91 84.73 57.48 04.51 76.58 19.04 17.03 12.66 51.70 40.66
UniDAPS [91] 72.27 29.20 75.78 33.91 38.92 25.94 11.37 07.51 77.61 37.40 81.40 47.56 02.95 75.59 21.29 03.39 01.31 48.85 38.46
EDAPS [57] 74.41 35.91 76.98 36.45 40.35 28.02 16.08 05.13 78.10 39.50 82.28 55.45 03.25 74.38 06.72 14.09 05.18 50.87 40.17
Source-Only 72.97 29.14 82.04 31.19 31.37 17.98 00.00 15.97 74.13 33.74 88.66 50.24 04.02 80.42 18.02 11.04 04.57 50.17 38.65
UnmaskFormer 76.54 37.82 77.06 34.71 44.05 28.27 17.80 02.76 78.70 41.68 84.98 57.34 06.01 80.60 23.47 21.67 18.80 53.56 43.66

APS

DATR [93] 51.82 09.15 59.90 11.93 11.98 01.97 00.00 03.91 64.61 14.05 70.40 11.09 00.00 39.30 00.00 03.16 10.07 01.30 20.26
Trans4PASS [89] 53.91 14.12 69.39 19.15 11.77 03.77 00.00 05.15 67.63 16.02 77.41 15.30 04.24 41.06 06.58 00.00 00.00 07.35 22.94
EDAPS [57] 54.88 17.04 66.86 18.75 14.47 05.75 04.04 04.64 68.20 16.04 72.76 19.01 00.00 36.73 05.77 04.38 00.00 07.20 23.14
Source-Only 57.11 14.21 73.58 15.49 07.59 00.67 00.00 10.40 58.30 12.39 83.14 15.23 00.00 40.31 03.83 00.00 00.00 06.08 22.13
UnmaskFormer 61.84 24.72 66.81 20.77 15.80 05.25 04.29 03.26 69.02 18.35 79.44 20.48 03.14 44.56 12.81 11.25 00.00 16.64 26.58

and EDAPS [57] with our amodal extensions are benchmarked. Further, SOTA
panoramic semantic segmentation models Trans4PASS [89] and DATR [93] with
distortion-adaptive capacities are compared. It is worth noting that UniDAPS
does not support occlusion-aware reasoning with a contour-based decoder.

As shown in Tab. 1, compared with the best-performing UDA panoptic seg-
mentation model EDAPS [57], UnmaskFormer outstrips it by clear margins of
3.49% in mIoU and 3.44% in mAPQ. Compared to the panoramic segmentation
model Trans4PASS [89], our method also yields significant gains. Delving into
the OASS results in semantic- and amodal panoptic segmentation, all bench-
marked methods suffer from accurately predicting the full segmentation in the
cases considering occlusions, in particular on small objects, evidenced by the
unsatisfactory scores in class-wise APQ. Yet, UnmaskFormer harvests great im-
provements in contrast to the Source-Only model, e.g ., on safety-critical pedes-
trians, truck, and two-wheeler. Finally, under the challenging occlusion scenarios
in unstructured surroundings, UnmaskFormer clearly stands out and leads to
SOTA OASS scores of 43.66% in mIoU and 26.58% in mAPQ. In Fig. 6, we
visualize OASS results produced by our UnmaskFormer and SOTA methods
DATR [93], Trans4PASS [89], EDAPS [57]. Compared to them, UnmaskFormer
excels in segmenting occluded objects and realistically reconstructing vehicle
shapes thanks to our UA-based backbone and AoMix design.

Tab. 2 additionally presents the results in amodal instance segmentation of
our comparative experiments on the benchmark of KITTI360-APS→BlendPASS
transfer. The instance segmentation performance measured in both AP for visible
regions and AAP for full regions are listed. UnmaskFormer reaches a new record
of 11.10% in mAP and reaches an on-par mAAP score of 10.50% as EDAPS [57]
specifically designed for UDA panoptic segmentation. Compared to EDAPS,
our UnmaskFormer has large gains on challenging classes like trucks and cars
frequently under large occlusions in unconstrained scenes.



OASS 11

Stuff: road sidew. build. wall fence pole tr.light tr.sign veget. terrain sky
Thing: pedes. cyclists car truck ot.veh. van tw.whe.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 6: Visualization results of OASS. From top to bottom are (a) Image, (b)
Ground truth, (c) DATR [93], (d) Trans4PASS [89], (e) EDAPS [57], (f) Source-only,
and (g) UnmaskFormer (ours).

Table 2: Instance-level Segmentation results on the KITTI360-APS→BlendPASS
benchmark. Per-class results are reported as AP for visible regions and AAP for full
regions. The Metrics are mAP and mAAP. “A” denotes Amodal.

UDA Method A pedestrians cyclists car truck other-vehicles van two-wheeler Metric

DATR [93] 14.21 00.00 31.15 07.55 03.73 00.39 03.57 08.66
✓ 13.11 00.03 30.60 06.87 04.73 01.67 03.78 08.68

Trans4PASS [89] 16.52 00.03 32.23 10.19 05.31 00.16 05.62 10.01
✓ 15.95 00.21 31.71 08.34 06.01 00.35 06.41 09.85

UniDAPS [91] 02.31 00.00 11.25 06.17 02.80 00.00 01.50 03.43
✓ n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

EDAPS [57] 16.61 00.04 30.83 06.49 11.42 00.37 06.19 10.28
✓ 15.78 00.09 30.02 09.00 12.20 00.36 07.35 10.68

Source-Only 15.79 00.02 33.88 13.54 03.58 00.19 06.78 10.54
✓ 15.18 00.01 33.37 12.60 03.28 00.35 06.77 10.22

UnmaskFormer 17.55 00.00 35.18 14.18 02.92 00.77 07.14 11.10
(Ours) ✓ 16.10 00.07 34.07 12.29 02.19 00.61 08.15 10.50

5.3 Results of Panoramic Semantic Segmentation

We further investigate the generalization capacity of the proposed Unmask-
Former using two panoramic semantic segmentation datasets [48,90].
SynPASS. In Tab. 3, we conduct a comparison between known convolutional
and transformer models for panoramic semantic segmentation on the SynPASS [90].
Here, the models are learned on the training set and evaluated on the validation
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set with diverse weather and illumination conditions. UnmaskFormer equipped
with the UA and the semantic head, produces SOTA performance in mIoU, which
reaches 45.34%. Moreover, in each adverse condition, UnmaskFormer yields ro-
bust segmentation of the full 360◦×180◦ panoramas on SynPASS.

Table 3: Panoramic Semantic Segmentation
results on the SynPASS benchmark [90], covering
four adverse weather conditions, and day- and night-
time scenes.

Method Cloudy Foggy Rainy Sunny Day Night ALL

Fast-SCNN [54] 30.84 22.68 26.16 27.19 29.68 24.75 26.31
DeepLabv3+ (MNv2) [6] 38.94 35.19 35.43 37.73 36.01 30.55 36.72
HRNet (W18Small) [68] 42.92 37.94 37.37 41.45 39.19 32.22 39.80

PVT (Small) [69] 40.75 36.14 34.29 40.14 37.92 28.80 37.47
SegFormer (B2) [72] 46.07 40.99 40.10 44.35 44.08 33.99 42.49
Trans4PASS (Small) [89] 46.74 43.49 43.39 45.94 45.52 37.03 44.80
UnmaskFormer (Ours) 48.00 43.43 43.48 47.06 45.87 36.43 45.34

Table 4: Results on the
DensePASS benchmark [48].
Efficiency is compared in terms of
FLOPs (G) and #Parameters (M).

Method FLOPs #Parameters mIoU

SegFormer [72] 13.27 13.66 39.02
DPPASS [94] n.a. n.a. 42.40
DATR [93] n.a. 14.72 42.22
FAN [96] 10.96 13.81 42.54
PoolFormer [84] 09.47 13.47 43.18
SegNeXt [19] 14.03 13.71 43.75
Trans4PASS [89] 12.02 13.93 45.89
UnmaskFormer (Ours) 11.73 13.96 48.08

DensePASS. As shown in Tab. 4, we further compare UnmaskFormer against
efficient panoramic segmentation transformers including DPPASS [94], DATR [93],
and Trans4PASS [90], where the models are trained on Cityscapes [9] and tested
on the original DensePASS [48]. Compared to the DATR [93] constituted by
distortion-aware attention with 14.72M parameters, our UnmaskFormer with
fewer parameters (13.96M) attains higher segmentation performance. Our Un-
maskFormer achieves 48.08% in mIoU, which outperforms its counterparts and
maintains as a lightweight segmenter.

5.4 Ablation Study

To better understand the components of the UnmaskFormer, we conduct abla-
tion studies on the KITTI360-APS→BlendPASS benchmark.
Why UA unmasks occlusions? In Tab. 5, we ablate different patch embed-
ding methods [72, 89] and pooling methods [55]. The AvgPool and SimPool are
used to replace the GAP operator in UA. Compared to the original PE design
and the early-stage DPE, we construct the backbone by using a new interleav-
ing arrangement which improves the distortion-aware modeling, yielding the best
mAPQ score 26.58% with a +3.04% and a +2.14% gain respectively. Compared
to SimPool [55], our occlusion-aware pooling attention better handles object oc-
clusion and obtains higher results in OASS. An example of feature visualization
in Fig. 7 shows that our UA can enhance distortion-tolerant predictions of re-
gions where occlusion occurs. These results show the effectiveness of the UA
backbone in addressing image distortion and object occlusion at the same time.
How AoMix boosts amodal prediction? As shown in Tab. 6, we investi-
gate various approaches to masked image modeling. Compared to using masked
images only for the source image (T for S) or the mixed image (T for M), our
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Table 5: Unmasking At-
tention (UA) study.

Method mIoU mAPQ

PE [72] 41.07 22.00
DPE [89] 40.70 22.90
AvgPool 42.10 23.90

SimPool [55] 43.04 24.74
UA 43.06 25.04

Table 6: Amodal-orien-
ted Mix (AoMix) study.

Method mIoU mAPQ

T for S 42.53 23.98
T for M 43.18 24.78

P for S&M 42.52 21.87
W for S&M 41.64 24.12

AoMix 42.39 25.17

Table 7: Ablation study of Un-
maskFormer components.

UA AoMix OAFusion mIoU mAPQ

✓ 41.07 22.00
✓ ✓ 43.06 25.04

✓ ✓ 42.39 25.17
✓ ✓ 43.66 26.55
✓ ✓ ✓ 43.66 26.58

strategy AoMix, which utilizes both, achieves the best results. Masking the Thing
class regions (AoMix), as opposed to the entire image (W for S&M) or masked by
patches (P for S&M), results in improvements with a gain of +1.05% and +3.3%
in mAPQ respectively. With the carefully devised AoMix, the UnmaskFormer
earns significant gains by greatly boosting surrounding parsing seamlessly.

(a)

(b)

(c)

Fig. 7: Features Visualization before and af-
ter UA. (a) Input image and ground truth,
(b) Features before UA, and (c) Features af-
ter UA. Zoom in for a better view.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Fig. 8: Visualization of different fusion
strategies for APS. (a) Image, (b) Pre-
dicted semantic map, (c) Conventional
fusion [8, 57], and (d) OAFusion.

What OAFusion fuse? As illustrated in Fig. 8, a substantial portion of the
pedestrian area (in red) is occluded by the car (in blue). Despite the amodal
instance branch being capable of predicting the full region of the pedestrian, dif-
ferent fusion approaches yield distinct category classifications. The conventional
fusion strategy [8, 57] tailored for panoptic segmentation, given the substantial
occlusion of the pedestrian region by the car, misclassifies it as car under the
majority voting rule. Conversely, our designed OAFusion ensures accurate clas-
sification of the full region as the pedestrian by disregarding overlapping regions.

Finally, as shown in Tab. 7, all components cooperate with each other to
achieve the best performance. More analyses can be found in the supplementary.

5.5 Analysis of Hyperparameters

We further conduct an analysis of relevant hyperparameters in UnmaskFormer
on the KITTI360-APS→BlendPASS benchmark.
Analysis of deformable designs. In Fig. 9, we conduct experiments to analyze
designs of PE [72] and DPE [89] in our UnmaskFormer model. We obtain three



14 Y. Cao, J. Zhang et al.

insights: (1) The PE cannot effectively handle the image distortion in OASS,
which is in line with the finding in [89]. (2) Using more DPE blocks inside
a four-stage model does not ensure optimal performance. (3) Compared with
shallow stages, DPE can bring more improvements when acting on deep stages,
e.g ., using DPE in Stages 2 and 4 (DPE - 2, 4) performs better than in Stages 1
and 3 (DPE - 1, 3). Therefore, we adopt the deformable design of DPE in Stages
2 and 4 to construct the UnmaskFormer as default, which provides the optimal
architecture for addressing image distortion and object deformation in OASS.
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Fig. 9: Analysis of different designs with
PE and DPE blocks in UnmaskFormer.
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Fig. 10: Analysis of different scale ranges
in the proposed AoMix method.

Analysis of AoMix parameters. In Fig. 10, we conduct experiments to ana-
lyze the impact of different scaling parameters in RS(·). Excessively large scaling
sizes lead to complete occlusion of objects in images, preventing the model from
learning original object information. Overly small scaling sizes result in minimal
object occlusion, limiting the model’s capacity to make reasonable predictions for
occluded regions. Optimal performance is achieved by setting the range in RS(·)
to [0.1, 0.8], effectively generating diverse masked source images and masked
mixed images. This variety of amodal-oriented samples bridges the gap between
the pinhole and panoramic domains, enhancing the model’s ability to reconstruct
invisible regions of occluded objects and boost seamless segmentation.

6 Conclusion

In this work, we have introduced the task of Occlusion-Aware Seamless Seg-
mentation (OASS) for holistic scene understanding. To address OASS, we put
forward UnmaskFormer for unmasking the narrow field of view, unmasking the
occlusion of perspective, and unmasking the gap of domain seamlessly. We estab-
lish the BlendPASS dataset for facilitating the optimization and evaluation of
OASS models, as well as fostering future research in the panoramic and panoptic
vision field. Experiments on the fresh BlendPASS, as well as public SynPASS and
DensePASS benchmarks, demonstrate the effectiveness of the proposed methods.
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