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A Potential Impacts

In this section, we deliberate on the societal implications of our research en-
deavors. We introduce a new task, Referring Atomic Video Action Recogni-
tion (RAVAR), by developing the RefAVA dataset and establishing the RAVAR
benchmark. A total of 36, 630 instances were meticulously annotated based on
videos sourced from the AVA dataset to facilitate subsequent inquiries into the
RAVAR domain. In contrast to traditional approaches in atomic video action
detection, which typically depend on post-hoc selections of the person of inter-
est, our methodology leverages textual descriptions as indicators. This approach
mitigates the reliance on precise positional data delineated by bounding boxes,
which may exhibit significant variability over time.

The introduction of this task setting is crucial for advancing deep learning
models’ capabilities in comprehending scenes with greater details, particularly
within the atomic video action recognition framework. Such enhanced under-
standing is challenging and important in scenarios involving complex interactions
among multiple individuals, as is often encountered in fields such as rehabilita-
tion and robotic assistance. This shift towards a more nuanced understanding
has the potential to significantly impact these applications, offering more adapt-
able and context-aware solutions.

To construct the first testbed for the RAVAR task, we use 11 well-established
methods from Atomic Action Localization (AAL), Text Video Retrieval (TVR),
and Video Question Answering (VQA) domains while observing that most of the
selected baselines cannot deliver satisfactory performances. AAL approaches are
not good at dealing with the referring location of the person of interest while
TVR and VQA approaches are not good at handling the fine-grained action
recognition. We propose RefAtomNet to address both of the aforementioned is-
sues. RefAtomNet relies on three streams of token extraction, namely the textual
reference tokens, the visual tokens, and the newly proposed location-semantic
tokens, which are used for incorporating semantic and location cues provided
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by well-established object detectors from the scene. RefAtomNet further takes
advantage of the 1D sequential agent attention on each stream of the tokens
to achieve self-suppression regarding the irrelevant tokens. It then utilizes the
agent-based location semantic aware attentional fusion to enhance the visual
stream by merging the agent attention masks and the agent tokens from the
textual reference and the location-semantic streams. The proposed RefAtomNet
achieves state-of-the-art on the RAVAR benchmark, with great generalizability
towards the visual textual backbone and object detector. RefAtomNet can also
deliver promising RAVAR performances when faced with the test time reference
rephrasing and test time video disturbances compared with the chosen baselines,
which benefits practical deployment. However, our method still has the poten-
tial to output false predictions and biased content, which can have undesired
consequences, impacting society negatively.

B Discussion of Limitations

RAVAR by referring to multiple persons preserving the same attributes though
one sentence in one video is not tackled in our work, since we annotate each
individual and ensure that the described person can be successfully referred by
the provided description, and there are no two persons who share the same
reference sentence in one video clip. However, we regard this direction as an
interesting future work direction for the RAVAR task. Since we deliver the first
dataset for the RAVAR field and there is no other existing dataset for this new
task, our experiments are only conducted on the contributed RefAVA dataset.

C Evaluation Metrics

C.1 Mean Average Precision (mAP)

The mAP for multi-label classification measures prediction precision across la-
bels by computing precision at different thresholds and plotting precision-recall
curves for each label. The Average Precision (AP) for each label is derived by
integrating over these curves, typically approximated by summing areas under
specific points. The mAP, an average of these AP values across all labels, serves
as an aggregate performance metric for accurately predicting multiple labels per
instance. This aggregate performance measure reflects the model’s proficiency
in accurately predicting multiple labels for each instance within the dataset. It
accounts for the model’s ability not only to identify the presence of various labels
but also to ascertain their absence, thereby ensuring a balanced evaluation of its
predictive capabilities across all possible label outcomes.

C.2 Area Under the Receiver Operating Characteristic (AUROC)

The AUROC for multi-label classification is determined by considering each
label as a separate binary classification and calculating the True Positive Rate
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(TPR) and False Positive Rate (FPR) to plot ROC curves for each label. The
overall AUROC for the multi-label classification model is then calculated by
averaging the individual AUROC scores across all labels. This aggregated metric,
often referred to as the macro-average AUROC, provides a global indicator of
the model’s discriminative capability across the entire multi-label task. It is a
critical measure, particularly where the balance between different classes varies
significantly, as it offers an unbiased metric that does not favor labels with more
instances. Emphasizing the importance of AUROC in multi-label classification
highlights its role in ensuring the model’s robustness and effectiveness across
diverse conditions.

C.3 Mean Intersection of Union (mIOU)

The mIOU is a prominent evaluation measure used in the context of bounding
box regression tasks, particularly in object detection. We use mIOU to evaluate
the bounding box regression ability for the person of interest. This metric is
chosen as an auxiliary indicator that has less priority than the mAP and the
AUROC metrics since our main aim is to harvest the correct atomic action
predictions for the referring person.

C.4 Further Clarification regarding the Metrics

Our task prioritizes recognition over localization to progressively address this
new RAVAR challenge. We evaluate detection and recognition performance sep-
arately, treating mIOU as a secondary metric. We provide mAP (IOU=0.2, 0.5)
of our approach and BLIPv2, which delivers the best performances among all
leveraged baselines, as follows.

BLIPv2-Val BLIPv2-Test Ours-Val Ours-Test
mAP (IOU=0.2) 46.77 45.21 51.26 49.47
mAP (IOU=0.5) 41.40 39.27 44.84 41.93

D Generalizability to Different Detectors

In this work, we also deliver the ablation towards how much will the object
detector affect the performance of RAVAR in Tab. 1. We conduct an ablation
study by replacing the DETR [1], which serves as the object detector in our
RefAtomNet, by using RetinaNet [5]. Compared with the most outperforming
baselines BLIPv2 [3], both RefAtomNet (RetinaNet) and RefAtomNet (DETR)
show promising performance improvements. Regarding the two employed ob-
ject detectors, there are slight performance changes with < 1% for each metric,
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Table 1: Generalizability to other object detectors

Fusion mIOU mAP AUROC mIOU mAP AUROC

Val Test

BLIPv2 [3] 32.99 52.13 66.56 32.75 53.19 69.92
RefAtomNet (RetinaNet [5]) 38.65 55.08 69.16 37.82 56.67 73.63
RefATomNet (DETR [1]) 38.22 55.98 69.73 36.42 57.52 73.95

showcasing that our proposed RefAtomNet can generalize well to other object
detectors. RefAtomNet (RetinaNet) can harvest 38.65%, 55.08%, and 69.16% of
mIOU, mAP, and AUROC and 37.82%, 56.67%, and 73.63% of mIOU, mAP,
and AUROC, on val and test sets, respectively.

E Ablation of the Module Parameters

In this section, we deliver the analysis on the hyperparameters of the proposed
RefAtomNet by using BLIPv2 [3] as the textual visual backbone and DETR [1]
as the object detector to pursue the suitable hyperparameters for the number of
heads and the number of agents.

E.1 Ablation of the Frame Number

Overall we get better performance when using 8 frames in training and testing,
which is the frame number we used in our main paper.

Table 2: Ablation of the frame number.

Frames mIOU mAP AUROC mIOU mAP AUROC

Val Test

4 37.82 53.21 67.27 34.75 55.00 72.23
6 37.28 53.55 67.50 36.01 55.24 72.14
8 38.22 55.98 69.73 36.42 57.52 73.95
10 37.51 53.41 67.33 36.12 54.87 71.86
12 36.85 53.37 67.36 36.22 55.20 71.90

E.2 Ablation of the Head Number

We deliver the ablation of the head number used for acquiring the Query, Key,
Value, and Agent in Tab. 3, where head number Nh ∈ [1, 2, 3, 4, 16]. We observe
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Table 3: Ablation of the head number when the agent number is set as 4.

Heads mIOU mAP AUROC mIOU mAP AUROC

Val Test

1 38.22 55.98 69.73 36.42 57.52 73.95
2 35.60 54.91 68.94 34.72 55.02 71.71
3 34.58 54.97 71.71 34.58 54.97 71.71
4 37.17 54.70 68.79 35.63 54.88 71.59
16 36.10 54.40 68.59 35.22 54.68 71.40

Table 4: Ablation of Agent Number when the head number is set as 1.

Agents mIOU mAP AUROC mIOU mAP AUROC

Val Test

1 32.63 56.71 69.70 33.68 55.40 73.08
2 37.97 55.68 69.58 36.89 57.81 74.29
3 36.80 55.86 69.82 35.37 57.32 73.77
4 38.22 55.98 69.73 36.42 57.52 73.95
16 35.47 55.52 69.57 33.96 57.91 74.22

that when Nh = 1, the RefAtomNet achieves the best performance. We thereby
use Nh = 1 in our RefAtomNet. All the experiments are conducted by selecting
the number of agents Na = 4.

E.3 Ablation of the Agent Number

We further show the ablation study of the agent number in Tab. 4, where Na ∈
[1, 2, 3, 4, 16]. We observe that when Na=4 the RefAtomNet achieves the best
performance on val set considering the primary evaluation metrics, i.e., mAP
and AUROC. We thereby use Na=4 in our network setting.

F Discussion of the Model Parameters

We compare the baselines and our proposed method on the prioritized perfor-
mances in terms of mAP for val and test sets, and the amount of the trainable
parameters in Tab. 5. Most of the approaches used for the visual language model
preserve more than 100M trainable parameters compared to the approaches from
the atomic action localization group. Compared with the most outperforming
baseline BLIPv2 [3], our proposed new modules only result in the increment of
27M parameters, while delivering promising mAP improvements by 3.85% and
4.33%, on the val and test sets. Compared with the method of the largest scale
in the baselines, i.e., Singularity, our method delivers 13.55% and 15.34% mAP
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Table 5: A comparison of the model trainable parameters and the performance. The
mAP on the val and test sets are shown.

Dataset I3D X3D MViTv2-B VideoMAE2-B Hiera-B Singularity AskAnything MeVTR Clip4Clip XClip BLIPv2 RefAtomNet

NParameters 25M 3.76M 71M 87M 52M 203M 0.66M 164M 149M 150M 187M 214M
mAPV al 44.04 44.45 42.32 42.02 42.74 42.43 51.42 38.42 39.48 42.46 52.13 55.98
mAPTest 44.64 46.34 42.60 41.87 41.14 42.18 52.25 36.27 37.17 40.82 53.19 57.52

Table 6: Experimental results of the most outperforming baselines and RefAtomNet
when rain noise and fog noise perturbations are added into the videos in the test phase.

Method
Test-time rain noise perturbation Test-time fog noise perturbation

mIOU mAP AUROC mIOU mAP AUROC mIOU mAP AUROC mIOU mAP AUROC

Val Test Val Test

Singularity [2] 14.44 39.32 56.17 15.35 39.95 53.28 14.05 39.46 56.68 15.84 40.58 53.43
XCLIP [6] 36.92 41.85 55.53 33.10 38.93 57.15 37.24 40.44 52.90 33.99 36.33 52.41
AskAnything [4] 20.63 51.05 65.69 21.91 51.69 68.54 24.37 49.56 63.51 25.27 50.35 66.78
BLIPv2 [3] 31.53 51.26 65.60 31.93 53.15 69.55 35.85 48.53 63.18 35.65 52.55 68.00

Ours 37.24 55.20 68.89 36.02 56.99 73.72 41.00 51.08 65.25 39.38 55.07 71.42

benefits on the val and test sets with only 11M more parameters, indicating the
effectiveness of our method for RAVAR by suppressing the irrelevant information
in the visual stream.

G Robustness against Disturbances on Video during Test
Time

During practical usage, the input video has the possibility to be disturbed by
different video noises. To assess the robustness of the proposed model and the
most outperforming baselines, we conduct a robustness ablation study in Tab. 6
to simulate the rain and fog noises and Tab. 7 for shot and Gaussian noises on
the val and test sets according to several perturbation types derived from [7]. In
the following, we will deliver the definition of different test time perturbations
and the analysis of each perturbation in detail.

G.1 Rain Noise

The process of injecting rain noise into video frames is engineered to emulate
the visual manifestation of precipitation within video sequences. This procedure
can be delineated through the following steps:

– We generate synthetic raindrops featuring diverse sizes, intensities, and de-
scent angles. This is accomplished by conceptualizing raindrops as ellipses
characterized by variable degrees of transparency and blur to mimic motion.
Consequently, we represent raindrops as an aggregation of ellipses.

R(x, y) =
{
(xi, yi, r

l
i, r

s
i , θi, αi) | i = 1, . . . , N

}
, (1)
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where (xi, yi) are the coordinates of the i-th raindrop, rli and rsi denote
the long radius and the short radius, θi is the falling angle, and αi is the
transparency.

– Then the generated raindrops are inserted onto each frame of the video. This
involves blending the raindrop layer with the original video frames using beta
blending, where the final pixel value I ′ is given by:

I ′ = (1− βi)I + βiR, (2)

I is the original pixel intensity, and R is the raindrop intensity.
– Finlay we apply random motion blur to the raindrops to simulate the falling

motion. The extent of the blur corresponds to the speed and angle of the
rain, enhancing the realism of the effect.

The parameters for raindrop generation, such as size, intensity, angle, and speed,
are chosen and varied randomly to simulate natural rain. Additionally, the am-
bient lighting and camera effects, like reflections and refractions, can also be
considered for a more realistic simulation. The transparency αi is chosen ran-
domly from [0.9, 0.8, 0.7, 0.6, 0.5]. The long radius of the ellipse is chosen as 20
pixels while the short radius of the ellipse is chosen as 1 pixel. The position of
the raindrop is randomly chosen among all the positions of one frame. The angle
θi is chosen randomly in [−10◦, 10◦]. βi is randomly chosen from [0, 0.5]. We
choose N = 83 for each frame in the perturbed videos.

G.2 Fog Noise

The fog noise is intended to replicate the visual phenomenon of fog, which is
distinguished by diminished contrast, decreased saturation, and a progressive
white overlay that intensifies with distance. The procedure for simulating fog
within video frames can be executed as follows. Given:

– Map size n = ImageSize,
– Wibble decay factor d = 3,
– Initial step size s = n,
– Initial wibble value w = 100.

The plasma fractal heightmap H is initialized with dimensions n and starting
values. At each iteration:

– Square step: For each square in the grid:

Hi+ s
2 ,j+

s
2
=

Hi,j +Hi+s,j +Hi,j+s +Hi+s,j+s

4
+∆w, (3)

where ∆w is a random value from [−w,w] and s is the current step size.
– Diamond step: For each diamond in the grid, we calculate the center value

as the mean of the four corner points plus a random value:

Hi,j =
Hi− s

2 ,j
+Hi+ s

2 ,j
+Hi,j− s

2
+Hi,j+ s

2

4
+∆w. (4)
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– Update the step size and wibble value:

s :=
s

2
, w :=

w

d
. (5)

This process repeats until the step size s ≥ 2.

Fog Effect Application. For a given image sequence, the fog effect is applied
based on a severity level which determines constants (C1, C2) from a predefined
set. The fog layer F is generated by multiplying the plasma fractal with constant
C1:

F = C1 × PlasmaFractal(wibbledecay = C2). (6)

Then, for each image I in the sequence, the fog is applied as follows:

– Scale the image I to the range [0, 1].
– Trim I to the central region of interest.
– Add the fog layer F to I, ensuring the fog does not exceed the original

brightness.
– Apply normalization to maintain image contrast:

Ifog = clip
(

I × max(I)
max(I) + C1

, 0, 1

)
× 255. (7)

The result is the fog-enhanced image sequence. We choose C1 = 1.5 and
C2 = 2.5 to simulate the fog effect.

G.3 Analysis of the Rain and Fog Noises

The experimental results by injecting rain and fog noises on the val and test sets
are delivered in Tab. 6. We conduct experiments on the four most outperforming
baselines selected from our benchmark, i.e., Singularity [2], XCLIP [6], AskAny-
thing [4], BLIPv2 [3], and on our proposed method RefAtomNet. We first observe
that by injecting two types of noise, all the methods show performance decay,
while the fog noise demonstrates more negative influence on the RAVAR perfor-
mances compared with the rain noise, as fog noise will blur more detailed visual
cues. RefAtomNet delivers the best performances by 37.24%, 55.20%, 68.89%
and 36.02%, 56.99%, 73.72% of mIOU, mAP, and AUROC, on val and test sets
respectively under test-time rain noise, while delivering 41.00%, 51.08%, 65.25%
and 39.38%, 55.07%, 71.42% of mIOU, mAP, and AUROC, on val and test sets
respectively under test-time fog noise.

G.4 Shot Noise

Shot noise, alternatively known as Poisson noise, is characterized by fluctuations
that conform to a Poisson distribution. This type of noise is predominantly
associated with the quantized nature of electronic charges or photons in optical
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Table 7: Experimental results of the most outperforming baselines and RefAtomNet
when shot noise and Gaussian noise perturbations are added into the videos in the test
phase.

Method
Test-time shot noise perturbation Test-time Gaussian noise perturbation

mIOU mAP AUROC mIOU mAP AUROC mIOU mAP AUROC mIOU mAP AUROC

Val Test Val Test

Singularity [2] 8.77 39.20 55.85 9.26 40.34 53.11 6.28 38.00 54.37 6.15 40.36 53.53
XClip [6] 30.65 40.62 53.79 29.47 37.11 54.64 34.15 40.38 53.63 31.48 37.41 54.88
AskAnything [4] 21.52 48.35 62.96 23.29 49.03 66.26 20.80 47.54 60.88 22.41 47.26 64.54
BLIPv2 [3] 32.12 50.31 64.19 32.39 52.24 68.12 31.75 48.63 62.08 32.22 49.81 66.13

Ours 37.44 52.24 66.30 36.35 54.71 70.79 36.48 50.16 63.61 34.78 52.08 68.79

systems. The injection of shot noise into video frames aims to simulate the
intrinsic randomness encountered in real camera sensors, which is a consequence
of the quantum properties of light. To incorporate shot noise into a video frame,
execute the subsequent steps for each pixel within such frame:

– Denote the original pixel value as I, which represents the mean number of
photons (or intensity) detected.

– Generate a new pixel value I ′, which is a random value drawn from the
Poisson distribution with mean I. The new value can be represented as:

I ′ ∼ Poisson(s ∗ I) = e−(s∗I)(s ∗ I)k

k!
, (8)

where k is the actual observed count, and s is the severity chosen as 5.

G.5 Gaussian Noise

Gaussian noise is widely used in video data processing because it closely mimics
the natural noise presented in electronic devices and sensors due to thermal
motion and other factors. Additionally, its mathematical properties and ease of
implementation make it a standard choice for benchmarking and testing video
processing algorithms. To inject Gaussian noise into video frames, we follow the
following steps for each pixel in each frame:

– We first determine the desired noise level, which is typically characterized
by the standard deviation σ of the Gaussian distribution. The mean µ of the
distribution is often set to 0 for noise injection purposes.

– For each pixel in the frame with the original intensity value I, we generate
a random value n from a Gaussian distribution with mean µ and standard
deviation σ. This procedure can be represented as:

n ∼ N (µ, σ2). (9)
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Original Data Fog effect Rain effect

Shot noise effect Gaussian noise effect

Fig. 1: An overview of a perturbed frame by using four different kinds of perturbation.

– Finally, we add the noise value n to the original pixel value I to obtain the
new noisy pixel value I ′:

I ′ = I + n. (10)

The resulting noisy pixel values I ′ might exceed the valid range of pixel values
(e.g., 0 to 255 for an 8-bit image). Therefore, it is common to clip the values to
remain within this valid range after the noise has been added. We choose µ = 0
and σ = 0.2 in our experiments.

G.6 Analysis of the Shot and Gaussian Noises

The experimental outcomes resulted from the application of shot and Gaus-
sian noises on the val and test sets are revealed in Tab. 7. Experiments were
conducted with the four highest-performing baselines identified from our bench-
marks, namely, Singularity [2], XCLIP [6], AskAnything [4], BLIPv2 [3], as well
as our method RefAtomNet. Generally, Gaussian noise was deemed to pose a
greater challenge than shot noise due to its propensity to obscure finer visual
details. Reflected in the results, the introduction of both noise types precipitates
a decline in the performance across all evaluated methods, with Gaussian noise
exerting a more detrimental impact on the RAVAR performances in comparison
to shot noise. In scenarios characterized by test-time shot noise, RefAtomNet
won the competition, achieving mIOU, mAP, and AUROC scores of 37.44%,
52.24%, 66.30% on the val set, and 36.35%, 54.71%, 70.79% on the test set,
respectively. Notably, under conditions of test-time Gaussian noise, RefAtomNet
reported mIOU, mAP, and AUROC scores of 36.48%, 50.16%, 63.61% on the
val set, and 34.78%, 52.08%, 68.79% on the test set, respectively. We further
provide the visualizations of these four different kinds of perturbations in Fig. 1.
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Text reference: The man wearing glasses on the left. Text reference: The man on the left.

Text reference: The man who is facing us. Text reference: The man who wears gray vest.

Text reference: The man who wears black scarf Text reference: The man wearing glasses.

Ground Truth: Prediction BLIPv2: Prediction Ours:
Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Watch 
(PI), X 

Ground Truth: Prediction BLIPv2: Prediction Ours:
Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Watch 
(PI), X 

Ground Truth: Prediction BLIPv2: Prediction Ours:

Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Watch (PI), 
Talk to (PI) , Sit (PM), Listen 
to (PI)

Ground Truth: Prediction BLIPv2: Prediction Ours:

Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Watch 
(PI), X 

Ground Truth: Prediction BLIPv2: Prediction Ours:
Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Watch 
(PI), X 

Ground Truth: Prediction BLIPv2: Prediction Ours:
Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Talk to (PI),
Watch (PI)

Stand (PM), Watch (PI), 
Talk to (PI) ,  Listen to (PI)

Fig. 2: Qualitative results for the test time rephrasing.

H Qualitative Results for Test Time Rephrasing

We further deliver a sample towards test rephrasing, where we referred the per-
son of interest with different descriptions in Fig. 2. We set the threshold as 0.91
for both of the models to get the multi-label predictions. The person of interest
is textually referred to as the man wearing glasses on the left, the man on the
left, the man who is facing us, the man who wears gray vest, the man who wears
black scarf, and the man wearing glasses, respectively. We observe that the pre-
dicted locations of the person do not change among different textual descriptions,
varying from the visual appearance attributes leveraged for the indication. The
atomic action recognition results of our RefAtomNet preserve consistency and
deliver concrete predictions for the person of interest. However, there are small
fluctuations in the atomic action predictions of the baseline BLIPv2 [3]. These re-
sults demonstrate the strong generalizability of our approach towards the varied
descriptions during the test time, which is essential for real-world applications
since the textual descriptions may differ among different users according to the
person’s appearance attributes.

I More Samples of the RefAVA Dataset

In this section, we deliver more samples from the contributed RefAVA dataset,
as shown in Fig. 3, where for each instance, the textual reference sentence is
displayed in the light orange box on the right side of the image, the atomic
action annotations and the bounding box are shown on the top of the image and
within the image itself using a green box.
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Text 

reference: The 

man in white 

clothes.

Ground Truth:

Stand (PM), Carry/Hold (OM), Talk to (PI)
Ground Truth:

Stand (PM)

Text 

reference: 

The woman 

on the right 

who is in 

background.

Ground Truth:

Stand (PM), Listen to (PI)

Text 

reference: 

The boy on 

the left.

Ground Truth:
Stand (PM), Carry/Hold (OM), Talk to (PI), 
Watch (PI)

Text 

reference: 

The woman in 

purple dress.

Ground Truth:

Stand (PM)

Text 

reference: 

The man in 

the center who 

wears white 

clothes.

Ground Truth:

Stand (PM), Carry/Hold (OM), Write (OM)

Text 

reference: 

The woman on 

the right who 

has black 

short hair and 

wears light 

pink clothes.

Ground Truth:
Sit (PM), Carry/Hold (OM), Listen to 
(PI), Watch (PI)

Text 

reference: 

The man in 

black clothes.

Ground Truth:

Stand (PI), Carry/Hold (OM), Talk to (PI)

Text 

reference: 

The woman 

with short hair.

Ground Truth:
Stand (PM), Carry/Hold (OM), Listen 
to (PI), Watch (PI)

Text 

reference: 

The boy who 

wears yellow 

hat.

Ground Truth:

Stand (PM), Talk to (OM), Watch (PI)

Text 

reference: 

The girl 

wearing black 

hat and blue 

jacket.

Ground Truth:

Stand (PM), Carry/Hold (OM), Watch (PI)

Text 

reference: 

The child on 

the center left 

who wears 

purple pants.

Ground Truth:

Sit (PM)

Text 

reference: 

The baby in 
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clothes.

Ground Truth:

Bend/Bow (PI), Carry/Hold (OM)

Text 

reference: 

The woman in 
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who wears 

black clothes.

Ground Truth:

Stand (PM), Carry/Hold (OM), Watch (PI)

Text 

reference: 

The man who 

wears black 

clothes.

Ground Truth:

Walk (PM), Talk to (OM), Watch (PI)

Text 

reference: 

The woman 

with blond hair

Ground Truth:
Stand (PM), Carry/Hold (OM), Talk to 
(PI), Watch (PI)

Text 

reference: 

The woman in 

dark brown 
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Ground Truth:
Stand (PM), Carry/Hold (OM), Listen 
to (PI), Watch (PI)

Text 

reference: 

The man in 
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shirt

Ground Truth:

Lie/Sleep (PM), Listen to (PI), Watch (PI) 

Text 

reference: 

The boy who 

has short 

black hair.

Ground Truth:

Sit (PM), Talk to (PI), Watch (PI)

Text 

reference: 

The man with 

short black 

hair.

Ground Truth:
Stand (PM), Carry/Hold (OM),Chop 
(PM), Watch (PI)

Text 

reference: 

The second 

woman on the 

right.

Ground Truth:
Stand (PM), Carry/Hold (OM), Talk to 
(PI), Watch (PI)

Text 

reference: 

The woman on 

the left who 

wears light 

brown dress.

Ground Truth:
Stand (PM), Carry/Hold (OM), Listen 
to (PI), Watch (PI)

Text 

reference: 

The woman on 

the left who 

wears green 

dress and has 

long brown 

hair.

Ground Truth:
Stand (PM), Carry/Hold (OM), Listen 
to (PI)

Text 

reference: 

The first 

woman on the 

right.

Ground Truth:
Stand (PM), Carry/Hold (OM), Listen 
to (PI), Watch (PI)

Text 

reference: 

The bride on 

the left who 

wears white 

dress.

Fig. 3: More samples from our RefAVA dataset.
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