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1 Implementation Details.

We build our model on top of the original 3D-GS [4] PyTorch implementation.
Similar to 3D-GS, we train our method for 30,000 iterations across all scenes and
apply a growing and pruning step until 15,000 iterations, every 100 iterations,
starting from the 1500 iterations. Throughout our implementation, we utilized
small MLPs with a hidden size of 32. Our hash-grid positional encoder had
16 levels, with 2 features per level and a max size of hash maps 2!°. We used
Tanh as the final activation function for the opacity MLP and Sigmoid for the
color MLP while for the covariance MLP we opted not to use any activation
function. To estimate the curvature of each point cloud we used k=10 neighbours
[8], while for the densification step we selected k=10 neighbours for the low-
curvature and k=2 neighbours for the high-curvature regions. We trained our
model using Adam optimizer. We set the learning rate of opacity MLP to 0.002,
of color to 0.008, of the displacements GNN to 0.01 and to the covariance MLP
to 0.004. All learning rates were subject to exponential scheduling. We set the
minimum opacity threshold to 0.005. In our SAGS-Lite implementation we set
k=5 midpoints.

2 Extensive Results.

Per-Scene Results. In this section we report extensive per-scene results for
the novel-view synthesis experiments presented in the main paper. In particular,
in Tab. [I| we evaluate the rendering quality of each scene in Tanks&Temples [5]
and Deep Blending [3]| scenes and Tab. [2f on the MipNeRF-360 [1] dataset. In
Tab. [3] we compare the proposed SAGS and SAGS-Lite models with the 3D-GS
and Scaffold-GS models in terms of per-scene size. As can be easily seen the
proposed models can outperform the baseline methods in terms of visual quality
while, at the same, reducing the storage requirements of the model.

Multi-Scale Scenes. In addition to the aforementioned datasets, we also eval-
uated the performance of the proposed model in more challenging scenes using
the multi-scale BungeeNeRF dataset [9]. As can be seen in Tab. [4] the proposed
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Table 1: Per-scene rendering quality evaluation for Tanks&Temples |5] and
Deep Blending |3| datasets.

Scene ‘ Truck Train Dr Johnson Playroom

Method ‘PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
3D-GS |4] 25.19 0.879 0.148 21.10 0.802 0.218 28.77 0.899 0.244 30.04 0.906 0.241
Mip-NeRF360 |1} 24.91 0.857 0.159 19.52 0.660 0.354 29.14 0.901 0.237 29.66 0.900 0.252
iNPG [7] 23.26 0.779 0.274 20.17 0.666 0.386 27.75 0.839 0.381 19.48 0.754 0.465
Plenoxels |2] 23.22 0.774 0.335 18.93 0.663 0.422 23.14 0.787 0.521 22.98 0.802 0.499
Scaffold-GS [6]  25.77 0.883 0.147 22.15 0.822 0.206 29.80 0.907 0.250 30.62 0.904 0.258
Ours-Lite 25.95 0.881 0.143 22.36 0.810 0.220 28.61 0.890 0.285 29.53 0.888 0.300
Ours 26.31 0.894 0.134 23.44 0.837 0.198 29.99 0.912 0.234 30.96 0.913 0.248

Table 2: Per-scene rendering quality evaluation for Mip-NeRF360 |[1]
dataset.

Scene | bicycle garden stump room counter kitchen bonsai

Method |PSNR SSIM LPIPS|PSNR SSIM LPIPS|PSNR SSIM LPIPS|PSNR SSIM LPIPS|PSNR SSIM LPIPS|PSNR SSIM LPIPS|PSNR SSIM LPIPS
3D-GS [4 25.25 0.771 0.205 | 27.41 0.868 0.103 | 26.55 0.7750.210 | 30.63 0.914 0.220 | 28.70 0.905 0.204 | 30.32 0.922 0.129 | 31.98 0.938 0.205
MNeRF360 [1][ 24.37 0.685 0.301 | 26.98 0.813 0.170 | 26.40 0.744 0.261 | 31.63 0.913 0.211 | 29.55 0.894 0.204 |32.23 0.920 0.127 | 33.46 0.941 0.176
iNPG [7] 22.19 0.491 0.487 | 24.60 0.649 0.312 | 23.63 0.574 0.450 | 29.27 0.855 0.301 | 26.44 0.798 0.342 | 28.55 0.818 0.254 | 30.34 0.890 0.227

Plenoxels |2] 21.91 0.496 0.506 | 23.49 0.606 0.386 | 20.66 0.523 0.503 | 27.59 0.841 0.419 | 23.62 0.759 0.441 | 23.42 0.648 0.447 | 24.67 0.814 0.398
Scaffold-GS 24.50 0.705 0.306 | 27.17 0.842 0.146 | 26.27 0.784 0.284 | 31.93 0.925 0.202 | 29.34 0.914 0.191 | 31.30 0.928 0.126 | 32.70 0.946 0.185

25.17 0.706 0.317 | 31.67 0.923 0.203 | 28.93 0.910 0.194 | 30.70 0.921 0.137 | 33.31 0.933 0.210
26.87 0.776 0.230 | 32.27 0.933 0.183 | 29.86 0.922 0.176 | 31.96 0.935 0.115 | 34.04 0.955 0.167

Ours-Lite 24.41 0.719 0.287
Ours 25.30 0.759 0.231

25.62 0.775 0.230
27.25 0.837 0.151

Table 3: Storage size (MB) comparison between the proposed and the base-
line methods. The proposed method achieves high fidelity rendering quality while
effectively reducing the storage requirements of the scene.

Method‘Scenes ‘Truck Train‘Dr Johnson Playroom‘bicycle garden stump room counter kitchen bonsai

3D-GS |4 578 240 715 515 1291 1268 1034 327 261 414 281
Scaffold-GS [6|| 107 66 69 63 248 271 493 133 194 173 258
SAGS 89 61 63 53 195 128 199 104 95 99 134
SAGS-Lite 40 29 32 24 113 76 103 52 42 43 T

method can outperform Scaffold-GS and 3D-GS baseline while effectively re-
ducing the size of the scene by up to 12.4 x using our full model and 36.7 x
using SAGS-Lite. Importantly, SAGS-Lite demonstrates superior performance
compared to the 3D-GS method across all scenes, often by a substantial margin,
while also requiring significantly less memory. Qualitative results on rendering
quality and structure preservation are provided in Fig.|lfand Fig. [2|respectively.

Efficacy of neighborhood size. We further investigated the performance of
the proposed model under different neighborhood sizes k. In particular, in Tab. [5]
we report the performance of SAGS, while using a different number of neigh-
bours k for the densification step and the aggregation function of the GNN. We
observed that k=10 neighbors achieved the best performance while retaining the
compact size of the model. As can be easily seen using larger values of k for the
densification step, despite achieving similar rendering quality, results in larger
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Table 4: PSNR (dB) and Storage size (MB) for BungeeNeRF @ scenes.

Scene ‘ Amsterdam  Bilbao Pompidou  Quebec Rome Hollywood
Method ‘PSNR Mem‘PSNR Mem‘PSNR Mem‘PSNR Mem‘PSNR Mem‘PSNR Mem

3D-GS E] 25.74 1453|26.35 1337]21.20 2129 28.79 1438|23.54 1626 | 23.25 1642
Scaffold-GS|27.10 243 [27.66 197 [25.34 230 | 30.51 166 |26.50 200 |24.97 182

Ours-Lite ‘25.89 68 ‘27.12 55 ‘24.73 58 {28.76 55 {25‘36 64 ‘24.21 58

Ours 27.48 228 |27.91 150 |25.54 177 | 30.72 113 |26.57 153 |25.21 132
Ground Truth __Scaffold-GS ] SAGS-Lite

R

Fig. 1: Depth Structural Preservation. Comparison between the proposed and the
Scaffold-GS method on the BungeeNeRF dataset. The proposed method can accurately
capture sharp edges and high frequency details that Scaffold-GS method fails to model.

models. On the contrary, using smaller neighborhoods, although reducing the
storage requirements, results in lower quality renderings.

Similarly, by aggregating large neighbourhoods on the GNN reflects in a ren-
dering quality drop since each Gaussian becomes depended to distant Gaussians
with dissimilar attributes. Using smaller neighborhoods, translates in larger stor-
age requirements since more points are generated at every densification step. We
opted to select k=10 since it was a sweet spot between model size and rendering
performance.

3 Limitations and Ethical Considerations.

3D-GS has two severe limitations: 1) As has been extensively highlighted in the
literature @I, SfM techniques often struggle to generate 3D points in texture-
less regions, leading to empty areas. Consequently, the densification strategy
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Scaffold-GS

Fig. 2: Depth Structural Preservation. Comparison between the depth maps of
the proposed and the Scaffold-GS method on the BungeeNeRF dataset. As can be seen
from the depth maps, both SAGS and SAGS-Lite models outperform the structural
preservation of Scaffold-GS. Note that the proposed models can not only preserve the
sharp edges of the scene but also suppress “floater” artifacts that are visible on the
Scaffold-GS depth maps.

Table 5: Ablation study on the number of neighbours k. We evaluated the
influence of number of neighbours selected in densification and in the aggregation
function. The reported experimentation of various k values was performed on the Deep
Blending and the Tanks&Temples datasets.

Scene Deep Blending Tanks& Temples
Ablation|Metrics PSNR 1 SSIM 1 LPIPS | Mem ||PSNR 1 SSIM 1 LPIPS | Mem |

Densification k= 2 | 29.89 0.903 0.256 46 24.00 0.853 0.173 60
Densification k=5 | 30.11  0.908 0.248 50 2448 0.859 0.169 68
Densification k= 10| 30.47 0.913 0.241 58 24.88 0.866 0.166 75
Densification k= 15| 30.46 0.912  0.243 66 24.89 0.865 0.167 88

GNN k=5 30.17  0.910 0.247 68 24.38 0.852  0.160 82
GNN k=10 30.47 0.913 0.241 58 24.88 0.866 0.166 75
GNN k=15 3042 0911 0.244 59 24.85 0.863  0.169 75
GNN k= 20 30.01  0.909 0.250 61 24.20 0.847  0.178 73

faces challenges in creating reliable Gaussians to encompass the scene due to
inadequate initialization. 2) Similar to the initialization of 3D-GS, the growing
operator builds upon the existing Gaussians which could further limit the gen-
eration of new Gaussians in under-represented areas. We attempted to tackle
both such limitations using an initial densification step that populates the low-
curvature regions that are usually under-sampled. However, relying on k-NN



SAGS: Structure-Aware 3D Gaussian Splatting Supplementary Material 5

estimates (i.e. curvature and normals) for identifying these regions could not
ensure the mitigation of such issues.

Generating novel views, especially when training data is sparse, may result in
inaccurate scene details. This is particularly important in real-world applications
such as GPS maps, where it’s crucial to understand that these methods provide
estimates.
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