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Abstract. Following the advent of NeRFs, 3D Gaussian Splatting (3D-
GS) has paved the way to real-time neural rendering overcoming the
computational burden of volumetric methods. Several extensions of 3D-
GS have been proposed to achieve compressible and high-fidelity perfor-
mance. However, by employing a geometry-agnostic optimization scheme,
these methods neglect the inherent 3D structure of the scene, thereby
restricting the expressivity and the quality of the representation, re-
sulting in various floating points and artifacts. In this work, we pro-
pose a structure-aware Gaussian Splatting method (SAGS) that implic-
itly encodes the geometry of the scene, which reflects to state-of-the-art
rendering performance and reduced storage requirements on benchmark
datasets. SAGS is founded on a local-global graph representation that
facilitates the learning of complex scenes and enforces meaningful point
displacements that preserve the scene’s geometry. Additionally, we intro-
duce a lightweight version of SAGS, using a simple yet effective mid-point
interpolation scheme, which showcases a compact representation of the
scene with up to 24× size reduction without the reliance on any com-
pression strategies. Extensive experiments across multiple benchmark
datasets demonstrate the superiority of SAGS compared to state-of-the-
art 3D-GS methods under both rendering quality and model size. Be-
sides, we demonstrate that our structure-aware method can effectively
mitigate floating artifacts and irregular distortions of previous methods
while obtaining precise depth maps.
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1 Introduction

Novel View Synthesis (NVS) is a long-studied problem that aims to generate im-
ages of a scene from a specific point of view, using only a sparse set of images from
different viewpoints with known camera parameters. Due to its diverse applica-
tions spanning from Virtual Reality (VR) [7] to content creation [4, 33], novel
view synthesis has garnered significant attention. With the advent of Neural
Radiance Field (NeRF) [22], an enormous amount of methods have been pro-
posed to utilize volumetric rendering, achieving remarkable rendering results.

https://eververas.github.io/SAGS/
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3D-GS Proposed Proposed-Lite

PSNR 30.61 dB  LPIPS 0.147  Mem 43 Mb 

PSNR 27.02 dB  LPIPS 0.178  Mem 64Mb 

PSNR 19.33 dB  LPIPS 0.225  Mem 414 Mb 

PSNR 25.91 dB  LPIPS 0.187 Mem 39 Mb PSNR 22.96 dB  LPIPS 0.349  Mem 240 Mb 

PSNR 31.02 dB  LPIPS 0.135  Mem 99 Mb 

Fig. 1: Structure-Aware GS (SAGS) leverages the intrinsic structure of the scene
and enforces point interaction using graph neural networks outperforming the struc-
ture agnostic optimization scheme of 3D-GS [15]. The 3D-GS method optimizes each
Gaussian independently which results in 3D floaters and large point displacements
from their original position (left). This can be also validated in the histogram of dis-
placements (right) between the initial and the final position (mean) of a 3D Gaussian.
Optimization-based methods neglect the scene structure and displace points far from
their initial position to minimize rendering loss, in contrast to SAGS that predicts
displacements that preserve the initial structure. The 3D-GS figures are taken directly
from the original 3D-GS website.

However, albeit achieving highly detailed results, volumetric rendering methods
fail to produce real-time renderings that hinder their real-world applications.

Recently, Kerbl et al . [15] introduced 3D Gaussian Splatting (3D-GS) to
tackle this limitation using a set of differentiable 3D Gaussians that can achieve
state-of-the-art rendering quality and real-time speed on a single GPU, out-
performing previous NeRF-based methods [1–3, 22]. In 3D-GS, the scene is
parametrised using a set of 3D Gaussians with learnable shape and appearance
attributes, optimized using differentiable rendering. To initialize the 3D Gaus-
sians, Kerbl et al . [15] relied on the point clouds derived from COLMAP [31],
neglecting any additional scene structure and geometry during optimization.

Undoubtedly, one of the primary drawbacks of the 3D-GS method is the ex-
cessive number of points needed to produce high-quality scene renderings. Fol-
lowing the success of 3D-GS, numerous methods have been proposed to reduce
the storage requirements using compression and quantization schemes [9,17,24]
while retaining the rendering performance. However, similar to 3D-GS, each
Gaussian is optimized independently to fit the ground truth views, without the
use of any additional structural inductive biases to guide the optimization. As can
be seen in Fig. 1 (right), such a naive setting results in points being displaced
far away from their initialization, thus neglecting their initial point structure
and introducing floating points and artifacts [38] (highlighted in with red ar-
rows). Apart from a significant degradation in the rendering quality, neglecting
the scene’s geometry directly influences the scene’s properties, including depth,
which thereby limits its VR/AR applications.

In this study, we propose a structure-aware Gaussian splatting method that
aims to implicitly encode the scene’s geometry and learn inductive biases that
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lead to point displacements that maintain the topology of the scene. Intuitively,
points within the same local region often share common attributes and features,
such as normals and color, that are neglected by current 3D-GS methods. In-
spired by the success of Point Cloud analysis [28], we found our method on a
graph constructed from the input scene and learn to model 3D Gaussians, as
displacements from their original positions. The constructed graph serves as an
inductive bias that aims to encode and preserve the scene structure while learning
robust Gaussian attributes. Unlike the 3D-GS, the proposed method leverages
the inter- and intra-connectivity between 3D point positions and learns to pre-
dict the Gaussian attributes using graph neural networks. Using both local and
global structural information the network can not only reduce artifact floaters,
but it can also increase the expressivity of the network leading to accurate scene
representations compared to structure agnostic 3D-GS methods.

Under a series of experiments on different datasets and scenes, we evaluate
the proposed method in terms of rendering quality, structure preservation, stor-
age, and rendering performance, demonstrating the importance of structure in
3D Gaussian splatting. The proposed method can outperform the rendering qual-
ity of 3D-GS [15] while reducing the memory requirements without sacrificing
rendering speed. To sum up, our contributions can be summarized as follows:

– We introduce the first structure-aware 3D Gaussian Splatting method that
leverages both local and global structure of the scene.

– We bridge the two worlds between point cloud analysis and 3D Gaussian
splatting, leveraging graph neural networks on the 3D point space.

– We showcase that our method can produce state-of-the-art rendering quality,
while reducing the memory requirements by up to 11.7× and 24× with our
full and lightweight models, respectively.

2 Related Work

Traditional scene reconstruction. Traditional 3D scene reconstruction tech-
niques [30] utilize the structure-from-motion (SfM) pipeline [31] for sparse point
cloud estimation and camera calibration, and further apply multi-view stereo
(MVS) [11] to obtain mesh-based 3D scene reconstructions. Specifically, the tra-
ditional pipeline starts with a feature extraction step that obtains robust feature
descriptors like [19] and Superpoint [8], followed by a feature matching module,
e.g ., SuperGlue [29], that matches the 2D image descriptors. Pose estimation
and bundle adjustment steps are conducted to obtain all the reconstructed pa-
rameters, according to Incremental SfM [6], Global SfM [42], or Hybrid-SfM [5].
Finally, MVS methods [14] are employed to reconstruct depth and normals of the
target 3D object and subsequently fuse them to produce the final reconstruction.
NeRF based scene reconstruction. Neural radiance fields (NeRF) [22] intro-
duced an implicit neural representation of 3D scenes, that revolutionized neural
rendering based novel-view synthesis achieving remarkable photo-realistic ren-
ders. Several methods have extended NeRF model by including a set of appear-
ance embeddings [21] and improved training strategies [32,37,41] to tackle com-
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plex and large-scale scenes. MipNeRF360 [2] achieved state-of-the-art rendering
quality by addressing the aliasing artifacts observed in previous methods, suf-
fering however from exceptionally slow inference times. To improve the training
and rendering efficiency of NeRFs, numerous methods have utilized grid-based
structures to store compact feature representations. Interestingly, Plenoxels [10]
optimized a sparse voxel grid and achieved high-quality rendering performance
without resorting to MLPs. Muller et al . [23] highlighted the importance of
positional encodings for high-fidelity neural rendering and introduced a set of
hash-grid encodings that significantly improved the expressivity of the model.
Despite improving the efficiency compared to the global MLP representations,
grid-based methods still struggle to achieve real-time rendering performance.
3D-GS based scene reconstruction. Recently, 3D Gaussian splatting [15]
has been proposed to construct anisotropic 3D Gaussians as primitives, enabling
high-quality and real-time free-view rendering. Similar to NeRFs, 3D-GS at-
tempts to overfit the scene by optimizing the Gaussian properties. However, this
usually results in an enormous amount of redundant Gaussians that hinder the
rendering efficiency and significantly increase the memory requirements of the
model. Several methods [17,24] have attempted to reduce memory consumption
by compressing the 3D Gaussians with codebooks, yet with the structure ne-
glected, which could be vital in both synthesizing high-quality rendering and
reducing the model size. Most relevant to our work, Scaffold-GS [20] introduced
a structured dual-layered hierarchical scene representation to constrain the dis-
tribution of the 3D Gaussian primitives. However, Scaffold-GS still relies on
structure-agnostic optimization which neglects the scene’s global and local ge-
ometry, resulting in locally incoherent 3D Gaussians. This not only degrades
the rendering quality but also significantly impacts the structural properties of
the scene, including its depth. To tackle this, we devise a structure-aware Gaus-
sian splatting pipeline that implicitly encodes the scene structure leveraging the
inter-connectivity of the Gaussians. The proposed method introduces an induc-
tive bias that not only facilitates high-fidelity renderings using more compact
scene representations but also preserves the scene topology.

3 Method

3.1 Preliminaries: 3D Gaussian Splatting

3D Gaussian Splatting [15] is a state-of-the-art novel-view synthesis method that
relies on explicit point-based representation. In contrast to the implicit repre-
sentation of NeRFs that require computationally intensive volumetric rendering,
3D-GS renders images using the efficient point-based splatting rendering [36,39].
Each of the 3D Gaussians is parametrized by its position µ, covariance matrix
Σ, opacity α and color c and has a density function defined as:

f(x|µ,Σ) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

where x is an arbitrary 3D point. To prevent the occurrence of non-positive
semi-definite covariance matrices the authors proposed to decompose covariance
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Fig. 2: Overview of the proposed method. Given a point cloud obtained from
COLMAP [31], we initially apply a curvature-based densification step to populate
under-represented areas. We then apply k-NN search to link points p within local
regions and create a point set graph. Leveraging the inductive biases of graph neural
networks, we learn a local-global structural feature Φ(pi, fi) for each point. Using a set
of small MLPs we decode the structural features to 3D Gaussian attributes, i.e., color
c, opacity α, covariance Σ and point displacements ∆p for the initial point position.
Finally, we render the 3D Gaussians following the 3D-GS Gaussian rasterizer [15].

matrix using rotation and scaling Σ = RSSTRT where the rotation is rep-
resented using quaternions. Finally, the 3D Gaussians are splatted on the 2D
image, and their corresponding 2D pixel color is calculated by blending the N
ordered Gaussians at the queried pixel as:

C =

N∑
i=1

αi

i−1∏
j=1

(1− αj)ci (2)

where ci and αi are the color and the opacity of Gaussian i.

3.2 Structure-Aware 3D Gaussian Splatting

In this work, we propose a structure-aware 3D Gaussian Splatting method, that
takes as input a sparse point cloud P ∈ RM×3 from COLMAP [31] along with
a set of sparse views with known camera parameters and learns a set of 3D
Gaussians that fit the input views while maintaining the initial structure. The
proposed method can be divided into three main components: a) the curvature-
aware densification, b) the structure-aware encoder, and c) the refinement layer.
Fig. 2 illustrates the pipeline of the proposed method.

Curvature-Aware Densification. Undoubtedly, the performance of 3D-GS
methods is significantly impacted by the sparse initialization of the Gaussians,
which relies on COLMAP. In scenarios with challenging environments featuring
texture-less surfaces, conventional Structure-from-Motion (SfM) techniques fre-
quently fall short of accurately capturing the scene details, and thus are unable
to establish a solid 3D-GS initialization. To tackle such cases, we introduce a
densification step that aims to populate areas with zero or few points.

In essence, 3D-GS methods attempt to reconstruct a scene from a sparse point
cloud by employing a progressive growing scheme. This approach closely aligns
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with the well-explored field of point cloud upsampling. Drawing inspiration from
the recent Grad-PU method [12], we incorporate an upsampling step to augment
the point cloud’s density, particularly in regions characterized by low curvature,
which are typically under-represented in the initial COLMAP point cloud. We
estimate the Gaussian mean curvature of the point cloud P following the local-
PCA approach [25,26]. To generate a set of midpoints pm, we define a k-nearest
neighbour graph for each of the low curvature points p ∈ PL ⊂ P and calculate
its midpoints as:

pm =
1

2
(p+ pj), j ∈ k-NN(p) (3)

where PL is the set of points p with curvature lower than a threshold and pj

is a neighbour of p. An illustration of our densification approach is shown in
Fig. 3. Leveraging the mid-point densification step, we can train a lightweight

Fig. 3: Overview of the densification. Given an initial SfM [31] point cloud (left)
we estimate the curvature following [25]. Curvature values are presented color-coded
on the input COLMAP point cloud (middle) where colors with minimum curvature
are closer to the purple color. The curvature-aware densification results in more points
populating the low-curvature areas (right).

model solely on the initial point set P, while the remaining points, along with
their attributes, can be defined on-the-fly. This approach allows us to achieve
both good performance and an extremely compact size, without the need for any
compression scheme. We will refer to this model as SAGS-Lite.

Structure-Aware Encoder. Points that belong to adjacent regions will share
meaningful structural features [27] that could improve scene understanding and
reduce the floating artifacts. To enable point interactions within local regions
and learn structural-aware features, we founded our method on a graph neural
network encoder that aggregates local and global information within the scene.

In particular, the first step of the proposed structure-aware network involves
creating a k-Nearest Neighbour (NN) graph that links points within a local
region. Using such k-NN graph we can enable point interaction and aggregate
local features using graph neural networks. To further enhance our encoder with
global structural information of the scene, we included a global feature that is
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shared across the points. In particular, the structure-aware GNN learns a feature
encoding fi for each point pi ∈ P, using the following aggregation function:

Φ(pi, fi) = ϕ

 ∑
j∈N (i)

wijhΘ(γ(pj), fj − fi,g)

 (4)

where γ(·) denotes a positional encoding function that maps point p to a higher
dimensional space D, g represents a global feature of the scene calculated as the
maximum of the feature encoding max(f), hΘ is a learnable MLP, ϕ represents
a non-linear activation function and wij is an inverse-distance weight defined
from the softmax of the inverse distances between the point pi and its neighbors
N (i):

wij =
dist−1(pi,pj)∑

j∈N (i) dist−1(pi,pj)
(5)

Following [18,34], we opted to utilize relative features fj − fi since it is more effi-
cient than aggregating raw neighborhood features and it enriches the expressivity
of the network. To encode Gaussian positions we selected the high-performing
multi-resolution hash encoding [23] given its lightweight nature and its ability
to expressively encode complex scenes.

Refinement Network. In the final state of the proposed model, the structure-
aware point encodings are decoded to the 3D Gaussian attributes using four
distinct networks, one for each of the attributes; namely position µ ∈ R3, color
c ∈ R3, opacity α ∈ R1 and covariance Σ ∈ R3×3. Aligned with 3DGS, we
parametrize covariance matrix Σ, with a scale vector S ∈ R3 and a rotation ma-
trix R ∈ R3×3 represented with quaternions. To enforce high rendering speed,
we defined each decoder as a small MLP that takes as input the structure-aware
encoding and the view-dependent point positions pi and outputs the Gaussian
attributes for each point. For example, the color attribute c can be defined as:

ci = MLPc(Φ(pi, fi),p
c
i ) (6)

where MLPc(·) represents the color attribute MLP layer and pc
i are the view-

depended point positions, normalized with the camera coordinates xc as:

pc
i =

pi − xc

||pi − xc||2
(7)

Similarly, we predict opacity α, scale S and rotation R attributes using view-
depended point positions. In contrast to the aforementioned view-dependent
Gaussian attributes, we opted to learn the 3D scene, represented from the Gaus-
sian mean positions µ, in a camera-agnostic manner. This way we can enforce
the model to learn the underlying 3D geometry solely using the world-space
point position and shift the bulk of the view-depended attributes to the rest of
the MLPs. Additionally, to enforce stable training, we model the 3D Gaussian
positions µ as displacement vectors from the initial COLMAP positions:

µi = pi +∆pi, ∆pi = MLP(Φ(pi, fi)) (8)
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where pi denotes the initial point derived from structure-from-motion.

SAGS-Lite. In addition to our best-performing model, we present a simple but
effective strategy to reduce the storage requirements of the model while retain-
ing the high quality of the renderings and its structural properties. Considering
that the predominant storage burden in 3D Gaussian Splatting methods stems
from the abundance of stored Gaussians, our objective was to devise a pipeline
that would yield a much more compact set of Gaussians, without relying on
vector quantization or compression techniques. In particular, leveraging the ini-
tial densification step, we can define the midpoints using the initial key points
of the COLMAP and predict their Gaussian attributes using the interpolated
key-point features.

Under this setting, the mid-points can be generated on the fly and their
corresponding features will be interpolated from the structure-aware feature en-
codings f ′ as:

f ′m =
1

2
(f ′i + f ′j), (i, j) ∈ P (9)

where f ′i , f
′
j are the feature encodings of two keypoints i, j ∈ P and f ′m defines

the interpolated feature of their midpoint. Aligned with our full model, the
interpolated features along with their corresponding view-depended interpolated
positions are fed to the refinement networks to predict their Gaussian attributes.
Training. To train our model we utilized a L1 loss and a structural-similarity
loss LSSIM on the rendered images, following [15]:

L = (1− λ)L1 + λLSSIM (10)

where λ is set to 0.2.
Implementation. We build our model on top of the original 3D-GS [15] Py-
Torch implementation. Similar to 3D-GS, we train our method for 30,000 itera-
tions across all scenes and apply a growing and pruning step until 15,000 iter-
ations, every 100 iterations, starting from the 1500 iterations. Throughout our
implementation, we utilize small MLPs with a hidden size of 32. For additional
implementation details, we refer the reader to the supplementary material.

4 Experiments

Datasets. To evaluate the proposed method, on par with the 3D-GS [15], we
utilized 13 scenes including nine scenes from Mip-NeRF360 [2], two scenes from
Tanks&Temples [16] and two scenes from Deep Blending [13] datasets.
Baselines. We compared the proposed method with NeRF- and 3D-GS-based
state-of-the-art works in novel-view synthesis, including the Mip-NeRF360 [2],
Plenoxels [10], iNGP [23], 3D-GS [15] along with the recent Scaffold-GS [20].
Metrics. We evaluate the proposed SAGS model in terms of rendering quality,
structure preservation, and rendering performance. To measure the rendering
quality, we utilized the commonly used PSNR, SSIM [35], and LPIPS [40] met-
rics. In addition, we report model storage requirements in megabytes (MB) and
rendering speed in frames per second (FPS).
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4.1 Novel-View Synthesis

Rendering Quality. In Tab. 1, we report the average evaluation performance of
the proposed and the baseline methods over the three datasets. As can be easily
seen, SAGS outperforms 3D-GS and the recently introduced Scaffold-GS method
under all datasets and metrics. Leveraging the inter-connectivity between the 3D
Gaussians, the SAGS model can facilitate high-quality reconstruction in chal-
lenging cases that the independent and unstructured optimization scheme of
3D-GS and Scaffold-GS methods struggle. As can be qualitatively validated in
Fig. 4, the proposed SAGS model can better capture high-frequency details, such
as the letters on the train wagon, the door handle, and the desk chair mechanism.

Table 1: Quantitative comparison between the proposed and the baseline methods
on Mip-NeRF360 [2], Tanks&Temples [16] and Deep Blending [13] datasets.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Method Metrics PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

3D-GS [15] 28.69 0.870 0.182 23.14 0.841 0.183 29.41 0.903 0.243
Mip-NeRF360 [2] 29.23 0.844 0.207 22.22 0.759 0.257 29.40 0.901 0.245
iNPG [23] 26.43 0.725 0.339 21.72 0.723 0.330 23.62 0.797 0.423
Plenoxels [10] 23.62 0.670 0.443 21.08 0.719 0.379 23.06 0.795 0.510
Scaffold-GS [20] 28.84 0.848 0.220 23.96 0.853 0.177 30.21 0.906 0.254
SAGS-Lite 28.54 0.841 0.225 24.16 0.846 0.181 29.07 0.889 0.292
SAGS 29.65 0.874 0.179 24.88 0.866 0.166 30.47 0.913 0.241

Structure Preservation. Apart from the visual quality of the renderings, pre-
serving the 3D geometry of the scene is extremely crucial for downstream VR/AR
applications of NVS. Using the proposed structure-aware encoder, we manage
to tackle the structure preservation limitations of previous 3D-GS methods and
constrain the point displacements close to their initial positions. As pointed out
with the red arrows in Fig. 4, this substantially diminishes floater artifacts, which
were prevalent in the 3D-GS method. To quantitatively validate the structural
preservation of our method, in Fig. 5, we illustrate the displacements of points,
in a color-coded format, on top of their original positions. In particular, we de-
pict the color-coded displacements for the train scene from the Tanks&Temples
dataset, where points with color closer to purple indicate small displacements
and colors closer to yellow indicate large displacements. Aligned with the find-
ings of Fig. 1 (right), SAGS better constrains the Gaussians to lie in the original
geometry of the scene compared to 3D-GS and Scaffold-GS methods that rely
on structure-agnostic optimization to fit the scene.

In addition, preserving the geometry of the scene ensures the preservation
of spatial relationships and distances between objects, which is significantly im-
portant in 3D modeling. The depth information provides crucial cues that verify
the spatial distances within a scene and can easily validate the suppression of
floater artifacts that are not visible in the rendered image. Therefore, in Fig. 6,
we qualitatively evaluate the depth maps that correspond to various scene ren-
derings, generated by the SAGS and the Scaffold-GS methods. The proposed



10 E. Ververas et al.

Ours3D-GSScaffold-GSGround Truth

PSNR 27.81 dB SSIM 0.803 LPIPS 0.293 PSNR 28.32 dB SSIM 0.837 LPIPS 0.157 PSNR 28.87 dB SSIM 0.824 LPIPS 0.203

PSNR 28.02 dB SSIM 0.924 LPIPS 0.225 PSNR 26.52 dB SSIM 0.900 LPIPS 0.250 PSNR 29.91 dB SSIM 0.939 LPIPS 0.200

PSNR 32.36 dB SSIM 0.931 LPIPS 0.162 PSNR 31.10 dB SSIM 0.931 LPIPS 0.171 PSNR 32.90 dB SSIM 0.945 LPIPS 0.145

PSNR 23.32 dB SSIM 0.862 LPIPS 0.195 PSNR 23.17 dB SSIM 0.867 LPIPS 0.182 PSNR 23.66 dB SSIM 0.883 LPIPS 0.171

PSNR 27.95 dB SSIM 0.804 LPIPS 0.316 PSNR 27.27 dB SSIM 0.807 LPIPS 0.255 PSNR 28.71 dB SSIM 0.838 LPIPS 0.242

PSNR 32.84 dB SSIM 0.933 LPIPS 0.269 PSNR 31.26 dB SSIM 0.929 LPIPS 0.260 PSNR 33.80 dB SSIM 0.937 LPIPS 0.250

PSNR 21.41 dB SSIM 0.791 LPIPS 0.243 PSNR 21.16 dB SSIM 0.769 LPIPS 0.207 PSNR 22.05 dB SSIM 0.800 LPIPS 0.201

Fig. 4: Qualitative comparison. We qualitatively evaluate the proposed and the
baseline methods (3D-GS [15] and Scaffold-GS [20]) across six scenes from different
datasets. We highlight some detailed differences between the three methods using a
magnified crop in yellow. We also emphasize additional visual artifacts using red arrows.
The proposed method consistently captures more structural and high-frequency details
while minimizing floaters and artifacts compared to the baseline methods.
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Fig. 5: Color Coded Gaussian Displacements. We measured the Gaussians’ dis-
placements from their original positions, on the “train” scene from Tanks&Temples [16]
dataset, and encoded them in a colormap scale. Colors closer to purple color indicate
small displacements. Both the 3D-GS and Scaffold-GS methodologies depend on a
rudimentary point optimization approach, that neglects the local topology and fails to
guide the Gaussians in a structured manner.

Scaffold-GS Scaffold-GS Depth SAGS SAGS Depth

Fig. 6: Depth Structural Preservation. Comparison between the proposed and the
Scaffold-GS method on the scene’s structure preservation. The proposed method can
accurately capture sharp edges and suppress “floater” artifacts that are visible on the
Scaffold-GS depth maps.

method can not only achieve sharp edges and corners (e.g ., on the table and
the door) but also accurate high-frequency details (e.g ., the tire track of the
bulldozer and the staircase banister). On the contrary, Scaffold-GS method pro-
vides noisy depth maps that fail to capture the scene’s geometry, e.g ., the chair
back and the chandelier are modeled with an enormous set of points that do not
follow any 3D representation. This is caused by the unstructured nature of the
Gaussian optimization that attempts to minimize only the rendering constraints
without any structural guidance. Furthermore, Scaffold-GS method falls short
in accurately representing flat surfaces, as can be seen in the walls and the table,
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Table 2: Performance comparison between the proposed and the 3D-GS based
methods. We also report the storage reduction of each model compared to original
3D-GS method [15].

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Methods FPS Mem (MB) FPS Mem (MB) FPS Mem (MB)

3D-GS [15] 97 693 123 411 109 676
Scaffold-GS [20] 102 252 (2.8× ↓) 110 87 (4.7× ↓) 139 66 (10.2× ↓)
Ours 110 135 (5.1× ↓) 108 75 (5.5× ↓) 138 58 (11.7× ↓)
Ours-Lite 101 76 (9.1× ↓) 112 35 (12× ↓) 142 28 (24× ↓)

Table 3: Ablation study on the components of SAGS. The ablation was per-
formed on the Deep Blending and the Tanks&Temples datasets.

Scene Deep Blending Tanks&Temples
Ablation Metrics PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o Curvature-Aware Densification 29.87 0.901 0.259 23.97 0.851 0.175
w/o GNN 29.94 0.905 0.254 24.19 0.844 0.181
w/o Positional-Encoding γ(p) 30.21 0.909 0.252 24.31 0.852 0.169
w/o Global Feature g 30.17 0.911 0.250 24.42 0.861 0.174
w/o View Dependent Positions pc

i 30.07 0.903 0.256 24.37 0.849 0.173
SAGS 30.47 0.913 0.241 24.88 0.866 0.166

compared to SAGS which accurately captured flat surfaces.
Performance. Apart from the rendering quality we evaluated the performance
of the proposed and the baseline methods in terms of rendering speed (FPS) and
storage size (MB) under all datasets. In Tab. 2, we report the FPS and memory
sizes for each method averaged per dataset. Both SAGS and SAGS-Lite models
achieve a real-time rendering speed, with over 100 FPS under all scenes, on par
with the Scaffold-GS and 3D-GS methods. Importantly, SAGS reduces the stor-
age requirements of 3D-GS by 5× on the challenging MipNeRF360 dataset [2]
achieving state-of-the-art performance with an average model of 135MB. The
storage requirements are reduced even more with our lightweight model that
can achieve up to 24×-storage reduction compared to 3D-GS without relying on
any compression scheme.
Comparison with SAGS-Lite. In Fig. 7, we qualitatively evaluate the light-
weight version of the proposed SAGS model. As shown in Tab. 2, the SAGS-Lite
model can drastically reduce the storage requirements of 3D-GS by up to 28
times, while achieving similar rendering performance with 3D-GS [15]. Despite
lacking some sharp details when compared to our full SAGS model, SAGS-Lite
can accurately represent the scene while at the same time avoiding the floater
artifacts caused by 3D-GS optimization.
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Ground Truth 3D-GS SAGS-Lite SAGS

PSNR: 25.25dB Mem: 1.3 Gb LPIPS: 0.205 PSNR: 25.30dB Mem: 195 Mb LPIPS: 0.241PSNR: 24.41dB Mem: 113 Mb LPIPS: 0.287

PSNR: 25.62dB Mem: 76 Mb LPIPS: 0.230 PSNR: 27.25dB Mem: 128 Mb LPIPS: 0.161

PSNR: 30.32dB Mem: 414 Mb LPIPS: 0.129 PSNR: 31.96dB Mem: 99 Mb LPIPS: 0.115PSNR: 30.70dB Mem: 43 Mb LPIPS: 0.137

PSNR: 28.77 Mem: 715 Mb LPIPS: 0.244 PSNR: 29.95 Mem: 63 Mb LPIPS: 0.235PSNR: 28.61 Mem: 32 Mb LPIPS: 0.285

PSNR: 27.41dB Mem: 1.3 Gb LPIPS: 0.103

Fig. 7: Comparison with SAGS-Lite. We qualitatively compared the proposed
SAGS-Lite model against SAGS and 3DGS. SAGS-Lite can achieve to maintain high
quality renderings with up to 24× storage reduction compared to 3DGS.

4.2 Ablation Study

To evaluate the impact of individual components within the proposed method, we
conducted a series of ablation studies in the Deep Blending and Tanks&Temples
datasets. Quantitative and qualitative results are presented in Tab. 3 and Fig. 8.
Effect of the Densification. First, removing the curvature-aware densification
step leads to parts of the scene being under-represented in the resulting point
cloud, as the gradient-based growing struggles to sufficiently fill them. This is
particularly evident in areas of COLMAP which are initially undersampled, such
as the floor in the drjohnson scene and the gravel road in the train scene. In
contrast, our curvature-aware densification adequately fills those areas support-
ing further growing during training.
Effect of the Structure-Aware Encoder. Replacing the aggregation layer
in Eq. (4) with an MLP diminishes the inductive biases and the expressivity
of the model to encode the scene’s structure, leading to Gaussians with locally
inconsistent attributes. As can be seen in Fig. 8, the absence of structure results
in renderings with more floaters and artifacts.
Feature Analysis. Using the points’ positions directly in Eq. (4) instead of
their positional encodings γ(p), results in lower resolution representations of the
scene which implies less high frequency details in renderings. A similar effect is
caused by removing the global structure information offered by g, which leads to
less expressive feature encodings Φ(pi, fi) limiting the capacity of the refinement
network and the quality of its predictions. For both previous configurations, the
floor in the drjohnson scene and areas of the train scene demonstrate parts with
flat textures. Last, by ablating the view dependent positions pc

i from the ap-
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Ground Truth
      PSNR: 28.34 dB

SSIM: 0.827 
LPIPS: 0.249

      PSNR: 28.71 dB
SSIM: 0.838 
LPIPS: 0.242

      PSNR: 28.41 dB
SSIM: 0.821 
LPIPS: 0.254

      PSNR: 28.12 dB
SSIM: 0.811 
LPIPS: 0.260

      PSNR: 28.06 dB
SSIM: 0.814 
LPIPS: 0.251

      PSNR: 27.81 dB
SSIM: 0.796 
LPIPS: 0.277

d) w/o global feature e) w/o view dep. positions f) SAGS

a) w/o upsampling b) w/o GNN c) w/o positional enc.

d) w/o global feature e) w/o view dep. positions f) SAGS

a) w/o upsampling b) w/o GNN c) w/o positional enc.

Ground Truth

      PSNR: 21.54 dB
SSIM: 0.764 
LPIPS: 0.178

      PSNR: 21.89 dB
SSIM: 0.769 
LPIPS: 0.174

      PSNR: 22.31 dB
SSIM: 0.772 
LPIPS: 0.171

      PSNR: 22.39 dB
SSIM: 0.773 
LPIPS: 0.169

      PSNR: 22.47 dB
SSIM: 0.774 
LPIPS: 0.176

      PSNR: 22.78 dB
SSIM: 0.780 
LPIPS: 0.164

Fig. 8: Ablation study on the components of SAGS. We perform a series of
ablation experiments on the Deep Blending and the Tanks&Temples datasets and
demonstrate qualitative results from the drjohnson and the train scenes. We emphasise
differences across model configurations over the same crop of the resulting images and
highlight additional visual artifacts using red arrows.

pearance related attributes resulted in missing reflections, for example on the
floor in drjohnson, and floating points as on the black cable in the train scene.

5 Conclusion

In this paper, we present Structure-Aware Gaussian Splatting (SAGS), a novel
Gaussian Splatting approach that leverages the intrinsic scene structure for high-
fidelity neural rendering. Motivated by the shortcomings of current 3D Gaussian
Splatting methods to naively optimize Gaussian attributes independently ne-
glecting the underlying scene structure, we propose a graph neural network based
approach that predicts Gaussian’s attributes in a structured manner. Using the
proposed graph representation, neighboring Gaussians can share and aggregate
information facilitating scene rendering and the preservation of its geometry.
We showcase that the proposed method can outperform current state-of-the-art
methods in novel view synthesis while retaining the real-time rendering of 3D-GS.
We further introduce a simple yet effective mid-point interpolation scheme that
attains up to 24×-storage reduction compared to 3D-GS method while retain-
ing high-quality rendering, without the use of any compression and quantization
algorithm. Overall, our findings demonstrate the benefits of structure in 3D-GS.
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