
OneRestore: A Universal Restoration Framework
for Composite Degradation

Yu Guo1,2,† , Yuan Gao1,† , Yuxu Lu3 , Huilin Zhu1,2 , Ryan Wen
Liu1(B) , and Shengfeng He2(B)

1 Wuhan University of Technology, Wuhan, China
wenliu@whut.edu.cn

2 Singapore Management University, Singapore
shengfenghe@smu.edu.sg

3 The Hong Kong Polytechnic University, Hong Kong, China
† Equal Contribution

https://github.com/gy65896/OneRestore

1 Overview

This supplementary material provides more details on model configuration and
experimental results, which can be listed as follows:

– We offer additional configuration details about the Text/Visual Embedder
and the OneRestore model.

– We elaborate on model training and inference procedures.
– We present more experimental results to verify the effectiveness and control-

lability of the proposed method.
– We discuss limitations and outline future research directions.

(a) Scene Descriptor-guided Cross-Attention (b) Self-Attention (c) Feed-Forward Network 
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Fig. 1: Architecture of proposed Scene Descriptor-guided Transformer Block (SDTB).

2 Network Details

2.1 Transformer Block

Fig. 1 displays the details of the Scene Descriptor-guided Transformer Block
(SDTB), which includes three parts: Scene Descriptor-guided Cross-Attention
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Table 1: Configurations of network architecture. n, c, and head denote the numbers
of texts, channels, and attention heads, respectively. l is the length of the initial text
embedding. k and s represent the kernel size and stride, respectively. bn and relu denote
the batch normalization and ReLU activation function, respectively.

Models Layers Configurations Output Size

Text Embedder
Input1 Scene Description Text 1 string
GloVe [26] n = 12, l = 300 300
MLP1 c = 324, relu 324

Visual Embedder

Input2 RGB Image h × w × 3
Resize Uniform Size 224 × 224 × 3
ResNet ResNet-18 7 × 7 × 512
Conv1 c = 1024, k = 1, bn, relu 7 × 7 × 1024
Dropout rate = 0.35 7 × 7 × 1024
AvgPool Global 1 × 1 × 1024
Linear1 c = 324 324

OneRestore

Input3 RGB Image h × w × 3
Input4 Scene Descriptor 324
Conv2 c = 32, k = 1 h × w × 32
SDTB1 c = 32, head = 8 h × w × 32
Down1 Maxpool k = 3, s = 2, Conv c = 64, k = 1 h

2 × w
2 × 64

SDTB2 c = 64, head = 8 h
2 × w

2 × 64
Down2 Maxpool k = 3, s = 2, Conv c = 128, k = 1 h

4 × w
4 × 128

SDTB3 c = 128, head = 8 h
4 × w

4 × 128
Down3 Maxpool k = 3, s = 2, Conv c = 256, k = 1 h

8 × w
8 × 256

SDTB4 c = 256, head = 8 h
8 × w

8 × 256
SDTB5 c = 256, head = 8 h

8 × w
8 × 256

SDTB6 c = 256, head = 8 h
8 × w

8 × 256
Addition1 Down3 + SDTB6 h

8 × w
8 × 256

SDTB7 c = 256, head = 8 h
8 × w

8 × 256
Up1 Bilinear Interpolation, Conv c = 128, k = 1 h

4 × w
4 × 128

Addition2 Up1 + SDTB3 h
4 × w

4 × 128
SDTB8 c = 128, head = 8 h

4 × w
4 × 128

Up2 Bilinear Interpolation, Conv c = 64, k = 1 h
2 × w

2 × 64
Addition3 Up2 + SDTB2 h

2 × w
2 × 64

SDTB9 c = 64, head = 8 h
2 × w

2 × 64
Up3 Bilinear Interpolation, Conv c = 32, k = 1 h × w × 32
Addition4 Up3 + SDTB1 h × w × 32
SDTB10 c = 32, head = 8 h × w × 32
Conv3 c = 3, k = 1 h × w × 3
Addition5 Conv3 + Input3 h × w × 3

(SDCA), Self-Attention (SA), and Feed-Forward Network (FFN). Specifically,
the SDCA considers the image feature and degraded scene descriptor as input.
The values V and keys K are generated by processing image features using
two modules with the same structure but different weights, concatenating 1× 1
Convolution (Conv) with 3× 3 DepthWise Convolution (DW-Conv). As for the
scene descriptor, we use a linear layer to produce the scene description query
Qt. Then, we adjust the image size to make the number of tokens in K to be
consistent with Qt. The SA and FFN adopt modules proposed by Restormer [44].
By incorporating SDCA, our model can facilitate restored orientation control by
changing different embeddings.
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Algorithm 1 Text/Visual Embedder Training
Input: Visual image and scene description text label pairs (Iv, y), all texts St.
1: repeat
2: et = Embt(St) ▷ Get text embeddings.
3: ev = Embv(Iv) ▷ Get visual embeddings.
4: Perform the gradient descent step by

Lcross = − 1
Nv

∑Nv
i=1

∑Nt
j=1 yij log (S(evi , etj )).

▷ Nv and Nt are the numbers of visual and text embeddings, respectively. yi is the
truth label of i-th sample. When the truth label is j, yij = 1, otherwise yij = 0.

5: until converged
6: return Embt, Embv

Algorithm 2 OneRestore Model Training
Input: Clear, input degraded, and other degraded image pairs (J, I, {Io}), scene de-

scription text of input degraded image S ′
t ∈ St, text embedder Embt.

1: repeat
2: e′t = Embt(S ′

t) ▷ Get the scene descriptor with the frozen text embedder.
3: Ĵ = OneRestore(I, e′t) ▷ Get the restored image.
4: Perform the gradient descent step by

L = α1Ls
1(J, Ĵ) + α2LM(J, Ĵ) + α3Lc(J, Ĵ, I, {Io}).

5: until converged
6: return OneRestore

2.2 Detailed Architecture

All network configurations and output sizes of each layer are displayed in Table 1.
Specifically, the MLP layer used in the text embedder consists of a linear operator
and a ReLU activation function. The visual embedder introduces a dropout layer
to prevent overfitting. Our OneRestore employs three max-pooling operations to
downsample images and utilizes the Scene Descriptor-guided Transformer Block
(SDTB) to extract multi-scale image features. Finally, bilinear interpolation up-
sampling and skip connections are employed to fuse features of different scales
and levels.

3 Model Training and Inference

The model training includes two steps: text/visual embedder training and OneRe-
store model training. Meanwhile, the model inference involves a manual mode
based on text embedding and an automatic mode controlled by visual attributes.

3.1 Step1: Text/Visual Embedder Training.

The pseudo-code is shown in Alg. 1. Initially, we set RGB image and scene de-
scription text label pairs as (Iv, y) and all texts as St, respectively. Subsequently,



4 Y. Guo et al.

Algorithm 3 Model Inference
Input: Input degraded image I, scene description text of input degraded image S ′

t ∈ St

(non-essential).
1: if exist S ′

t then ▷ Manual restoration.
2: e′t = Embt(S ′

t)
3: else ▷ Automatic restoration.
4: e′v = Embv(I)
5: Calculate the cosine similarity between e′v and each text embedding by

cos(e′v, et) = γ · e′v·e
⊤
t

∥e′v∥∥et∥
.

6: Select the text embedding with the highest similarity as the estimated scene
descriptor e′t.

7: end if
8: Ĵ = OneRestore(I, e′t)
9: return Ĵ

the text embedder Embt is employed to generate 12 scene description embed-
dings et (line 2 in Alg. 1), and the visual embedder Embv is utilized to produce
visual embeddings ev from Iv (line 3 in Alg. 1). Finally, we calculate the cosine
similarity between visual embeddings and text embeddings and perform gradient
descent via the cross-entropy loss (line 4 in Alg. 1).

3.2 Step2: OneRestore Model Training.

The pseudo-code is shown in Alg. 2. We consider the clear, input degraded,
and other degraded image pairs (J, I, {Io}), scene description text of the input
degraded image S ′

t ∈ St, and pre-trained text embedder Embt as inputs. Embt
is first used to generate scene descriptors e′t (line 2 in Alg. 2). Input degraded
images I and scene descriptors e′t are jointly fed into our OneRestore to generate
restored results (line 3 in Alg. 2). For the model converges, the total loss L is
employed for gradient descent (line 3 in Alg. 2).

3.3 Model Inference.

As shown in Alg. 3, our model inference has two modes: manual and automatic.
The necessary input is the degraded image I, and the optional input is the scene
description text S ′

t ∈ St. When the manual mode is selected, scene descriptors e′t
will be generated directly from S ′

t using Embt (line 2 in Alg. 3). When using the
automatic mode, Embv will first generate visual embedding e′v (line 4 in Alg.
3). Then, the distance between the visual embedding e′v and all text embeddings
et is calculated by cosine similarity, and the top-1 text embedding is selected as
the OneRestore input (line 5-6 in Alg. 3). The restored result will be generated
by processing I and e′t through our OneRestore model (line 8 in Alg. 3).
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Ground Truth

Input Images RetinexNet MBLLEN KinD MIRNetDeepUPE

KinD++DeepLPF Zero-DCE RUAS StableLLVE LLFlow

SCI SNRNet Retinexformer OneRestore

Fig. 2: Comparison of low-light enhancement on LOL dataset [37].

Ground Truth

Input Image DehazeNet MSCNN AODNet GDNGCANet

DehamerFFANet MSBDN C2PNet MBTformer OneRestore

DCP

Fig. 3: Comparison of image dehazing on RESIDE dataset [15].

4 Experiments Results

In this section, we conduct a comparative analysis of our OneRestore against
state-of-the-art (SOTA) models on benchmark datasets of related tasks, aiming
to validate OneRestore’s generalization ability. Subsequently, extensive experi-
ments of image restoration, encompassing both synthetic and real-world scenar-
ios, are presented to further illustrate the method’s efficacy. Lastly, an analysis
focusing on the model controllability is performed.

4.1 Comparison on Classic Benchmarks

We train and test our OneRestore on classic benchmark datasets for low-light en-
hancement (LOL [37]), dehazing (RESIDE-OTS [15]), draining (Rain1200 [48]),
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Ground Truth

Input Image RESCAN DerainNet DIDMDN SEMIUMRL PreNet

MPRNet DualGCN SPDNet IDT DRSformer OneRestore

Fig. 4: Comparison of image dehazing on Rain1200 dataset [48].

Ground TruthInput Images DDMSNet TUM WGWSNet OneRestoreWeatherDiff

Fig. 5: Comparison of image desnowing on Snow100k-L dataset [21].

clear

low + haze + rain low + haze + snowhaze + snowhaze + rainlow + snowlow + rain

snow low + hazerainhazelow

Fig. 6: Visualization of one test sample on CDD-11 dataset.
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Fig. 7: Comparison of quantitative results and parameter quantities on CDD-11
dataset. OneRestore† indicates the manual mode, while OneRestore denotes the auto-
matic mode.
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AirNet TransWeather WeatherDiff PromptIR OneRestoreInput Images WGWSNet Ground Truth

Fig. 8: Comparison of image restoration on low, haze, rain, snow, low+haze, low+rain,
low+snow, haze+rain, haze+snow, low+haze+rain, and low+haze+snow synthetic sam-
ples.
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AirNet TransWeather WeatherDiff PromptIR OneRestoreInput Images WGWSNet

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Comparison of image restoration on low, haze, rain, snow, low+haze, low+rain,
low+snow, haze+rain, haze+snow, low+haze+rain, and low+haze+snow samples in
real-world scenarios.
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Table 2: Comparison of quantitative results on four benchmarks. Red, green, and blue
indicate the best, second-best, and third-best results, respectively.

Methods Venue & Year PSNR ↑ SSIM ↑ Methods Venue & Year PSNR ↑ SSIM ↑
Input 7.77 0.1914 Input 15.92 0.8139
RetinexNet [37] BMVC2018 17.12 0.5920 DCP [12] TPAMI2010 14.67 0.7825
MBLLEN [22] BMVC2018 17.86 0.7247 DehazeNet [1] TIP2016 20.95 0.8841
KinD [51] ACMMM2019 17.71 0.7734 MSCNN [30] ECCV2016 20.00 0.8779
MIRNet [45] ECCV2020 24.10 0.8421 AODNet [14] ICCV2017 20.36 0.8945
Zero-DCE [11] CVPR2020 14.86 0.5624 GCANet [3] WACV2019 22.60 0.8985
KinD++ [50] IJCV2021 17.75 0.7581 GDN [20] ICCV2019 30.77 0.9808
RUAS [19] CVPR2021 16.40 0.5034 FFANet [27] AAAI2020 32.13 0.9792
StableLLVE [47] CVPR2021 17.36 0.7373 MSBDN [7] CVPR2020 30.23 0.9458
LLFlow [36] AAAI2022 19.34 0.8388 DeHamer [10] CVPR2022 30.70 0.9457
SNRNet [40] CVPR2022 24.61 0.8401 C2PNet [52] CVPR2023 34.05 0.9857
Retinexformer [2] ICCV2023 25.15 0.8434 MB-TFormer [28] ICCV2023 37.94 0.9899
OneRestore 24.25 0.8564 OneRestore 35.58 0.9814
(a) Enhancement results on the LOL dataset [37]. (b) Dehazing results on the RESIDE-OTS dataset [15].
Methods Venue & Year PSNR ↑ SSIM ↑ Methods Venue & Year PSNR ↑ SSIM ↑
Input 22.16 0.6869 Input 18.68 0.6470
RESCAN [17] ECCV2016 28.83 0.8430 DerainNet [8] TIP2017 19.18 0.7495
DerainNet [8] TIP2017 21.93 0.7814 DehazeNet [1] TIP2016 22.62 0.7975
DID-MDN [48] CVPR2018 27.99 0.8627 DeepLab [4] TPAMI2017 21.29 0.7747
UMRL [42] CVPR2019 28.62 0.8706 RESCAN [17] ECCV2018 26.08 0.8108
SEMI [38] CVPR2019 24.39 0.7622 SPANet [35] CVPR2019 23.70 0.7930
PreNet [29] CVPR2019 29.79 0.8811 AIO [16] CVPR2020 28.33 0.8820
MPRNet [46] CVPR2021 31.32 0.8907 DDMSNet [49] TIP2021 28.85 0.8772
DualGCN [9] AAAI2021 32.09 0.9181 TransWeather [31] CVPR2022 29.31 0.8879
SPDNet [43] ICCV2021 32.84 0.9138 TUM [5] CVPR2022 26.90 0.8321
IDT [39] TPAMI2022 33.13 0.9238 WGWSNet [53] CVPR2023 28.94 0.8758
DRSformer [6] CVPR2023 33.59 0.9274 WeatherDiff [25] TPAMI2023 30.09 0.9041
OneRestore 32.89 0.9182 OneRestore 30.24 0.8947
(c) Deraining results on the Rain1200 dataset [48]. (d) Desnowing results on the Snow100k dataset [21].

and desnowing (Snow100k [21]), and conduct a comprehensive comparison of our
method with SOTA methods in each task. The quantitative results and visual
performance of each method are reported in Table 2 and Figs. 2-5, respectively.
Given that our OneRestore is designed to address composite degradations, it
is inevitable that it cannot surpass the current optimal SOTA methods for all
benchmarks. Nonetheless, the comparable performance of the recovery results
unequivocally demonstrates the model’s robust feature extraction capabilities.
It is noteworthy that our method boasts a relatively smaller number of parame-
ters (only 5.98M) and faster inference speed (0.0115s for processing a 1080×720
image on our PC), further reinforcing its practical significance.

4.2 More Results on CDD-11 Dataset

We conduct experiments on the proposed Composite Degradation Dataset (CDD-
11), where an example of a clear image and its corresponding 11 types of de-
graded samples are shown in Fig. 6. Quantitative comparisons of all methods on
our CDD-11 dataset are shown in Fig. 7, demonstrating that our OneRestore
can achieve a balance between quantitative results and parameter quantities.

Furthermore, Fig. 8 displays more restoration cases on the 11 types of de-
graded images from the CDD-11 dataset. It is clear that current SOTA methods
are limited in their ability to handle all types of image degradation and can
produce unstable results. In contrast, our method is designed to be versatile
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Table 3: Comparison of quantitative results on four real benchmarks. The best results
are in bold, and the second-best are with underline.

Methods Venue & Year NIQE ↓ PIQE ↓ Methods Venue & Year NIQE ↓ PIQE ↓
RUAS [19] IJCV2021 7.77 19.64 MSBDN [7] CVPR2020 4.77 26.14
SCI [23] CVPR2021 3.97 16.35 DeHamer [10] CVPR2022 5.34 31.93
SNRNet [40] CVPR2022 4.49 20.71 C2PNet [52] CVPR2023 5.03 25.09
OneRestore 3.93 16.69 OneRestore 4.58 23.91
(a) Enahncement results on the NPE dataset [34]. (b) Dehazing results on the RTTS dataset [15].
Methods Venue & Year NIQE ↓ PIQE ↓ Methods Venue & Year NIQE ↓ PIQE ↓
MPRNet [46] CVPR2021 3.55 20.78 DRT [18] CVPRW2022 3.93 12.00
DualGCN [9] AAAI2021 3.27 15.15 TUM [5] CVPR2022 3.13 9.14
MFDNet [33] TIP2023 3.37 18.86 UMWT [13] ECCVW2022 3.34 12.29
OneRestore 3.32 14.46 OneRestore 3.00 9.12

(c) Deraining results on the RS dataset [41]. (d) Desnowing results on the Snow100k-R dataset [21].

‘low+haze’‘haze’‘low’Input Image

‘low+rain’‘rain’‘low’Input Image

‘low+snow’‘snow’‘low’Input Image

‘haze+rain’‘rain’‘haze’Input Image

‘haze+snow’‘snow’‘haze’Input Image

Input Image ‘low’ ‘haze’ ‘snow’

‘low+haze’ ‘low+snow’ ‘haze+snow’ ‘low+haze+snow’

‘low+haze’ ‘low+rain’ ‘haze+rain’ ‘low+haze+rain’

Input Image ‘low’ ‘haze’ ‘rain’

(a) Double degeneration coexistence examples (b) Triple degenerate coexistence examples

Fig. 10: Comparison of image restoration on real-world scenarios by using different
text descriptors.

and can effectively handle a wide range of degradation scenarios. By incorporat-
ing scene descriptors to identify degradation situations, our method can create
high-quality images with rich details.

4.3 More Results on Real-World Dataset

To assess the robustness of our model, which was trained using the CDD-11
dataset, against complex degradation scenarios, we conducted extensive real-
world image restoration experiments. Our quantitative analysis on four distinct
real-world benchmarks utilized two no-reference quality assessment metrics: the
Natural Image Quality Evaluator (NIQE) [24] and the Perception-based Image
Quality Evaluator (PIQE) [32]. It was noted that these benchmarks were specifi-
cally chosen to represent the four degradation challenges we aimed to address: the
Naturalness Preserved Enhancement dataset (NPE) [34] for low-light enhance-



OneRestore: A Universal Restoration Framework for Composite Degradation 11

Input Image ‘low’ ‘haze’ ‘snow’ ‘low+haze’ ‘low+snow’ ‘haze+snow’ ‘low+haze+snow’

‘low+haze’ ‘low+rain’ ‘haze+rain’ ‘low+haze+rain’Input Image ‘low’ ‘haze’ ‘rain’

Fig. 11: Comparison of the SDTB10 output feature maps and restoration results based
on different texts on low+haze+rain and low+haze+snow synthetic samples. Due to
the intricate interplay of different degradation factors, our model tends to slightly
eliminate features not explicitly mentioned in the description text. As indicated in the
red oval regions, this phenomenon is often observed in the context of rain and snow
degradation. Nevertheless, our model already exhibits impressive controllability.

ment, the RESIDE Real-world Task-driven Testing Set (RTTS) [15] for image
dehazing, Yang’s dataset (RS) [41] for image deraining, and the real Snow100k
dataset (Snow100k-R) [21] for image desnowing. As shown in Table 3, our quanti-
tative assessment comparison with SOTA methods substantiates the exceptional
performance of our model in restoring these degradation datasets. Moreover, we
show additional real-world image restoration cases in Fig. 9. It is evident that
models trained on the CDD-11 dataset exhibit remarkable efficacy in real-world
scenarios, thereby validating the proposed synthesis strategy as an effective sim-
ulation tool for real composite degradation scenarios. Notably, both WGWSNet
and our method, which introduces degraded descriptions, demonstrate supe-
rior visual effects. Our OneRestore establishes a more stringent lower-bound
constraint by applying the composite degradation restoration loss, enabling its
restoration results to closely approximate clear scenarios.

4.4 More Results of Different Scene Descriptors

To verify the controllability of our model, we conduct a comparison experiment
on seven distinct types of images employing varying text embeddings. The result-
ing visual outcomes are shown in Fig. 10. By introducing scene description texts,
we can direct the model’s attention to different types of degradation factors,
thereby achieving controllable restoration. Furthermore, the input of multiple
words in conjunction enables our OneRestore to achieve better visual perfor-
mance in complex composite degradation scenarios. Fig. 11 further illustrates
the impact of using different scene description texts on the feature maps output
by SDTB10 and restoration results under low+haze+rain and low+haze+snow
synthetic samples. The introduction of scene description texts can serve as prior
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Fig. 12: Failure cases of image restoration.

information, enabling the model to establish the distinct representation space
for correspondence degradation. This characteristic positions our OneRestore as
a superior solution in addressing complex, composite degradations.

5 Limitation and Future Work

Extensive experiments have been conducted to verify the proposed method’s
performance on both synthetic and real composite degradation scenarios. Im-
pressive results have demonstrated that the proposed unified imaging model ef-
fectively simulates real-world complex degradation. Moreover, the introduction
of degraded scene descriptors and the proposed composite degradation restora-
tion loss can aid the model in adjusting to complex situations. However, our
approach still has failure recovery cases, as illustrated in Fig. 12. Although some
degradation factors are well suppressed or eliminated, color abnormalities and
distortions still exist in the restoration results. Based on the observation of fail-
ure results, we elaborate on the limitations and future research directions of this
work in more detail, which can be introduced as follows:

– Disparities between synthetic and real-world data may constrain the image
restoration ability of our approach in some real degradation scenarios, such
as high-density corruption scenarios.

– More degradation types are not considered in this work, such as raindrops,
moiré, shadows, etc. However, the proposed universal framework provides a
solid solution, making it possible to cover a wider range of degradation types
by incorporating additional scene descriptors for directional restoration.

– While the proposed approach provides restoration control over the degra-
dation type, achieving restoration intensity control for each type remains a
direction for future research.

– Ensuring model robustness while reducing computational overhead is also
one of our future considerations.
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