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Abstract. In real-world scenarios, image impairments often manifest
as composite degradations, presenting a complex interplay of elements
such as low light, haze, rain, and snow. Despite this reality, existing
restoration methods typically target isolated degradation types, thereby
falling short in environments where multiple degrading factors coexist.
To bridge this gap, our study proposes a versatile imaging model that
consolidates four physical corruption paradigms to accurately represent
complex, composite degradation scenarios. In this context, we propose
OneRestore, a novel transformer-based framework designed for adap-
tive, controllable scene restoration. The proposed framework leverages a
unique cross-attention mechanism, merging degraded scene descriptors
with image features, allowing for nuanced restoration. Our model allows
versatile input scene descriptors, ranging from manual text embeddings
to automatic extractions based on visual attributes. Our methodology is
further enhanced through a composite degradation restoration loss, using
extra degraded images as negative samples to fortify model constraints.
Comparative results on synthetic and real-world datasets demonstrate
OneRestore as a superior solution, significantly advancing the state-of-
the-art in addressing complex, composite degradations.

1 Introduction

Image restoration is an essential task that entails the recovery of high-quality
visuals from compromised inputs. The fidelity of these restored images is vital
for the subsequent downstream tasks, such as robot navigation and autonomous
driving. Considerable progress has been made in addressing single degradation
scenarios by a single model (i.e., One-to-One models, see Fig. 2a), such as low-
light conditions [16, 49, 59], haze [21, 41, 57], rain [11, 14, 31], and snow [4, 8, 38].
These methods have achieved remarkable success within their intended contexts.
Nevertheless, real-world conditions often involve unpredictable and variable com-
posite degradations that can severely impact image quality and clarity [28]. The
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Fig. 1: Our OneRestore allows fully controllable image restoration using scene de-
scriptors derived from both automatic visual attribute extraction (top) and manual
text embeddings (bottom).

occurrence of mixed degrading conditions in one image can lead to intricate inter-
actions, posing significant challenges to One-to-One solutions [22,52,54,60]. The
necessity for seamless switching and decision-making across specialized methods
for each condition proves to be inefficient and ineffective in practical applica-
tions. Therefore, there is a growing imperative for robust, all-encompassing image
restoration approaches that can universally address multiple forms of degrada-
tion through a singular, dynamic framework.

Recent research has been directed toward One-to-Many models, which ad-
dress various individual degradation factors within a single framework. These
models are categorized into: those with partial parameter-sharing (One-to-Manyp)
[2,19,28,45] and those with full parameter-sharing (One-to-Manyf ) [6,26,35,42,
43]. One-to-Manyp (left of Fig. 2b) restoration methods typically employ mod-
els with either multiple heads and tails or a single tail to address various types
of image impairments. However, the complexity and size of these models tend
to scale with the diversity of degradations they aim to correct, leading to in-
creased training costs and parameter counts. Furthermore, when images suffer
from a combination of degrading factors, these models may underperform. Some
One-to-Manyp techniques also depend on user intervention to select appropri-
ate restoration weights, which is impractical for automated or dynamic settings.
On the other hand, One-to-Manyf (right of Fig. 2b) approaches train models
using a direct learning strategy, where inputs are images with different indi-
vidual degradations and the targets are their clear counterparts. However, this
direct training approach is designed predominantly for single-category degra-
dation issues, it does not adequately address the complex dynamics that arise
when multiple types of impairments affect an image simultaneously. As a result,
such methods can falter in practical applications where user control and precise
directionality of restoration are crucial. For instance, in cases where users seek
to improve low-light imagery, the model might inadvertently prioritize dehazing
actions, deviating from user intent.
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Fig. 2: Structural comparison between One-to-One, One-to-Many, and our One-to-
Composite image restoration methods.

Drawing from the preceding discussion, we delineate the primary challenges
in developing image restoration models for composite degradations in real-world
conditions:

– How can the model be designed to adaptively discern the specific degradation
afflicting the input image?

– What approaches enable a model to be trained efficiently across a spectrum
of degradations while enhancing user control over the restoration process?

– How can the recovery process be optimized that not only approach the quality
of clear images but also maintain distinction from various degraded forms?

In response to the challenges outlined, we present a unified model that builds
upon established physical corruption models for degradations such as low light,
haze, rain, and snow. This model effectively captures the complexity of real-
world degradation conditions and forms the basis for constructing our Compos-
ite Degradation Dataset (CDD-11), which serves both training and evaluation
purposes. To address the issue of composite degradation, our work introduces
OneRestore, a transformer-based universal restoration architecture. This novel
framework distinguishes itself from conventional methods by embodying a One-
to-Composite strategy, as depicted in Fig. 2c, which allows for precise and con-
trollable outcomes (see Fig. 1). It employs an innovative cross-attention block
that fuses scene descriptors, which can be manual text embeddings or derived au-
tomatically from visual attributes. We further enhance the model’s robustness by
integrating a composite degradation restoration loss, using additional degraded
images as negative samples to establish stringent lower-bound constraints.

Our key contributions are summarized as follows:

– We present the first attempt to unify composite degradations, creating a ver-
satile imaging model that simulates a range of degradation types. This inno-
vation underpins the development of our comprehensive Composite Degra-
dation Dataset.

– We propose a universal framework that introduces a novel level of control-
lability in image restoration, employing a cross-attention mechanism that
integrates scene descriptors derived from either manual text embeddings or
automated visual attribute extractions.
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– We tailor a composite degradation restoration loss, enhancing the model’s
ability to discern between various forms of image degradation.

– Our universal model not only sets a new state-of-the-art for composite dataset
performance but also competes favorably with One-to-One models in single-
degradation scenarios.

2 Related Work

Complex Degradation Image Restoration. Recent advancements in image
restoration have introduced a variety of solutions for complexly degraded images.
A notable direction is the partial parameter-sharing One-to-Many approach, em-
ploying architectures with multiple heads and tails, and a single backbone, to
address various degradation factors. For instance, Li et al. [28] develop an all-
weather network that restores scenes affected by haze, rain, and snow, using
specialized encoders for each condition and a shared decoder. Chen et al. [2] in-
troduce a transformer-based model for deraining, denoising, and super-resolving
images, leveraging a multi-head and multi-tail design. Wang et al. [45] present a
knowledge assignment strategy to differentiate and process rain and snow degra-
dations adaptively. While these models represent strides in complex degrada-
tion image restoration, they stop short of being truly universal One-to-Many
networks. With only partial weight sharing, they address different degradation
types through distinct network pathways.

Conversely, universal image restoration has emerged with the One-to-Many
methods sharing all network weights, thereby uniformly mitigating multiple
degradation types. Examples include the unified two-stage knowledge learning
framework by Chen et al. [6], which efficiently processes dehazing, deraining, and
desnowing with a singular pretrained weight set. Li et al. [26] present a network
capable of comprehensive image restoration without the need for pre-identifying
degradation levels. Additionally, Özdenizci et al. [35] introduce a conditional de-
noising diffusion model tailored for patch-based image restoration under varied
weather conditions. However, due to the significant differences and mutual inter-
ference between various degradation factors, this type of method can only solve
specific types of degradation and cannot achieve image restoration in composite
degradation scenarios. To this end, we propose a universal One-to-Composite im-
age restoration method that allows the model to adapt to arbitrary combinations
of composite degradations.

Visual Attribute Control. Visual attributes are pivotal in defining im-
age features and enhancing the interpretability of models. They enrich feature
representations and provide a hierarchical framework for image analysis. Early
research highlighted visual attributes’ transformative impact on image genera-
tion, recognition, and retrieval [13, 24, 50]. More recent studies underscore their
utility in improving object recognition and detection, particularly in data-scarce
environments [1, 33, 48, 61]. Visual attributes have also been leveraged for zero-
shot learning applications, advancing classification tasks beyond the constraints
of labeled datasets [39, 44]. In our study, we harness visual attributes to delin-
eate the intricate degradation patterns present in real-world imaging conditions,
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enhancing the pertinence and efficacy of image restoration techniques. It is note-
worthy that conventional discriminators, when tasked with identifying image
degradation, are typically confined to image data, precluding autonomous fea-
ture control. Our approach, by contrast, accommodates both images and text
descriptions as inputs, thereby facilitating the automatic or manual determina-
tion of degradation characteristics.

3 Composite Degradation Formulation

3.1 Imaging Formulation

In real-world scenarios, images are often affected by multiple degrading factors
simultaneously, resulting in suboptimal performance from restoration methods
designed for isolated degradations. To address the broad spectrum of degradation
scenarios, we introduce a versatile imaging model that encapsulates all degrada-
tions, including low light, haze, rain, and snow. This model aims to narrow the
disparity between simulated and authentic real-world data. Given a degraded
image I(x) and its corresponding clear state J(x), the proposed imaging model
is mathematically articulated as

I(x) = Ph(Prs(Pl(J(x)))), (1)

where Pl, Prs, and Ph denote the low light, rain/snow, and haze degradations,
respectively. Given that concurrent rain and snow conditions are infrequent, they
are not addressed within the scope of this work. A comprehensive exposition of
the proposed imaging model is detailed below.

Low-Light Conditions. Inspired by Retinex theory, low-light degraded im-
age Il(x) can be generated by

Il(x) = Pl(J(x)) =
J(x)

L(x)
L(x)

γ
+ ε. (2)

Here, we use a darkening coefficient γ ∈ [2, 3] as the brightness controller to
adjust the illumination map L(x) generated via LIME [17]. To simulate poor
light conditions realistically, we add the Gaussian noise ε with mean = 0 and
variance ∈ [0.03, 0.08].

Rain/Snow Streaks. Following the methodologies outlined in [5, 27], our
process superimposes rain or snow streaks onto the image before synthesizing
haze. To introduce rain streaks R, we produce the rain-degraded image Irs(x)
by overlaying Prs onto the low-light image Il(x), which is expressed as

Irs(x) = Prs(Il(x)) = Il(x) +R. (3)

For snow streaks S, the snow-degraded image is defined as

Irs(x) = Prs(Il(x)) = Il(x)(1− S) +M(x)S, (4)

with M(x) being the chromatic aberration map.
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Fig. 3: Architecture of our OneRestore. (a) Overall pipeline, where 32, 64, 128, and
256 represent the number of channels. (b) Scene descriptor generation, where scene
descriptors are fed into each (c) Scene Descriptor-guided Transformer Block (SDTB)
by manual text embeddings or automatic extraction based on visual attributes.

Haze Degradations. We incorporate haze degradation by employing the
atmospheric scattering model as

I(x) = Ph(Irs(x)) = Irs(x)t+A(1− t), (5)

where t denotes the transmission map and A represents the atmospheric light.
The transmission map t is defined by the exponential decay of light, t = e−βd(x),
where β represents the haze density coefficient and d(x) is the scene depth (es-
timated by MegaDepth [29]). The haze density coefficient β is varied within
the range of [1.0, 2.0] and the atmospheric light A is constrained to [0.6, 0.9] for
realistic simulation.

3.2 Composite Degradation Dataset

Drawing on Eq. (1), we have developed the Composite Degradation Dataset
(CDD-11), encompassing 11 categories of image degradations and their clear
counterparts. These degraded samples include low (low-light), haze, rain, snow,
low+haze, low+rain, low+snow, haze+rain, haze+snow, low+haze+rain, and
low+haze+snow. From the RAISE database [10], we selected 1,383 high-resolution
clear images for producing 11 composite degradations. They are resized to a uni-
form resolution of 1080×720. The overall dataset is split into 13,013 image pairs
for training and 2,200 for testing.

4 OneRestore

The encoder-decoder network, validated as an effective architectural paradigm
for image restoration [7, 12, 18], serves as the overall structure for our model,
as depicted in Fig. 3a. Building upon the encoder-decoder structure, we devise
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an innovative Scene Descriptor-guided Transformer Block (SDTB) as the ba-
sic unit for feature extraction (Fig. 3c). Our approach diverges from existing
transformer-based methods [4, 7, 41] by concurrently integrating image features
and scene descriptors into the SDTB basic block for supporting fine-grained im-
age restoration. In particular, the generation of scene descriptors ranges from
manual text embeddings to automatic extraction based on visual attributes, as
illustrated in Fig. 3b. Further details on scene descriptor generation and SDTB
are elaborated in Sections 4.1 and 4.2. For capturing multi-scale representations,
the encoder employs three downsampling operations, mirrored by the decoder’s
upsampling operations. To be specific, we utilize "Max-Pooling + Conv" and
"Bilinear Interpolation + Conv" for downsampling and upsampling, respectively.
Simultaneously, three skip connections and a global residual enhance model con-
vergence by bridging shallow and deep features. Additional details regarding the
configuration of our OneRestore can be found in supplementary materials.

Ultimately, the overall loss L for model training is defined as follows

L = α1Ls
1(J, Ĵ) + α2LM(J, Ĵ) + α3Lc(J, Ĵ , I, {Io}), (6)

where Ls
1, LM, and Lc represent the smooth l1 loss [15], Multi-Scale Structural

Similarity (MS-SSIM) loss, and the proposed composite degradation restoration
loss (see Sec. 4.3), respectively, α1-3 denote the penalty coefficients, J , Ĵ , I, and
{Io} are the positive, model output anchor, model input negative, and other
negatives, respectively.

4.1 Scene Descriptor Generation

To augment the controllability of our OneRestore, we introduce the scene de-
scription embedding as an additional input to the model, alongside the degraded
image. As delineated in Fig. 3b, the generation of the scene descriptor offers two
selectable modes: the manual mode ① and the automatic mode ②. In the manual
mode, user involvement is necessitated to supply scene description text, gener-
ating the corresponding text embedding employed as an input. Conversely, the
automatic mode involves the extraction of visual attributes from the image to
generate visual embedding, estimating the most proximate text embedding. To
quantify the difference between visual and text embeddings and train optimal
text and visual embedders, we introduce cosine cross-entropy loss for model
weight optimization.

Text Embedder. For the text embedding generation task, we employ a set
of 5 scene description texts as input to generate 12 text embeddings. Initially,
GloVe [36] is leveraged to generate initial text embeddings for 1 clear scene and
4 scenes with single degradation types. Subsequently, 7 additional composite
degradation text embeddings (i.e., low+haze, low+rain, low+snow, haze+rain,
haze+snow, low+haze+rain, and low+haze+snow) are generated by averaging
the element values in the corresponding text embeddings. A Multi-Layer Per-
ception (MLP) is then employed to refine the 12 text embeddings.

Visual Embedder. Taking inspiration from the work of Saini et al. [39],
we first resize the input image to 224×224 and extract image features using a
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ResNet-18 [20] network without average pooling. The initial weights of ResNet-
18 are pre-trained on the ImageNet dataset. Subsequently, a single convolutional
layer, followed by a dropout layer and a linear layer, is introduced to generate the
final visual embedding. By calculating the cosine similarity between visual em-
beddings and all text embeddings, and selecting the one with the highest similar-
ity, we can automatically generate scene descriptors to achieve image restoration
based on visual attribute control.

Cosine Cross-Entropy. Similar to [39], the score of visual embedding and
each text embedding is obtained by “Cosine Similarity + Softmax”. Given ev
and et being the visual and text embeddings, the similarity score S(ev, et) can
be given by

cos(ev, et) = δ · ev · e⊤t
∥ev∥ ∥et∥

,

S(ev, et) =
ecos(ev,et)∑Nt

ti=1e
cos(ev,eti )

,

(7)

with δ and Nt being the temperature factor and the number of text embeddings,
respectively. Based on the calculated S(ev, et), we use the cross-entropy loss for
model training.

4.2 Scene Descriptor-guided Transformer Block

To further harness the capabilities of scene description embeddings in image
restoration tasks and facilitate a more adaptive and nuanced restoration pro-
cess, we introduce the innovative Scene Descriptor-guided Transformer Block
(SDTB), illustrated in Fig. 3c. The SDTB consists of three primary components,
namely Scene Descriptor-guided Cross-Attention (SDCA), Self-Attention (SA),
and Feed-Forward Network (FFN). Diverging from traditional self-attention
mechanisms, the proposed SDCA module utilizes a query generated from scene
descriptors instead of queries generated from image features. The mathematical
representation of our SDCA can be written as

SDCA(Qt,K,V) = Softmax(
Qt ·K⊤

λ
)V, (8)

where λ is a temperature factor, Qt represents the scene descriptor-generated
query matrix, K and V denote the image feature-generated key and value ma-
trices, respectively. Qt is obtained from the input scene description embedding
et via a linear layer. During the process of matrix multiplication between Qt

and K. To ensure consistency in the number of tokens between K and Qt, we
resize the original image before performing the reshaping operation to generate
K. By incorporating the SDCA module, each transformer block in OneRestore
can effectively integrate scene descriptors and image features for targeted image
restoration. As for the SA and FFN modules, we adopt structures akin to those
in Restormer [52]. More details of our SDTB are introduced in the supplement.
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4.3 Composite Degradation Restoration Loss

Using contrastive loss has been demonstrated as an effective way of improving
image restoration performance [47, 57]. Essentially, contrastive loss views the
degraded input image as a negative sample, the clear image as a positive sam-
ple, and the restored image as an anchor. This loss function works to minimize
the distance between the anchor and the positive sample while maximizing its
distance from the negative sample. In the composite degradation image restora-
tion task, the traditional contrastive loss, however, may inadvertently reduce the
distance between the anchor and other degraded images. To make the anchor
closer to the positive sample while maintaining a clear separation from all de-
graded negatives, we design a composite degradation restoration loss, illustrated
in Fig. 4. Considering I, Io, J , and Ĵ as the input negative, other negatives,
positive, and anchor, the proposed loss can be written as

Lc(J, Ĵ, I, {Io}) =
K∑

k=1

ξk
L1(Vk(J), Vk(Ĵ))

ξcL1(Vk(Ĵ), Vk(I)) +
∑O

o=1 ξoL1(Vk(Io), Vk(Ĵ))
, (9)

where Vk(·) denotes the extraction operation of k-th hidden feature from the
VGG-16 pre-trained on the ImageNet, L1 represents the l1 loss, K and O are the
numbers of used VGG-16 feature layers and other degraded negatives, ξk, ξc, and
ξo denote the hyper-parameters, respectively. In this work, the number of other
degraded negatives O is 10. We use the output features of 3-rd, 8-th, and 15-th
layers from VGG-16 and set K = 3. Furthermore, we consider that the features
of each feature layer of each degraded negative have equal importance. Therefore,
we set ξc = ξo = 1

11 and ξk = 1
3 . According to our ablation study, the proposed

loss confers a significant advantage over using a single input degradation as a
negative sample, which can easily capture positive sample features.

Table 1: Settings of model training. “lr” denotes the learning rate.

Terms Text/Visual Embedder OneRestore
Epoch 200 120
Initial lr 0.0001 0.0002
lr Decay 0.5/50 epochs 0.5/20 epochs
Batch Size 256 4
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Table 2: Comparison of quantitative results on CDD-11 dataset. OneRestore† means
using the corresponding scene description text as additional input, and WGWSNet
requires the scene type as model input. Red, green, and blue indicate the best, second-
best, and third-best results, respectively.

Types Methods Venue & Year PSNR ↑ SSIM ↑ #Params
Input 16.00 0.6008 -

One-to-One

MIRNet [53] ECCV2020 25.97 0.8474 31.79M
MPRNet [54] CVPR2021 25.47 0.8555 15.74M
MIRNetv2 [55] TPAMI2022 25.37 0.8335 5.86M
Restormer [52] CVPR2022 26.99 0.8646 26.13M
DGUNet [34] CVPR2022 26.92 0.8559 17.33M
NAFNet [3] ECCV2022 24.13 0.7964 17.11M
SRUDC [40] ICCV2023 27.64 0.8600 6.80M
Fourmer [58] ICML2023 23.44 0.7885 0.55M
OKNet [9] AAAI2024 26.33 0.8605 4.72M

One-to-Many

AirNet [26] CVPR2022 23.75 0.8140 8.93M
TransWeather [42] CVPR2022 23.13 0.7810 21.90M
WeatherDiff [35] TPAMI2023 22.49 0.7985 82.96M
PromptIR [37] NIPS2023 25.90 0.8499 38.45M
WGWSNet [62] CVPR2023 26.96 0.8626 25.76M

One-to-Composite OneRestore 28.47 0.8784 5.98M
OneRestore† 28.72 0.8821 5.98M

5 Experiments

5.1 Experiment Settings

Implementation Details. Our OneRestore is implemented by PyTorch 1.12.0
and trained on a PC with 2 AMD EPYC 7543 32-Core Processors and 8 NVIDIA
L40 GPUs. We use the Adam with exponential decay rates being β1 = 0.9 and
β2 = 0.999 for optimization. The training parameter settings for text/visual
embedder and OneRestore are shown in Table 1. In particular, all images used for
training are cropped into 256×256 image patches with a sampling stride of 200
and randomly flipped by 0, 90, 180, and 270 degrees to generate 312k patch pairs.
More details about training and inference can be found in the supplement.

Evaluation Datasets. To facilitate a thorough comparison, we execute im-
age restoration experiments across various datasets. These include the Compos-
ite Degradation Dataset (CDD-11) crafted by us, established One-to-One bench-
marks, and authentic real-world datasets. The standard One-to-One benchmarks
are designated for four principal tasks: the LOw-Light dataset (LOL) [46], the
REalistic Single Image DEhazing Outdoor Training Set (RESIDE-OTS) [25],
the Rain1200 dataset [56], and the Snow100k dataset [30]. Owing to the dearth
of specialized datasets for real-world composite degradation, we have curated a
selection from the LIME low-light enhancement dataset [17], the RESIDE Real-
world Task-driven Testing Set (RESIDE-RTTS) [25], Yang’s rainy dataset [51],
and the realistically snowy Snow100k dataset [25].

Competitors and Evaluation Metrics. We compare our OneRestore with
9 One-to-One image restoration methods (MIRNet [53], MPRNet [54], MIR-
Netv2 [55], Restormer [52], DGUNet [34], NAFNet [3], SRUDC [40], Fourmer [58],
and OKNet [9]) and 5 One-to-Many image restoration methods (AirNet [26],
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TransWeather [42], WeatherDiff [35], PromptIR [37], and WGWSNet [62]). In
particular, all compared state-of-the-art methods are retrained on our CDD-11
train set. For PromptIR and WGWSNet, we adjust the number of prompts and
the weather-specific parameters of each layer for corresponding to our task, re-
spectively. Furthermore, we adopt the Peak Signal-to-Noise Ratio (PSNR) and
Structure Similarity Index Measure (SSIM) as evaluation metrics.

5.2 Comparison with SOTAs
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Fig. 5: Comparison of quantitative
results for different degradation sce-
narios on CDD-11 dataset.

The quantitative evaluation results on our
CDD-11 test dataset are displayed in Table 2.
OneRestore† with text embedder achieves
the highest performance, followed by OneRe-
store with visual embedder as the second-
best. Both OneRestore† and OneRestore
demonstrate substantial leads over the third-
ranked methods in terms of both PSNR and
SSIM. Further detailed restoration perfor-
mance comparison of our method and the
One-to-Many methods in each degradation
scenario is illustrated in Fig. 5 using radar
charts. Notably, image restoration for com-
posite degradation scenarios proves challeng-
ing. By incorporating scene description em-
beddings into image restoration models and utilizing the proposed composite
degradation restoration loss, our method robustly reconstructs clear images
across various situations. For compelling evidence, Fig. 6 provides the visual
comparison of image restoration in two composite degradation samples. It is ev-
ident that SRUDC, OKNet, AirNet, and WGWSNet are unable to suppress all
degenerative interferences, while Restormer and PromptIR are prone to color
distortion and noise residual. In contrast, the proposed OneRestore can produce
more natural results and fully preserve image textures.

Moreover, Fig. 7 displays the image restoration results in two real-world sce-
narios. Compared with existing One-to-Many image restoration methods [26,35,
37], the proposed OneRestore can simultaneously focus on multiple degradation
factors and robustly reconstruct scene details. More results on CDD-11, real-
world scenarios, and other One-to-One benchmarks of low-light, hazy, rainy, and
snowy scenes are included in supplementary materials.

5.3 Ablation Study

Effectiveness of Network Modules. Table 3 reports the quantitative evalua-
tion of different module configurations. While the Feed-Forward Network (FFN)
with convolution as the basic unit serves as a crucial module in the transformer
network, it alone fails to generate satisfactory reconstruction results. The ordi-
nary Self-Attention module (SA) significantly strengthens network performance,
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Input Images Restormer SRUDC OKNet AirNet PromptIR WGWSNet OneRestore Ground Truth

16.31/0.5363 22.69/0.8223 24.37/0.8155 21.91/0.8101 19.08/0.7485 24.92/0.8070 23.49/0.8189 25.00/0.8370  PSNR/SSIM

15.00/0.4982 24.79/0.8315 23.14/0.8206 23.17/0.8240 22.95/0.7741 24.29/0.8077 22.16/0.8300 26.39/0.8553  PSNR/SSIM

Fig. 6: Comparison of image restoration on low+haze+rain (top) and low+haze+snow
(bottom) synthetic samples.

Input Images AirNetAirNet* WeatherDiffWeatherDiff* OneRestorePromptIR* PromptIR

Fig. 7: Comparison of image restoration on low+haze+rain (top) and low+haze+snow
(bottom) samples in real-world scenarios. * represents the utilization of original weights
published in the author’s code.

but this method regrets that the model fails to be flexibly controlled. Compared
to depending only on SA, relying exclusively on Scene Description-guided Cross-
Attention (SDCA) utilizing scene description embedding yields better outcomes.
This further confirms that addressing complex composite degradations can be
done more effectively and flexibly by integrating degradation scene descriptors
into the model. Ultimately, the best performance can be achieved by using a
combination of SDCA, SA, and FFN.

Input Image Noise Image Classifier

Visual Embedder Visual Embedder 
& Text Embedder

Ground Truth‡

Fig. 8: Comparison of image
restoration on different description
embedding strategies.

Selection of Description Embedding
Strategies. In this section, we compare the
image restoration performance by using dif-
ferent strategies to generate scene descriptor,
including Classifier (utilizing the embedding
before the last linear layer of the retrained
AlexNet [23] as the scene descriptor), Visual
Embedder (employing visual embedding for
model training), Visual Embedder‡ (deriving
text embedding via visual embedder), and
Text Embedder (employing text embedding
for model training). The quantitative evalu-
ation results are presented in Table 4. It is
observed that employing Classifier and Vi-
sual Embedder to generate scene descriptors
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Table 3: Ablation study for different model configurations. SDCA, SA, and FFN
denote the scene description-guided cross-attention, self-attention, and feed-forward
network, respectively.

SDCA SA FFN PSNR ↑ SSIM ↑ Controllability
✓ 24.81 0.8607

✓ ✓ 27.19 0.8697
✓ ✓ 27.93 0.8767 ✓
✓ ✓ ✓ 28.72 0.8821 ✓

Ground TruthInput Image ‘low’ ‘haze’ ‘rain’ ‘low+haze’ ‘low+rain’ ‘haze+rain’ ‘low+haze+rain’

Ground TruthInput Image ‘low’ ‘haze’ ‘snow’ ‘low+haze’ ‘low+snow’ ‘haze+snow’ ‘low+haze+snow’

Fig. 9: Comparison of image restoration on low+haze+rain (top) and low+haze+snow
(bottom) synthetic samples by using different texts.

yields comparable outcomes. However, these approaches have a drawback in
that each image has a distinct embedding as input, making it challenging for the
model to recognize the cause of degradation. Fig. 8 displays a classic case com-
parison using different embedding strategies, where the abnormal artifacts of the
results produced by Classifier and Visual Embedder are caused by the model’s
fuzzy identification of degradation factors. Moreover, the restoration model lacks
controllability. The discrepancy between Visual Embedder‡ and Text Embedder
stems from errors in scene descriptor estimation. Visual Embedder‡ has an ac-
curacy of 97.55% on the test dataset, with misestimation occurring when some
degradation types are insignificant. For instance, a haze+snow scene may be
evaluated as a haze or snow scene. In contrast, the text embedding-based ap-
proach is superior in describing degradation scenes and recovering images, using
a fixed number of scene descriptors. This allows the model to employ degraded
scene descriptors as switches to achieve controlled restoration.

 clear  low  haze  rain
 snow  low+haze  low+rain  low+snow
 haze+rain  haze+snow  low+haze+rain  low+haze+snow

Train Test

Fig. 10: Visualization of visual
embeddings based on t-SNE.

Effectiveness of Loss Functions. Table 5
presents a performance comparison of differ-
ent loss functions. Notably, the integration of
the MS-SSIM loss is instrumental in elevating
SSIM scores at the cost of reduced PSNR per-
formance. In contrast, the CL loss demonstrates
minimal impact, providing only marginal im-
provements in SSIM and PSNR. Upon replac-
ing CL with CDRL, a substantial enhancement
is observed in both PSNR and SSIM. The pro-
posed CDRL loss yields an output that closely
resembles the clear image while avoiding other
forms of degradation.
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Table 4: Ablation study for description embedding strategies.

Models PSNR ↑ SSIM ↑ Controllability
Classifier 28.19 0.8783

Visual Embedder 28.24 0.8781
Visual Embedder‡ 28.47 0.8784
Text Embedder 28.72 0.8821 ✓

Table 5: Ablation study for different loss functions. CL and CDRL denote the ordinary
contrastive loss and the proposed composite degradation restoration loss, respectively.

Smooth l1 MS-SSIM CL CDRL PSNR ↑ SSIM ↑
✓ 28.16 0.8633
✓ ✓ 27.54 0.8708
✓ ✓ ✓ 27.61 0.8723
✓ ✓ ✓ 28.72 0.8821

5.4 Model Control via Scene Descriptor

To demonstrate the controllability of the scene descriptor in our OneRestore,
we conduct experiments on two intricate synthetic degradation scenarios, as de-
picted in Fig. 9. By manually adjusting specific text to generate corresponding
degraded scene description embeddings, our model can selectively focus on dif-
ferent degradation factors, achieving targeted restorations. Our approach excels
in controllable restoration without the need for multiple sets of weight screening,
making it more concise compared to other One-to-Many methods that rely on
partial parameter sharing. Meanwhile, our method can support adaptive restora-
tion through the estimation of text embeddings based on visual attribute extrac-
tion. Fig. 10 employs the t-SNE [32] to visualize the embeddings generated by the
visual embedder on the CDD-11 train and test sets. Obviously, the constructed
visual embedder can clearly distinguish between different scenarios.

6 Conclusion

Our proposed OneRestore framework represents a significant step forward in
image restoration, synthesizing a range of degradation patterns to accurately
simulate complex scenarios. The innovative use of a scene descriptor-guided
cross-attention block within a transformer-based model facilitates an adaptable
and fine-grained restoration process, yielding results that surpass prior methods
in both synthetic and real-world datasets. However, despite its advancements,
OneRestore exhibits limitations in processing extremely high-density corruption
scenarios and high-complex corruption scenarios containing unconsidered degra-
dations, where the model’s predictive capabilities can be challenged. Future work
will aim to enhance the robustness of OneRestore against such extreme condi-
tions and to reduce computational overhead, further extending its applicability
and efficiency. Our findings underscore the potential of universal scene restora-
tion, with the caveat that continued refinement is essential for tackling the full
spectrum of real-world image degradation.
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