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Abstract. We introduce RePOSE, a simple yet effective approach for
addressing occlusion challenges in the learning of 3D human pose es-
timation (HPE) from videos. Conventional approaches typically employ
absolute depth signals as supervision, which are adept at discernible key-
points but become less reliable when keypoints are occluded, resulting
in vague and inconsistent learning trajectories for the neural network.
RePOSE overcomes this limitation by introducing spatio-temporal rela-
tional depth consistency into the supervision signals. The core rationale
of our method lies in prioritizing the precise sequencing of occluded key-
points. This is achieved by using a relative depth consistency loss that
operates in both spatial and temporal domains. By doing so, RePOSE
shifts the focus from learning absolute depth values, which can be mis-
leading in occluded scenarios, to relative positioning, which provides a
more robust and reliable cue for accurate pose estimation. This subtle
yet crucial shift facilitates more consistent and accurate 3D HPE under
occlusion conditions. The elegance of our core idea lies in its simplicity
and ease of implementation, requiring only a few lines of code. Exten-
sive experiments validate that RePOSE not only outperforms existing
state-of-the-art methods but also significantly enhances the robustness
and precision of 3D HPE in challenging occluded environments.

Keywords: 3D human pose estimation · depth relational loss functions

1 Introduction

The estimation of 3D human pose from videos is a foundational task in com-
puter vision, with widespread implications across various applications such as
virtual reality [4, 12, 21, 38], human-computer interaction [8, 36, 37], and action
recognition [10,34,35,40,41]. This task involves localizing body joints in a three-
dimensional space to create a comprehensive representation of the human body,
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(a) Input (b) GT (c) MotionBERT (d) PoseFormerV2 (e) Ours

Fig. 1: We introduce RePOSE, a novel solution designed to address the occlusion chal-
lenges in 3D pose estimation through relational supervision. Unlike existing methods
(c) [46] and (d) [44], which struggle with occlusions due to their dependence on ab-
solute depth signals, our approach leverages relational depth consistency, effectively
overcoming these obstacles.

typically in the form of a skeletal model. The methodologies in 3D human pose es-
timation (HPE) are primarily categorized into two approaches: direct estimation
and 2D-to-3D lifting methods. The former [22, 25] entails the direct estimation
of human pose from provided videos, whereas the latter [2, 14, 17, 27, 42, 44–46]
involves the initial estimation of intermediate 2D poses using off-the-shelf 2D
detectors, followed by lifting them to 3D space. 2D-to-3D lifting methods have
gained prominence due to the rapid evolution of 2D pose detection technologies,
exhibiting superior performance in many scenarios.

Recent advancements in 2D-to-3D lifting methods often employ Trans-
former architectures [31], which have shown exceptional ability in capturing
global information and modeling sequential data. These methods typically
involve transforming detected 2D poses into 3D space using tailored algo-
rithms [13–15,27,42,44–46]. However, this process inherently faces a many-to-one
mapping challenge, where multiple distinct 3D poses can correspond to a single
2D projection, particularly under occlusion scenarios, as shown in Fig. 1c and
1d. In such cases, occlusion of key body joints leads to reduced accuracy in 2D
pose estimations, creating ambiguities in the 3D reconstruction process. More-
over, relying on these unreliable occluded signals during model training results
in vague and uncertain learning pathways. This limitation chiefly stems from the
methods’ reliance on absolute depth signals, which lose reliability under occluded
conditions, thus undermining the overall accuracy of 3D pose estimation.

To address this challenge, we propose RePOSE, a novel approach specifically
designed to enhance the accuracy of 3D HPE in occluded scenarios. RePOSE
circumvents the limitations of absolute depth reliance by introducing a spatio-
temporal relational depth consistency. Our method emphasizes the correct se-
quencing of occluded keypoints using a relative depth consistency loss in both
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spatial and temporal domains, rather than depending solely on absolute depth
values. This shift in approach enables our method to robustly handle occlusions,
providing more accurate and reliable pose estimations, as shown in Fig. 1e. Ad-
ditionally, the simplicity of spatio-temporal relational depth consistency, which
can be implemented in just a few lines of code, makes it a practical and effective
solution for real-world applications.

We demonstrate through extensive experiments on the Human3.6M [11] and
MPI-INF-3DHP [20] benchmarks that our method outperforms state-of-the-art
methods by a large margin, particularly excelling in scenarios involving occlu-
sions. Our findings are further substantiated through visual comparisons and
an ablation study, showcasing the effectiveness and innovation of RePOSE in
tackling one of the most challenging aspects of 3D human pose estimation. This
method lays the groundwork for future research aimed at enhancing pose esti-
mation accuracy and reliability in complex environments.

2 Related Works

2D-to-3D Lifting HPE. The prevalent approach in 3D HPE involves lifting
2D pose sequences to 3D poses, a method enhanced by advanced 2D detec-
tors like CPN [3], AlphaPose [7], and HRNet [33]. These detectors facilitate the
conversion process with various techniques, including Fully Connected Networks
(FCN) [6,19], Long Short-Term Memory (LSTM) [9,16,32], Graph Convolutional
Networks (GCN) [1,5,39,43], Temporal Convolutional Networks (TCN) [2,17,26],
and Transformers [13, 14, 27, 42, 44–46]. While SimpleBaseline [19] and LSTM-
based methods [9] highlight the initial strides, they exhibit limitations in com-
putational efficiency and temporal information utilization. GCN-based meth-
ods [1, 5, 39, 43], though adept at local joint modeling, struggle with compu-
tational complexity. Transformer-based architectures, such as PoseFormer [45],
bring significant improvements by modeling spatial and temporal joint relations,
albeit with limitations in learning spatial-temporal dependencies. The multi-
solution nature of 2D-to-3D lifting is addressed by methods like MHFormer [14],
which generate multiple hypotheses to account for ambiguity in body part lo-
cations. Our work challenges this approach, positing a single accurate solution
corresponding to the original 2D pose, driven by spatial and temporal relational
constraints to optimize results.

Loss Functions in 3D Human Pose Estimation. The accuracy of 3D
HPE models heavily relies on the choice of loss functions. The Mean Per Joint
Position Error (MPJPE) [14, 27, 44–46] is a prevalent metric, gauging the Eu-
clidean distance between predicted and ground truth joint positions. Its simplic-
ity and direct measurement of joint accuracy make it a popular choice. However,
it does not account for joint orientations, potentially overlooking critical aspects
of pose estimation. The Weighted-MPJPE (W-MPJPE) [42] attempts to refine
this by assigning different weights to various joints, thereby prioritizing certain
joints over others based on the application’s needs. Yet, this method introduces
its own set of challenges, including potential bias in weight assignment and the
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need for expert knowledge in determining these weights. Additionally, the Mean
Per Joint Velocity Error (MPJVE) [26,42] has been used to improve the temporal
coherence between the predicted pose sequence and the ground truth sequence,
which is a crucial aspect in dynamic pose estimation. However, it falls short
in leveraging long-range temporal information. To address this gap, Zhang et
al. [42] integrated the MPJPE and temporal consistency losses introduced by
Hossain et al. [9] to leverage temporal relationships and smooth pose transi-
tions. However, these adaptations insufficiently tackle the issue of relative depth
perception among joints. Various studies [29,46] attempt to quantify limb angle
inaccuracies by calculating the Mean Absolute Error between the estimated and
ground-truth skeletal angles. Additionally, they explore angle dynamics through
the Mean Per-Angle Velocity Error (MPAVE), representing the mean Euclidean
distance in the angle’s first temporal derivative. Despite these efforts, current
methodologies overly focus on the x and y dimensions, derived primarily from
2D pose estimations, neglecting the critical depth (z-axis) disparities. Alterna-
tively, Pavlakos et al. [25] utilize predicted depth values to compute the ordinal
depth loss, especially when handling datasets that lack ground truth labels.
However, this approach offers a weaker supervisory signal due to the inherent
unreliability of the predictions.

In response to the above problems, we introduce two novel loss functions:
spatial and temporal relational depth consistency losses. The spatial loss focuses
on relative depth differences between joints within a single frame, ensuring ac-
curate depth relationships and mitigating pose estimation inconsistencies. The
temporal loss maintains pose smoothness over time, considering relative depth
differences of the same joint across frames. This dual focus enhances the overall
robustness of 3D HPE, ensuring more accurate, temporally coherent, and visu-
ally appealing human pose sequences. Our methodology, utilizing these losses,
aims to significantly improve the accuracy and temporal stability of pose esti-
mation, making it more applicable and reliable in various computer vision tasks.

3 RePOSE

3.1 Problem Formulation and Preliminaries

Our method leverages the 2D-to-3D lifting pipeline to elevate a sequence of
2D skeletons to their corresponding 3D coordinates. Given a sequence of 2D
joints with confidence scores, represented as X ∈ RT×J×3 where T and J de-
note the number of frames and joints respectively, this input is transformed
into a d-dimensional feature space F ∈ RT×J×d by the lifting network, with
d varying across different network architectures. The output of this process is
the estimated 3D pose sequence, denoted as Ŷ ∈ RT×J×3, obtained through a
regression mechanism. In our approach, we specifically treat the third dimension
of Ŷ as the depth feature D̂ ∈ RT×J , facilitating the computation of relational
depth consistency losses for model training supervision.
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Fig. 2: Our framework pipeline. Our network is designed with a spatio-temporal
architecture, enabling simultaneous modeling of both spatial and temporal information.
The generated 3D poses are processed through dual loss modules: the spatial loss
module focuses on the relative depth disparities among joints within each frame, while
the temporal loss module evaluates the relative depth differences of identical joints
across consecutive frames. This dual-module approach ensures comprehensive depth
accuracy and temporal consistency in the pose estimation process.

Prevailing methodologies in recent studies [13,14,27,42,44–46] predominantly
utilize Mean Per Joint Position Error (MPJPE) as loss function, defined as:

Lmpjpe =

T∑
t=1

J∑
i=1

∥ŷt,i − yt,i∥2, (1)

where T and J represent the total number of frames and joints in each video,
ŷt,i and yt,i correspond to the estimated and ground-truth positions of keypoint
i in frame t, respectively.

While the MPJPE is a widely accepted metric in 3D HPE, it has limitations,
particularly in its focus on joint positions without explicit consideration of spatial
relationships or pose topology. This becomes a significant concern in scenarios
with occlusions, where understanding the relative positions of body parts is vital
for accurate pose estimation. To address this, we introduce the spatial depth
ranking loss, specifically designed to enhance pose topology awareness.

Additionally, conventional techniques often fail to effectively utilize temporal
information, as they typically compute loss independently for each frame, ne-
glecting the continuity and interdependence within video sequences. This over-
sight can significantly limit a model’s ability to capture realistic human motion
over time, a crucial aspect in dynamic pose estimation tasks. To mitigate this
gap, we propose the temporal depth ranking loss, a novel component aimed at
incorporating temporal dynamics for more accurate and lifelike pose estimation.
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3.2 Network Structure

Inspired by [27,45], we recognize the exemplary performance of spatial-temporal
transformer architectures in 3D human pose estimation (HPE) due to their ro-
bust capability to model both spatial and temporal information in video se-
quences. In particular, they demonstrate a parallel dual-stream design to be
effective in ensuring comprehensive learning of spatial and temporal aspects.
Consequently, our network, RePOSE, adopts a bifurcated structure of the spatio-
temporal transformer to enhance the capture of spatial and temporal features
from input videos.

As depicted in Fig. 2, RePOSE is composed of a spatio-temporal module and
two specialized loss modules. The spatial transformer encoding module processes
individual body joints as distinct tokens, thereby efficiently capturing the inter-
joint relationships within the same frame. In contrast, the temporal transformer
encoding module considers cross-frame features, enabling it to discern relation-
ships between joints across different frames. The outputs from these modules
are then directed to the spatial and temporal relational depth consistency mod-
ules, which compute the respective losses. A crucial aspect of our architecture is
the backward pass, which plays a vital role in guiding the model’s training pro-
cess. The nuances and operations of the spatial and temporal relational depth
consistency modules are elaborated in subsequent sections.

3.3 Spatial Relational Depth Consistency

Spatial Relational
Depth Consistency

Time

Temporal Relational
Depth Consistency

Fig. 3: Overview of spatio-temporal rela-
tional depth consistency loss. The spatial
loss (left) enhances relative depth relation-
ships between the in-frame joints. The tem-
poral loss (right) ensures the consistent rel-
ative depth relationships of joints across
frames. The green dashed lines illustrate ex-
amples where the loss is calculated for the
relative depth of linked joints against the
ground-truth relative depth.

In any given frame, the ideal relation-
ship between estimated depths d̂ and
ground-truth depths d should adhere
to the condition d̂t,i < d̂t,j if dt,i <
dt,j , where t denotes a specific time
step, and dt,i and dt,j represent the
depths of different joints i and j at
that moment, respectively. The same
applies for d̂t,i and d̂t,j . However, we
observe that this relative depth rela-
tionship is often overlooked in existing
methods, leading to inaccurate results,
especially in scenarios with noise such
as self-occlusion. To address this, we
introduce a novel loss function to the
training procedure, aimed at steering
the network optimization in a more ac-
curate direction. The formula is as fol-
lows:

LS =

T∑
t=1

∑
dt,i<dt,j

max(0, d̂t,i − d̂t,j),

(2)



3D Human Pose Estimation via Depth Relational Consistency 7

Eq. (2) demonstrates that our model penalizes deviations in the ranking of es-
timated depths from the ground-truth rankings. An illustration of this loss is
displayed in the left part of Fig. 3.

In cases where body parts are occluded, standard models often struggle to
accurately determine the depth positioning of joints, leading to spatial incon-
sistencies. By integrating our spatial depth rank loss, we guide the estimations
to align more closely with the actual spatial configuration, thereby providing
feedback to the model for improved training and enhanced differentiation of ob-
scured body parts or joints. Particularly in self-occlusion scenarios, traditional
approaches might incorrectly associate body joints, such as mistaking a hand for
an elbow due to overlapping positions. This type of error, which might go unno-
ticed when solely using MPJPE as the loss function, becomes apparent when the
human skeleton is visualized. Our proposed spatial depth rank loss function, by
reinforcing the inter-joint relationships within a frame, effectively prevents these
errors and ensures a more accurate representation of the human body structure.
The code of this loss is displayed in Algorithm. 1.

Algorithm 1 Spatial Relational Depth
Consistency

1 def process(x, J, idx):
2 x = x.unsqueeze(idx)
3 return x.repeat_interleave(J, idx)
4 def loss_spatial(x, gt):
5 #x, gt: [B, T, J, 3]
6 _, _, J, _ = x.shape
7 x = x[..., 2]
8 gt = gt[..., 2]
9 A = process(gt, J, -1)

10 B = process(gt, J, -2)
11 C = process(x, J, -1)
12 D = process(x, J, -2)
13 Comp_1 = (C - D) * (A < B)
14 Comp_2 = torch.zeros_like(C)
15 SRLoss = torch.maximum(
16 Comp_1, Comp_2)
17 return torch.mean(SRLoss)

Algorithm 2 Temporal Relational
Depth Consistency

def process(x, T, idx):
x = x.unsqueeze(idx)
return x.repeat_interleave(T, idx)

def loss_temporal(x, gt):
#x, gt: [B, T, J, 3]
_, T, _, _ = x.shape
x = x.permute(0, 2, 1)[..., 2]
gt = gt.permute(0, 2, 1)[..., 2]
A = process(gt, T, -1)
B = process(gt, T, -2)
C = process(x, T, -1)
D = process(x, T, -2)
Comp_1 = (C - D) * (A < B)
Comp_2 = torch.zeros_like(C)
TRLoss = torch.maximum(

Comp_1, Comp_2)
return torch.mean(TRLoss)

3.4 Temporal Relational Depth Consistency

In parallel with our spatial considerations, we address depth consistency in the
temporal dimension. Temporally, the depth ranking of a specific joint should
remain consistent across different time steps to ensure the continuity of the
3D pose sequence. However, challenges arise, particularly during self-occlusion,
where the estimated poses may disrupt this continuity. To counteract this, we
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introduce the following loss function:

LT =

J∑
j=1

∑
dm,j<dn,j

max(0, d̂m,j − d̂n,j), (3)

where j indicates a specific joint, dm,j and dn,j represent the depths of joint j

at different times m and n, similarly for d̂m,j and d̂n,j . The right part of Fig. 3
shows the idea of this loss.

The temporal depth ranking loss encourages each joint in the estimated poses
to maintain temporal consistency, preventing any joint from deviating suddenly
from its original trajectory within the sequence. This loss is particularly crucial
in ensuring that the temporal relationships between consecutive frames in video
sequences are adequately maintained, which aids in smoothing the motion and
making the model less susceptible to outliers. The implementation is detailed in
Algorithm. 2.

3.5 Final Objective

Our comprehensive approach integrates the spatial and temporal dimensions to
significantly enhance the coherence and realism of estimated 3D pose sequences.
This integration ensures that the movements captured are not only spatially pre-
cise but also exhibit temporal fluidity and lifelike dynamics. Our final objective
function combines the conventional MPJPE loss with our spatio-temporal rela-
tional depth consistency losses. The final loss function is formulated as follows:

L = Lmpjpe + λSLS + λTLT , (4)

where Lmpjpe is the standard MPJPE loss, and the parameters λS and λT

are weighting factors that balance the contribution of the spatial and temporal
components in the overall loss function. This unified loss function is designed to
optimize the network in a holistic manner, addressing both the individual joint
accuracy and the relational depth in both spatial and temporal dimensions.

4 Experiments

4.1 Datasets and Evaluation Metrics

We have conducted training and evaluation of our model using the datasets
Human3.6M [11] and MPI-INF-3DHP [20].

Human3.6M is a well-established indoor dataset widely employed in the
field of 3D HPE. This dataset comprises 3.6 million video frames captured from
four distinct viewing angles, featuring performances by eleven professional actors
engaged in diverse activities, including sitting, eating, and walking and more. In
line with research [2,17,19,26,45,46], we utilize subjects 1, 5, 6, 7, and 8 as our
training dataset, reserving subjects 9 and 11 for testing purposes.
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(a) Input (b) GT (c) MotionBERT (d) PoseFormerV2 (e) Ours

Fig. 4: Qualitative comparison on Human3.6M. Our method is evaluated against
MotionBERT [46] and PoseFormerV2 [44] in scenarios featuring extensive self-occlusion
of the human body. Areas with incorrect relative depth relationships are marked with
red circles for emphasis, illustrating the effectiveness of each method in handling com-
plex occlusion challenges.

In our evaluation process, we report two key metrics: MPJPE and Procrustes
Aligned-MPJPE (PA-MPJPE), both measured in millimeters. MPJPE assesses
the average Euclidean distance between the estimated joint positions and their
corresponding ground truth values. In contrast, the PA-MPJPE represents the
MPJPE values after performing a rigid alignment procedure involving transla-
tion, rotation, and scaling operations to bring the estimated 3D pose as close as
possible to the ground truth poses.

MPI-INF-3DHP is another large-scale 3D HPE dataset consisting of both
constrained indoor and challenging outdoor scenes. It records 8 actors perform-
ing 8 activities. It consists of over 1.3 million frames captured from the 14 cam-
eras. To rigorously assess the generalization capabilities of RePOSE, particu-
larly in challenging outdoor environments and scenarios involving occlusions,
we conducted a comprehensive evaluation of our model using the MPI-INF-
3DHP dataset. Here we utilize 2D pose sequences with a length of 81 frames
each as input, as distinct from what it is in Human3.6M. Following previous
works [2, 32, 44], we report MPJPE, Percentage of Correct Keypoints (PCK)
within the 150mm range as well as Area Under the Curve (AUC).

4.2 Implementation Details

We have implemented our methodology using PyTorch [24] on a computing
platform consisting of two NVIDIA RTX 3090 GPUs. Following previous stud-
ies [29, 44, 46], we have configured the video sequence length to 243 frames and
leveraged the Stacked Hourglass [23] for the extraction of 2D poses during both
training and evaluation phases. Additionally, we have applied horizontal flipping
augmentation, consistent with [1, 2, 46]. For the optimization of model param-
eters, we have employed the AdamW [18] optimizer for 100 training epochs,
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Table 1: Quantitative Comparison on Human3.6M Dataset. The top and bot-
tom show comparison based on MPJPE and Procrustes-Aligned MPJPE in millimeters
respectively. In this table, T represents the number of input frames used in each method.
The best-performing methods are highlighted in bold, while the second-best results are
underlined for clarity. Different 2D detection methods are indicated as follows: (∗) de-
notes the use of CPN [3], (†) indicates the use of HRNet [33], and (‡) signifies the use
of SH [23] for 2D pose detection.

MPJPE T Dir. Disc.Eat.GreetPhonePhotoPosePurch. Sit SitD.SmokeWaitWalkD.WalkWalkT. Avg
∗VideoPose3D (CVPR’19) [26] 243 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
∗PoseFormer (ICCV’21) [45] 81 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
∗MHFormer (CVPR’22) [14] 351 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
†MixSTE (CVPR’22) [42] 243 36.7 39.0 36.5 39.4 40.2 44.9 39.8 36.9 47.9 54.8 39.6 37.8 39.3 29.7 30.6 39.8
∗P-STMO (ECCV’22) [27] 243 38.4 42.1 39.8 40.2 45.2 48.9 40.4 38.3 53.8 57.3 43.9 41.6 42.2 29.3 29.3 42.1
∗PoseFormerV2 (CVPR’23) [44]243 41.2 45.4 41.4 44.0 46.6 53.7 42.6 42.6 55.1 64.6 45.7 42.8 45.7 32.3 32.8 45.2
∗STCFormer (CVPR’23) [30] 243 38.4 41.2 36.8 38.0 42.7 50.5 38.7 38.2 52.5 56.8 41.8 38.4 40.2 26.2 27.7 40.5
∗D3DP (ICCV’23) [28] 243 37.7 39.9 35.7 38.2 41.9 48.8 39.5 38.3 50.5 53.9 41.6 39.4 39.8 27.4 27.5 40.0
‡MotionBERT (ICCV’23) [46] 243 36.1 37.5 35.8 32.1 40.3 46.3 36.1 35.3 46.9 53.9 39.5 36.3 35.8 25.1 25.3 37.5
‡MoAGFormer (WACV’24) [29] 243 36.8 38.5 35.9 33.0 41.1 48.6 38.0 34.8 49.0 51.4 40.3 37.4 36.3 27.2 27.2 38.4
‡RePOSE (Ours) 24334.636.835.0 31.3 38.8 44.7 35.3 35.5 47.5 50.9 38.4 35.5 34.9 23.9 25.0 36.5

PA-MPJPE T Dir. Disc.Eat.GreetPhonePhotoPosePurch. Sit SitD.SmokeWaitWalkD.WalkWalkT. Avg
∗VideoPose3D (CVPR’19) [26] 243 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
∗PoseFormer (ICCV’21) [45] 81 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
∗MHFormer (CVPR’22) [14] 351 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 34.3 23.9 25.1 34.4
∗MixSTE (CVPR’22) [42] 243 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
∗P-STMO (ECCV’22) [27] 243 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
∗PoseFormerV2 (CVPR’23) [44]243 32.3 35.8 33.7 35.8 35.9 41.1 33.1 32.7 44.2 51.9 37.4 32.8 35.5 25.2 26.5 35.6
∗STCFormer (CVPR’23) [30] 243 29.3 33.0 30.7 30.6 32.7 38.2 29.7 28.8 42.2 45.0 33.3 29.4 31.5 20.9 22.3 31.8
∗D3DP (ICCV’23) [28] 243 30.6 32.5 29.1 31.0 31.9 37.6 30.3 29.4 40.6 43.6 33.3 30.5 31.4 21.5 22.4 31.7
‡MotionBERT (ICCV’23) [46] 243 29.5 31.3 32.0 27.0 32.8 37.2 29.8 29.6 41.0 48.2 34.3 30.1 30.2 21.2 21.8 31.7
‡MoAGFormer (WACV’24) [29] 243 31.0 32.6 31.0 27.9 34.0 38.7 31.5 30.0 41.4 45.4 34.8 30.8 31.3 22.8 23.2 32.5
‡RePOSE (Ours) 24329.130.9 29.4 26.6 32.1 35.8 28.6 30.6 39.9 44.9 33.3 29.0 29.6 20.1 21.2 30.7

incorporating a weight decay factor of 0.01. The initial learning rate has been
set to 5×10−4, accompanied by a learning rate decay strategy with a decay rate
of 0.99. Lastly, the hyper-parameters λS and λT are all set to 20. When training
our model on Human3.6M, We utilize the stride data sample strategy with a
one-third interval of the input length to make sure there are fewer overlapping
frames between consecutive sequences. But for the MPI-INF-3DHP dataset, the
interval is one-nine of the input length because of fewer samples.

4.3 Comparison with State-of-the-Art Methods

Human3.6M dataset. The proposed method has been seriously compared with
state-of-the-art (SOTA) approaches, utilizing the Human3.6M dataset as the
evaluation benchmark. As illustrated in Tab. 1, our method demonstrates excep-
tional performance, achieving an MPJPE of 36.5 millimeters and a PA-MPJPE
of 30.7 millimeters. These results surpass those achieved by leading SOTA meth-
ods, indicating a notable performance improvement.
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Table 2: Computational Complexity Comparison. The MPJPEs here are eval-
uated on Human3.6M using ground-truth 2D joint locations as input.

Method Param (M) MACs (G) MPJPE
PoseFormer (ICCV’21) [45] 9.5 2.5 31.3
MHFormer (CVPR’22) [14] 30.9 7.0 30.5
MixSTE (CVPR’22) [42] 33.6 139.0 25.9
P-STMO (ECCV’22) [27] 6.2 0.7 29.3

PoseFormerV2 (CVPR’23) [44] 14.3 0.5 -
STCFormer (CVPR’23) [30] 4.7 19.6 21.3
MotionBERT (ICCV’23) [46] 42.5 174.7 17.8

MotionAGFormer (WACV’24) [29] 19.0 78.3 17.3
RePOSE (Ours) 16.0 43.7 15.7

Table 3: Quantitative comparison on MPI-INF-3DHP dataset. The best and
second-best results are bolded and underlined.

Method PCK↑ AUC↑ MPJPE↓
VideoPose3D (CVPR’19) [26] 85.5 51.5 84.8
PoseFormer (ICCV’21) [45] 65.4 63.2 57.7
MHFormer (CVPR’22) [14] 93.8 63.3 58.0
MixSTE (CVPR’22) [42] 94.4 66.5 54.9
P-STMO (ECCV’22) [27] 97.9 75.8 32.2

D3DP (ICCV’23) [28] 97.7 77.8 30.2
PoseFormerV2 (CVPR’23) [44] 97.9 78.8 27.8
STCFormer (CVPR’23) [30] 98.7 83.9 23.1

MotionAGFormer (WACV’24) [29] 98.2 85.3 16.2
RePOSE (Ours) 98.3 86.7 15.5

It is worth noting that even when considering the best results reported by
each of the prior studies, our method consistently outperforms them, especially
in challenging scenarios involving actions such as “photo,” “sitting,” and “sitting
down.” This highlights its potential to effectively address challenges related to
occlusion. Qualitative results can be found in Fig. 4.

We also compare the number of parameters, multiply–accumulate operations
(MACs), and MPJPE using the ground-truth 2D pose sequences as input, as
shown in Tab. 2. Our model attains the best MPJPE out of other works with
limited parameters and algorithm complexity, demonstrating the effectiveness
and efficiency of our proposed method.

MPI-INF-3DHP dataset. Tab. 3 presents a quantitative comparison of
our method on the MPI-INF-3DHP dataset. RePOSE achieves impressive re-
sults, with an MPJPE of 15.5 mm and an Area Under Curve (AUC) of 86.7%,
significantly outperforming other compared methods by margins of 1.8mm in
MPJPE and 1.4% in AUC. However, in terms of the Percentage of Correct Key-
points (PCK), RePOSE reaches 98.3%, which is slightly lower by 0.4% compared
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(a) Input (b) GT (c) D3DP (d) STCFormer (e) Ours

Fig. 5: Qualitative comparison on MPI-INF-3DHP. Our method is compared
with D3DP [28] and STCFormer [30]. The areas with incorrect results are pointed out
with red arrows and circles to exemplify the importance of relational depth consistency.

to the best performance achieved by existing methods, but we excel in the best
balance of all metrics. For a more detailed visual assessment, refer to the quali-
tative comparisons illustrated in Fig. 5.

4.4 Ablation Study

Table 4: Ablation Study on Individual
Loss Functions. The study reveals that
while both spatial and temporal loss func-
tions individually contribute to improved
pose estimation, their combined application
yields the best results. Performance metrics
have been evaluated on the Human3.6M
dataset to substantiate this finding.

MPJPE Spatial Temporal MPJPE↓ PA-MPJPE↓
✓ - - 37.9 32.5
✓ ✓ - 36.9 31.4
✓ - ✓ 37.2 31.8
✓ ✓ ✓ 36.5 30.7

To evaluate the distinct contributions
of individual components, we incorpo-
rated spatial and temporal relational
depth consistency loss functions sep-
arately into the baseline network. As
shown in Tab. 4, it is clear that with-
out these spatial and temporal depth
constraints, the baseline model experi-
ences degradation in both the MPJPE
and PA-MPJPE metrics. However, the
inclusion of either the spatial or tem-
poral loss functions results in a sig-
nificant enhancement in the model’s
performance. This observation under-
scores the effectiveness of these two
loss functions in improving the overall quality of the model’s predictions.

Fig. 6 provides a comparative visualization of the performance of the Re-
POSE with and without the incorporation of two relational depth consistency
losses. It is evident from the figure that the omission of these losses unfavorably
affects the model’s capacity to accurately estimate occluded body parts, as ex-
emplified by the red circles. This inadequacy suggests that the model, without
these losses, cannot effectively identify the relative depth of body parts during
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(a) Input (b) w/o our losses (c) RePOSE (d) Ground Truth

Fig. 6: Visualized Results of Ablation Study. The second column displays poses
generated by a model trained without the spatio-temporal relational depth consistency
loss, contrasting with the third column, which shows results from the model including
this loss. Joints with less accurate estimations are highlighted in red circles for clarity.

Table 5: Generalization evaluation on Human3.6M with our loss functions.
With the integration of our loss functions, all methods exhibit improved performance.
∆ indicates the difference between ‘w/ST’ and ‘w/o’.

Method T
MPJPE↓ PA-MPJPE↓

w/S w/T w/ST w/o ∆ w/S w/T w/ST w/o ∆

P-STMO-S [27] 27 45.3 45.5 44.7 46.1 -1.4 36.4 36.6 35.6 36.8 -1.2
STCFormer [30] 27 43.8 43.8 43.3 44.1 -0.8 34.1 34.0 33.7 34.8 -1.1

MotionBERT [46] 243 37.0 37.2 36.7 37.5 -0.8 31.4 31.7 30.8 31.8 -1.0

the training stage, leading to incorrect results. On the contrary, the integration
of our proposed losses into the training phase significantly enhances the model’s
ability to resolve occlusions, thereby improving its estimation accuracy. This im-
provement is crucial for applications where precise depth perception is necessary,
and it emphasizes the value of our contributions to the field of pose estimation
in occlusion situations.

4.5 Generalization Evaluation

To validate the versatility and generalization capacity of our proposed loss func-
tions, we extend their application to similar spatio-temporal transformer-based
frameworks, including MotionBERT [46], STCFormer [30], and P-STMO [27].
We directly use their official pre-trained models with default setups and fine-tune
them with our loss functions.
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We detail the generalizability of our individual loss functions in Table 5.
Overall, integrating both losses (‘w/ST’) leads to superior performance metrics
compared to the original model configurations without our adjustments. Signif-
icantly, even when applied separately, each loss function (‘w/S’ or ‘w/T’) yields
improvements across all evaluated methods, reinforcing their broad applicability.
It is important to note that all reported results were achieved without specific
tuning of the hyperparameters λS and λT . Therefore, there is an opportunity for
further enhancements if these parameters were to be systematically optimized.

5 Conclusion and Discussion

In this paper, we introduce RePOSE, an approach designed to enhance 3D pose
estimation accuracy in video sequences, specifically under conditions where body
parts are obscured or occluded. Diverging from conventional methods that pre-
dominantly depend on depth information, which can falter when body parts
are not visible, RePOSE adopts an innovative strategy centered on the relative
positioning of body segments. This methodology not only exhibits superior effi-
cacy in managing occlusions but also boasts a straightforward implementation,
requiring minimal code adjustments. Our comprehensive experiments validate
that RePOSE outperforms existing state-of-the-art techniques, particularly in
scenarios marked by obstructions. These outcomes underscore RePOSE’s effi-
cacy and its promising potential in advancing 3D pose estimation, especially in
practical settings where occlusions and partial visibilities are common. Addi-
tionally, the simplicity of its integration renders RePOSE a viable and effective
solution for researchers aiming to refine pose estimation precision.

Limitations. Despite its significant advantages in occlusion scenarios within
3D human pose estimation, RePOSE encounters limitations, chiefly its depen-
dence on the accuracy of preliminary 2D pose data. Discrepancies in this founda-
tional data can adversely affect subsequent 3D estimations, a challenge inherent
in 2D-to-3D conversion techniques. Moreover, although tailored for occlusions,
RePOSE’s performance may diminish in complex conditions, such as atypical
body postures or interactions with objects, and in extremely low-light environ-
ments where depth cues are compromised.

Future Work. The efficacy of our newly proposed loss functions has been
established across various spatio-temporal transformer architectures, including
MotionBERT [46] and STCFormer [30]. Our next phase of research will explore
the extension of these functions to a wider spectrum of models, including those
based on GNNs and CNNs. Additionally, we aim to evolve the hyperparameters
λS and λT from fixed values based on empirical selection to adaptive, learnable
parameters optimized through the model’s interaction with input data, thereby
refining the model’s depth dimension understanding in 3D human pose estima-
tion. Future enhancements will focus on augmenting RePOSE’s versatility across
different input data forms and broadening its efficacy in a more extensive array
of challenging conditions.
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