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In this supplementary material, we provide additional information to comple-
ment the main text: 1) more implementation details about the data creation (see
Sec. 1), 2) more details about the baselines (see Sec. 2), and 3) more statistics
and sample images from WorldPose (see Sec. 3).

1 Data creation

1.1 Static Camera Calibration

For static camera calibrations, we developed a GUI program designed for the
manual annotation of 2D points, as is shown in Fig. 1. This tool simplifies the
process of adding and editing annotations. It also offers additional features, like
1) zooming, which is crucial for achieving pixel-level accuracy, and 2) previewing,
where it dynamically updates the estimation of camera parameters using the
annotated 2d points and generates preview results of the projection of the field
markings.

Subsequently, we employ the Canny detector [3] to extract the field mark-
ings from OpenCV [2]. The calibration results from the previous stage are also
utilized to remove uninteresting lines. The detected lines are then converted into
a distance field matrix, where each element of the matrix represents the dis-
tance to the nearest field markings. With the distance field we can further refine
the camera parameters by minimizing the distance of the projected point of the
field markings to the closest line pixel. The detected field markings and distance
matrix are visualized in Fig. 2.

However, there are still several problems remained: 1) by default, we only
estimate the k1 and k2 distortion coefficients of the cameras. However, this may
not be sufficient in some cases, especially for side cameras with wide angles. These
cameras need to be handled separately, and usually, adding the k3 coefficient is
sufficient to achieve relatively good results. 2) another issue is that even when
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Fig. 1: Visualization of the annotation tools: manual annotation (left) and zoomed-in
view (right). The manually selected point is indicated by the green marker. The blue
lines show the preview results of the projection using the manually selected points.

the reprojection appears reasonable, it can be problematic for cameras looking
at the penalty area, as shown in Fig. 3. Due to the lack of corresponding points
in the right half of the image, there can be multiple sets of parameters that
provide roughly the same reprojection for the field lines but very different results
for the players. Therefore, the keypoints of players must be considered in the
calibration process. This means it often takes multiple iterations of the entire
camera calibration and keypoint estimation process to achieve desired accuracy.

Fig. 2: Visualization of the photometric refinement process: extracted field markings
(left) and distance field induced from the field markings (right). The brightness corre-
sponds to the distance from the field markings.

1.2 Refinement of 2D detection results

Due to the distance between the camera and the players, the resolution of the
players is rather low, which will negatively impact the accuracy of 2D detections.
Consequently, even SOTA models may frequently miss the players or produce
erroneous detections, as illustrated in the figure below.

To address these issues, we initially ensemble the predictions of multiple
SOTA detection models by concatenating their detections and running Non-
Maximum Suppression to eliminate duplicate detection boxes. However, the en-
semble model is relatively slow and occasionally produces incorrect detections.
Therefore, we apply this slower method to a subset of broadcasting images. We
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(a) Results of SOTA models (Detectron2-R-
101-FPN) (b) Results of ours

Fig. 3: Comparison of SOTA models vs. ours. Note the missing players in the top row
and erroneous detections highlighted in the red rectangle (it detects 3 players instead
of 2). We get rid of the uninteresting detections outside the field (top row, top of the
image) by leveraging the camera calibration.

manually inspect the results and remove incorrect detections. In this way, we
semi-automatically annotate a small dataset and fine-tune the YOLO models
with this dataset. Through this process, we achieve a 2D detection model with
desired accuracy and speed.

1.3 SMPL Registration

For SMPL registration, we adopt the L-BFGS [7] optimizer with strong Wolfe
line search and set the learning rate to 1. The hyperparameters of the loss func-
tions are set to λ1 = 1, λ2 = 0.1, and λ3 = 0.1 respectively.

1.4 Broadcasting Camera Calibration

For Broadcasting camera calibration we used Adam Optimizer [4] with a learning
rate of 10−3 which empirically leads to slightly smoother camera parameters.
Here, the hyperparameters are set to λ4 = 1 and λ5 = 0.5.

However, while this may be sufficient for achieving a low reprojection error,
it often leads to less smooth distortion coefficients, as demonstrated by the blue
curves in Fig. 4.

To address this, we have also incorporated additional smoothness regular-
izers, including a camera smoothness term and optical flow regularization (see
Fig. 5). With these, we enforce that 1) the changes of focal length and distortion
shall be smooth across frames, and 2) the reprojection of the keypoints and the
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Fig. 4: Visualization of the camera parameters: The X-axis represents the frame index,
and the Y-axes represent the focal length, k1, and k2 respectively. The smoothness of
all camera parameters (including distortion coefficients) improved with the additional
smoothness regularizations.

optical flow prediction shall be close to each other. In this way, we can achieve
not only accurate but also visually smooth reprojection. The weights of these
two regularizers are adjusted subject to the clip after a manual check.

2 Baseline Evaluation Details

2.1 GLAMR Baseline

Implementation Details For the GLAMR [11] baseline, we found that the
official implementation was unable to detect many subjects within the frame. To
address this we supply it with detection results generated by our preprocessing
code that utilizes BYTETrack [12]. To achieve the best results, we run GLAMR
on the entire video using a single A100 GPU.

Discussion In Fig. 6 we present the results of both HybrIK [6] and GLAMR.
GLAMR utilizes HybrIK to initialize the SMPL estimation. With the provided
detections, HybrIK generates accurate SMPL initializations for all subjects in
the frame. However, despite the initialization provided by HybrIK, GLAMR
struggles to predict plausible trajectories.

Unlike most other SLAM-based methods, GLAMR relies on its learning-
based Global Trajectory Predictor to estimate the subjects’ trajectories and
infer the camera’s extrinsic parameters based on these estimated trajectories.
However, when the principal axes of the cameras are not parallel to the floor,
as in our example, it has difficulty estimating the correct extrinsic parameters,
leading to a tendency to place the players on a tilted plane.
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Fig. 5: Visualization of optical flow regularization: We employ the iterative Lucas-
Kanade method with pyramids [1] to compute the optical flow for a sparse feature set
consisting of points sampled from field markings. Here, the red points represent the
sampled points from the previous frame, and the green points represent the predictions
of the optical flow. Note outliers are removed with modified z-score.

(a) Hybrik (with our detections) (b) GLAMR

Fig. 6: Visualization of the GLAMR baseline: We present the results from both Hybrik
(with our detections) and GLAMR (using Hybrik as initialization). Despite the good
initialization, GLAMR struggles to place SMPL meshes in the correct locations
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Additionally, we observed that in the implementation of GLAMR, it does not
utilize the trajectories of multiple players to improve the estimation of extrinsic
parameters (and consequently, the plane). Instead, it solely relies on the trajec-
tory of the player with id=0. Therefore, while GLAMR is able to locate this
player (the one annotated with the red rectangle in Fig. 6), it fails to accurately
place other players, especially those that are far from the reference player.

2.2 SLAHMR Baseline

Implementation Details For fair comparison with GLAMR, we supply the
same detection results used in the GLAMR to SLAHMR [10]. Additionally, we
made a few changes to the official SLAHMR Implementation:

1. We notice that SLAHMR tends to overlook a few subjects when the number
of subjects is relatively large. We made the following changes to the official
implementation to address this:
(a) We increased the constant MAX_NUM_TRACKS in the preprocessing

code of SLAHMR from 12 to 30. This change allows SLAHMR to keep
track of all subjects.

(b) For 4DHuman, we lowered the confidence threshold to 0.5. These changes
were made to ensure that all potential players are correctly recognized.

2. We observed that during the motion chunk stage, the optimization failed to
converge due to an incorrect floor estimation. Therefore, we specified in the
configuration to use a shared floor for all players. In this way, the model will
try to align all players to the same floor and yield slightly improved results.
Additionally, we enabled the "est_floor" parameter in the configuration file,
allowing the model to estimate the floor normal rather than assuming it is
parallel to the xy-plane. We found that this approach improves the perfor-
mance, particularly when the camera is slightly tilted, as in our case.

Following the original paper, we first run DROID-SLAM [9] over the entire video,
partition the video into chunks of 100 frames each and optimize each chunk
separately. This is because the motion prior model of SLAHMR, HuMoR [8],
is trained on short motion clips and it is recommended by the official HuMoR
repository that it should be applied to short clips of 2-3 seconds.

Discussion In Fig. 7, we ablate the impacts of our modifications on SLAHMR.
With our modification, SLAHMR is able to generate relatively accurate and
feasible trajectories in our data. However, while able to produce a reasonable
trajectory for individual subjects, SLAHMR struggles to identify the correct
relative positioning between different subjects (see subfigure Fig. 7 f).

While the modification improves the performance of SLAHMR on some se-
quences, we note that the motion chunk stage remains very fragile and could
easily diverge, especially during fast camera movements, which are quite com-
mon in broadcasting scenarios. The core issue lies in SLAHMR’s need to esti-
mate the floor before introducing the motion prior model. However, the only
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(a) 4DHuman (without modification) (b) 4DHuman (with modification)

(c) SLAHMR (without modification) (d) SLAHMR (with modification)

(e) SLAHMR (without modification) in
World Coordinate Frame

(f) SLAHMR (with modification) in World
Coordinate Frame

Fig. 7: Visualization of SLAHMR and 4DHuman: the left and right columns show
the results before and after the modification. While SLAHMR appears to produce
seemingly reasonable results (as shown in subfigure f), it does not have the correct
scale due to an incorrect focal length. Specifically, the distance between the players
should be much larger, as the stadium is approximately 70 meters wide.
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loss that aligns the players to the floor comes from the motion prior model. This
creates a chicken-egg situation: if the players are already roughly on the same
plane without the motion prior model, SLAHMR can converge to reasonable
results. However, if this is not the case, the motion prior model will not provide
any meaningful gradient, leading to complete divergence, as is shown in Fig. 8.
Specifically, we observed that for some sequences, SLAHMR fails to converge on
as many as half of the chunks, even with ground-truth camera parameters. This
can be confirmed from the higher PA-MPJPE loss compared to 4DHuman, as
shown in Table 3 of the main paper (which is related to the divergence).

Fig. 8: Visualization of typical failure cases of SLAHMR: When the distances between
the players are relatively large, SLAHMR struggles to locate the floor, resulting in
complete divergence.

Similar to GLAMR, our evaluation of SLAHMR on WorldPose reveals several
limitations: 1) SLAHMR has a tendency to generate overly smooth motions
which poses challenges in capturing fast-paced movements. 2) the motion chunk
stage can be quite unstable with large focal length and when players are not
standing close to each other, 3) We noticed that although the camera trajectory
remains smooth across the boundary of each chunk, there is a visible gap in
the predicted SMPL meshes between the chunks. This issue could potentially
be mitigated if SLAHMR divides the sequence into overlapping clips, thereby
enforcing smoothness regularization across the chunks, similar to the approach
employed in PACE [5]. 4) the optimization is time-consuming: 40 minutes per
100 frames with 4 subjects as reported in the original paper (which aligns with
our observations).

2.3 Evaluation

To align the predicted SMPL poses with the ground-truth, we employed a
greedy matching algorithm based on Intersection-over-Union (IoU), comparing
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2D bounding boxes of the ground truth with 2D predictions. We found some-
times baselines split trajectories in case of re-entries or lose track, so we merge
tracks corresponding to the same ground truth subject during post-processing.
For evaluation, we only consider the subjects and frames when they are both
available in the prediction and the ground-truth, and the MPJPE is calculated
with selected SMPL keypoints (including the nose, neck, shoulders, wrists, el-
bows, hips, knees, and ankles) which are generally more reliable.

3 Additional Statistics on WorldPose

0 50 100 150 200
Trajectory Length per Subject (m)

0 1000 2000 3000 4000 5000
Number of Frames

Fig. 9: Distribution of player trajectory lengths (top) and clip lengths (bottom) in
WorldPose. The availability of long trajectories up to 200 m sets WorldPose apart
from existing datasets.

We plot the distribution of sequence lengths and per-player trajectories ap-
pearing in WorldPose in Fig. 9. For additional sample images, please refer to
Fig. 10.
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Fig. 10: Additional sample images: We include more sample images from our dataset.
These images demonstrate that our dataset can provide accurate SMPL meshes and
camera parameters, even when the camera zooms in, and fewer corresponding points
of field markings are available.



WorldPose 11

3. Canny, J.: A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence (6), 679–698 (1986)

4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

5. Kocabas, M., Yuan, Y., Molchanov, P., Guo, Y., Black, M.J., Hilliges, O., Kautz,
J., Iqbal, U.: Pace: Human and motion estimation from in-the-wild videos. In: 3DV
(2024)

6. Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: Hybrik: A hybrid analytical-
neural inverse kinematics solution for 3d human pose and shape estimation. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 3383–3393 (2021)

7. Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale opti-
mization. Math. Program. 45(1–3), 503–528 (Aug 1989)

8. Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: Humor:
3d human motion model for robust pose estimation. In: International Conference
on Computer Vision (ICCV) (2021)

9. Teed, Z., Deng, J.: DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and
RGB-D Cameras. Advances in neural information processing systems (2021)

10. Ye, V., Pavlakos, G., Malik, J., Kanazawa, A.: Decoupling human and camera
motion from videos in the wild. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 21222–21232 (2023)

11. Yuan, Y., Iqbal, U., Molchanov, P., Kitani, K., Kautz, J.: Glamr: Global occlusion-
aware human mesh recovery with dynamic cameras. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2022)

12. Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W.,
Wang, X.: Bytetrack: Multi-object tracking by associating every detection box. In:
European Conference on Computer Vision. pp. 1–21. Springer (2022)


	Supplementary Material  WorldPose: A World Cup Dataset for Global 3D Human Pose Estimation 

