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Summary

This Supplementary Material provides additional material for our paper titled
“Language-Driven 6-DoF Grasp Detection Using Negative Prompt Guidance”.
The material is organized as follows:

— Section 1 provides mathematical proof for our theory in the main paper and
recalls the connection between diffusion and energy-based models.

Section 2 provides a detailed discussion of related literature, including dif-
fusion models in robotics and language-driven grasp detection.

— Section 3 provides additional statistics of our dataset and comparisons to
others.

Section 4 presents the implementation details of our method and other base-
lines.

— Section 5 provides ablation studies.

— Section 7 shows additional qualitative results of our method.

— Section 6 provides additional information about our robotic experiments.

1 Theoretical Findings

1.1 Proof of Proposition 1

Proof. We have the following derivation:
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The assumption of independence between t, t, and S reflects general real-
world scenarios where human language prompts can be arbitrary and are not
necessarily dependent on the scene. Proposition 1 is now proved. B

1.2 Connection between Diffusion and Energy-Based Models

The connection between diffusion and energy-based models is not restricted to
our problem. We will recall this connection in the general context of any gener-
ation task.

Diffusion Models. Denoising diffusion probabilistic models (DDPMs) con-
struct a forward diffusion process by gradually adding Gaussian noise to the
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ground truth sample xy through T timesteps. A neural network then learns to
revert this noise perturbation process. Both the forward and the reverse processes
are modeled as Markov chains:

1

T
q (xor) = q(x0) [ [ ¢ (xelxi-1),  po(x10) =p (x0) [[ 2o (xe-alx), (1)
t=1 =T

where ¢ (xg) is the ground truth data distribution and p (xr) is a standard
Gaussian prior N (0,T).

In the reverse process, each step is parameterized by a Gaussian distribution
with mean pg (x¢,t) and covariance matrix BtI, where 3, = Bt 1o tl Following
the simplification in [11], we can keep the covariance fixed and formulate the
reverse distribution as:

o <xt1|xt>=/v(¢1o(7 (5~ Jeamn).a1). @)

Subsequently, an individual step in sampling can be performed by:

1 1—Oét
] = — _— 3
Xi_1 NG <xt l—at (x4, t )-l-\/ 17, (3)

where z ~ N (0,1) if the time step ¢t > 1, else z = 0.

Energy-Based Models. Energy-Based Models (EBMs) [5, 6,10, 21] are a
family of generative models in which the data distribution is modeled by an
unnormalized probability density. Given a sample x € RP, its probability density
is defined as:

po (x) o ™00, (4)

where the energy function Fy(x) : RP — R is a learnable neural network.
Langevin dynamics [6] is then used to sample from the unnormalized probability
distribution to iteratively refine the generated sample x:

A
Xt = Xg—1 — §VxE9 (x1-1) +Vz, (5)

where ) is the predefined step size and z ~ N (0, T).

The sampling procedure used by diffusion models in Equation 3 is func-
tionally similar to the sampling procedure used by EBMs in Equation 5. In
both settings, samples are iteratively refined starting from Gaussian noise, with
a small amount of noise removed at each iterative step. At a timestep ¢, in
DDPMs, samples are updated using a learned denoising network e (x¢, t), while in
EBMs, samples are updated via the gradient of the energy function VxEpy (x¢) o
Vi« log pg (x¢). Thus, we can view a DDPM as an implicitly parameterized EBM
and apply similar composition techniques for EBMs as in [4] for DDPMs. More
details about compositional DDPMs can be referred to in [15].
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2 Remark on Related Works

Diffusion Models in Robotics. Recent years have witnessed diffusion models
being applied to several robotic tasks. For instance, in policy learning, diffusion
models have been employ for multi-task robotic manipulation [32], long-horizon
skill planning [16], or cross-embodiment skill discovery [34]. Besides, the ability
of diffusion models to generate realistic videos over a long horizon has enabled
new applications in the context of robotics [2,7,12]. For example, Du et al. [7]
proposed to learn universal planning strategy via text-to-video generation. In
robot development, diffusion models have been leveraged for manipulator con-
struction [35] or soft robot co-design [31]. Although diffusion models have also
been explored for the task of grasp detection [19, 28|, none of them address the
task of detecting language-driven 6-DoF grasp poses in 3D cluttered scenes.

Language-Driven Grasp Detection. Language-driven grasp detection has
emerged as an active research domain in recent years. Previous works have pri-
marily focused on addressing this task using 2D images [25,27,29, 30, 33]. For
instance, the authors in [26] presented a method that combines object ground-
ing and task grounding to tackle the task of task-oriented grasp detection, while
Xu et al. [33] proposed to jointly model vision, language, and action for grasp-
ing in clutter. Despite achieving promising results, these approaches are limited
in their ability to handle complex 3D environments. To overcome this limita-
tion, recent research has explored language-driven grasp detection in 3D data.
In particular, Nguyen et al. [19] addressed the task of affordance-guided grasp
detection for 3D point cloud objects, while Tang et al. [25] leveraged knowledge
from large language models for task-oriented grasping. However, these methods
are designed for single-object scenarios, limiting their applicability in cluttered
settings. In contrast, our method is capable of detecting language-driven 6-DoF
grasp poses in cluttered point cloud scenes.

3 Dataset Statistics

Table 1 shows our dataset statistics and comparisons to other 6-DoF grasp
datasets.

Dataset Text?|#objects|#grasps|#scenes|Cluttered? |Data type|Annotation
GraspNet-1B [9] X 88 ~1.2B | 97K v Real Analysis
6-DoF GraspNet [18]| X 206 ~TM 206 X Sim. Sim.
ACRONYM 8] X 8872 |~17.7TM - X Sim. Sim.
Ours v ~3M | ~200M| 1M v Synth. Analysis

Table 1: Dataset statistics.
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4 TImplementation Details

4.1 Grasp Detection Methods for 3D Point Clouds

— Our LGrasp6D: The text embedding t produced by the pretrained CLIP
ViT-B/32 and the negative prompt embedding t are 512-dimensional (512-
D). We employ a PointNet-++ [20] architecture for our scene encoder. The
number of points per scene is 8192. The scene encoder extracts ng = 128
scene tokens of 256-D. We employ 4 heads for the multi-head cross-attention
block, with the output of 512-D. The timestep ¢ is encoded by a sinusoidal
positional encoder to obtain a 64-D vector. To speed up the training process,
we freeze the scene encoder after the first 100 epochs.

— 6-DoF GraspNet: We modified the model to integrate the text embedding
derived from the CLIP text encoder [23] into both the encoder and decoder
of the variational autoencoder. Since our dataset does not include negative
grasp poses, we refrained from employing additional refinement steps. This
is also to ensure a fair comparison with other methods. The remaining archi-
tecture, hyperparameters, and training loss are inherited from the original
work.

— SE(3)-DF [28]: We append the text embedding extracted by the CLIP text
encoder [23] to the input of the feature encoder. As the signed distance func-
tion is not available for our 3D point clouds, we exclude the signed distance
function learning objective from the framework. The remaining architecture,
hyperparameters, and training loss are retained from the original work.

— 3DAPNet [19]: 3DAPNet jointly addresses the tasks of language-guided affor-
dance detection and pose detection. To adapt this method to our problem,
we remove the affordance learning objective from the original framework.
The remaining architecture, hyperparameters, and training loss are inher-
ited from the original work.

4.2 Grasp Detection Methods for Images

Methods in this section are used in our robotic experiment in Section 5.2 of
our main paper. They are trained on the RGB-D images to predict rectangle
grasp poses inherited from Grasp-Anything [30]. Specifically, each grasp pose is
represented by (gz, 9y, 9w, gn, go), where (g, gy) is the center of the rectangle,
(9w, gn) are the width and height of the rectangle and gy is the grasp angle.

— Language-supported versions of GG-CNN [17], Det-Seg-Refine [1], and GR-
ConvNet [13]: We slightly modify these baselines by adding a component
to fuse the input image and text prompt. Specifically, we utilize the CLIP
text encoder [23] to extract the text embedding. Additionally, we employ the
ALBEF architecture presented in [14] to fuse the text embedding and the
visual features. The remaining training loss and architecture are inherited
from the original works.
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— CLIPORT [24]: The original CLIPORT framework learns a policy 7, which is
not directly applicable to our setting. Therefore, we modify its architecture’s
final layers by adding an MLP to output the rectangle grasp pose.

— CLIP-Fusion [33]: We follow the cross-attention module in CLIP-Fusion. The
final MLP in the architecture is modified to output five parameters of the
rectangle grasp pose.

— LGD [29]: We report results from the original paper.

5 Ablation Studies

Negative Guidance Scale. Recall that the negative guidance scale w plays
an important role in controlling the strength of the negative guidance in the
sampling process. We conduct an ablation study of the effect of the change in w
on the grasp detection performance. Table 2 demonstrates that values of w = 0.2
(used in experiments in the main paper) and w = 0.5 yield the best results,
whereas excessively small or large values of w detrimentally affect performance.

w | CRt EMD| CFR}
0.1 | 0.6573  0.4183  0.7629
0.2 | 0.6649 0.4013 0.7706
0.5 | 0.6607 0.4005  0.7698
1.0 | 06531 04310  0.7622
2.0 | 0.6372 04521  0.7563

Table 2: Grasp detection performance with varying negative guidance scale.

Loss Function. Table 3 shows the performances when using varying ratios
of Lyegative (called ¢) and Lygise (Which is 1—(). The results indicate that setting
¢ to 0.1 or 0.2 yields strong accuracy, while either too high (0.4) or low (0.05)
values significantly hurt the performance.

¢ CRt EMD, CFRt
0.05 | 0.6237  0.4500  0.7420
0.1 | 0.6733 0.4029  0.7754
0.2 | 0.6664  0.4093 0.7812
0.4 | 0.5833  0.5298  0.7326

Table 3: Loss function analysis.

Backbone Variation. We conduct an ablation study on two different scene
encoder backbone, i.e., PointNet++ [22] and Point Transformer [36], and two
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different pretrained text encoders, i.e., CLIP ViT-B/32 [23] and BERT [3]. The
number of parameters and results of all variants are shown in Table 4. We observe
that in general, PointNet++ performs better than Point Transformer, and CLIP
performs better than BERT. Variants using Point Transformer run significantly
slower than those using PointNet++ due to the larger and more complicated ar-
chitecture. Particularly, the combination of Point Transformer and CLIP obtains
a competitive grasp detection performance compared to that of PointNet+-+
and CLIP; however, its inference time is considerably higher. This pattern is
also observed when comparing CLIP and BERT text encoders. The gap in grasp
detection performance between variants utilizing the CLIP ViT-B/32 text en-
coder and those employing BERT is substantial, highlighting CLIP’s superiority
in semantic language-vision understanding.

Scene Encoder | Text Encoder CRT EMD] CFR? IT|
Point Transformer [36] (23M) | BERT [3] (110M) | 0.6428 0.4597 0.7583  2.0137
Point Transformer [36] (23M) | CLIP [23] (63M) | 0.6591 0.4167 0.7725 1.9755
PointNet++ [22] (2M) | BERT [3] (110M) | 0.6430 0.4225 0.7622  1.5449
PointNet ++ [22] (2M) | CLIP [23] (63M) | 0.6649 0.4013 0.7706 1.4832

Table 4: Scene encoder and text encoder backbone variation.

6 Robotic Experiments

We show 20 real-world daily objects used in robotic experiments in Figure 1.
The sequences of actions when the KUKA robot grasps objects are presented in
Figure 2. Figure 3 further shows the detection result of our LGrasp6D on point
clouds captured by a RealSense camera mounted on the robot. The robotic
experiments demonstrate that although our method is trained on a synthetic
Grasp-Anything-6D dataset, it can generalize to detect grasp poses in real-world
scenarios. More illustrations can be found in our Demonstration Video.

Fig. 1: Set of 20 objects used in the robotic experiments.
7 Additional Qualitative Results

Figure 4 shows more qualitative results to demonstrate the effectiveness of our
method in detecting grasp poses for different objects in several point cloud scenes.
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(a)
Fig. 3: Detection results in robotic experiments. Point clouds are captured from a
RealSense camera with experiments in Figure 2.

Get the wooden tea cup.‘ ‘ Grasp the folk. ‘ [Bring me the white vasew [ Give me the toy car. ‘ [Hand me the eyeglasses.

Take the silver vase. ‘ ‘ Pick up the spoon. ‘ ’ Hold the blue vase. ‘ ’ Grasp the bottle. ‘ ’Get the remote controller.

Fig. 4: Additional qualitative results.



Language-Driven 6-DoF Grasping w. Negative Prompt Guidance 9

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Ainetter, S., Fraundorfer, F.: End-to-end trainable deep neural network for robotic
grasp detection and semantic segmentation from rgb. In: ICRA (2021)

Ajay, A.,Han, S., Du, Y., Li, S., Gupta, A., Jaakkola, T., Tenenbaum, J., Kaelbling,
L., Srivastava, A., Agrawal, P.: Compositional foundation models for hierarchical
planning. NeurIPS (2024)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL (2019)

Du, Y., Li, S., Mordatch, I.: Compositional visual generation with energy based
models. NeurIPS (2020)

Du, Y., Li, S., Tenenbaum, J., Mordatch, I.: Improved contrastive divergence train-
ing of energy-based models. In: ICML (2021)

Du, Y., Mordatch, I.: Implicit generation and modeling with energy based models.
NeurIPS (2019)

Du, Y., Yang, S., Dai, B., Dai, H., Nachum, O., Tenenbaum, J., Schuurmans, D.,
Abbeel, P.: Learning universal policies via text-guided video generation. NeurIPS
(2024)

Eppner, C., Mousavian, A., Fox, D.: Acronym: A large-scale grasp dataset based
on simulation. In: ICRA (2021)

Fang, H.S., Wang, C., Gou, M., Lu, C.: Graspnet-1billion: A large-scale benchmark
for general object grasping. In: CVPR (2020)

Grathwohl, W., Wang, K.C., Jacobsen, J.H., Duvenaud, D., Zemel, R.: Learning
the stein discrepancy for training and evaluating energy-based models without
sampling. In: ICML (2020)

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS
(2020)

Ko, P.C., Mao, J., Du, Y., Sun, S.H., Tenenbaum, J.B.: Learning to act from
actionless videos through dense correspondences. In: ICLR (2024)

Kumra, S., Joshi, S., Sahin, F.: Antipodal robotic grasping using generative resid-
ual convolutional neural network. In: IROS (2020)

Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before fuse:
Vision and language representation learning with momentum distillation. NeurIPS
(2021)

Liu, N., Li, S., Du, Y., Torralba, A., Tenenbaum, J.B.: Compositional visual gen-
eration with composable diffusion models. In: ECCV (2022)

Mishra, U.A., Xue, S., Chen, Y., Xu, D.: Generative skill chaining: Long-horizon
skill planning with diffusion models. In: CoRL (2023)

Morrison, D., Corke, P., Leitner, J.: Closing the loop for robotic grasping: A real-
time, generative grasp synthesis approach. In: RSS (2018)

Mousavian, A., Eppner, C., Fox, D.: 6-dof graspnet: Variational grasp generation
for object manipulation. In: ICCV (2019)

Nguyen, T., Vu, M.N., Huang, B., Van Vo, T., Truong, V., Le, N., Vo, T., Le, B.,
Nguyen, A.: Language-conditioned affordance-pose detection in 3d point clouds.
ICRA (2024)

Ni, P., Zhang, W., Zhu, X., Cao, Q.: Pointnet++ grasping: Learning an end-to-end
spatial grasp generation algorithm from sparse point clouds. In: ICRA (2020)
Nijkamp, E., Hill, M., Han, T., Zhu, S.C., Wu, Y.N.: On the anatomy of mcmec-
based maximum likelihood learning of energy-based models. In: AAAT (2020)



10

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Nguyen et al.

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. NeurIPS (2017)

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021)

Shridhar, M., Manuelli, L., Fox, D.: Cliport: What and where pathways for robotic
manipulation. In: CoRL (2022)

Tang, C., Huang, D., Ge, W., Liu, W., Zhang, H.: Graspgpt: Leveraging semantic
knowledge from a large language model for task-oriented grasping. RA-L (2023)
Tang, C., Huang, D., Meng, L., Liu, W., Zhang, H.: Task-oriented grasp prediction
with visual-language inputs. IROS (2023)

Tziafas, G., Yucheng, X., Goel, A., Kasaei, M., Li, Z., Kasaei, H.: Language-guided
robot grasping: Clip-based referring grasp synthesis in clutter. In: CoRL (2023)
Urain, J., Funk, N., Peters, J., Chalvatzaki, G.: Se (3)-diffusionfields: Learning
smooth cost functions for joint grasp and motion optimization through diffusion.
In: ICRA (2023)

Vuong, A.D., Vu, M.N., Huang, B., Nguyen, N., Le, H., Vo, T., Nguyen, A.:
Language-driven grasp detection. In: CVPR (2024)

Vuong, A.D., Vu, M.N., Le, H., Huang, B., Huynh, B., Vo, T., Kugi, A., Nguyen,
A.: Grasp-anything: Large-scale grasp dataset from foundation models. In: ICRA
(2024)

Wang, T.H.J., Zheng, J., Ma, P., Du, Y., Kim, B., Spielberg, A., Tenenbaum,
J., Gan, C., Rus, D.: Diffusebot: Breeding soft robots with physics-augmented
generative diffusion models. NeurIPS (2024)

Xian, Z., Gkanatsios, N., Gervet, T., Fragkiadaki, K.: Unifying diffusion models
with action detection transformers for multi-task robotic manipulation. In: CoRL
(2023)

Xu, K., Zhao, S., Zhou, Z., Li, Z., Pi, H., Zhu, Y., Wang, Y., Xiong, R.: A joint
modeling of vision-language-action for target-oriented grasping in clutter. In: ICRA
(2023)

Xu, M., Xu, Z., Chi, C., Veloso, M., Song, S.: Xskill: Cross embodiment skill
discovery. In: CoRL (2023)

Xu, X., Ha, H., Song, S.: Dynamics-guided diffusion model for robot manipulator
design. arXiv preprint arXiv:2402.15038 (2024)

Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV
(2021)



