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In this document, we provide additional background and details to sup-
port the main submission. In Appendix A, we provide additional background
on the causal graph and causal inference. In Appendix B, we give more detailed
derivations and explanations for the equations presented in the main submission.
In Appendix C, we elaborate on the implementation details of our COIN matting
framework. In Appendix D, we present additional qualitative comparisons to il-
lustrate the effectiveness of our COIN matting framework. In Appendix E, we
discuss the existence of the biases in real-world matting datasets. In Appendix F,
we discuss the limitations of our framework and the directions for future work.

A Causal Graph and Intervention

In this section, we introduce the fundamental concepts of causal graphs and
causal interventions, which serve as the main tools used in our paper.

A.1 Causal Graph and Elemental Structures

Causal graph [3, 4] is a directed acyclic graph (DAG) whose edges indicate the
relationship among variables. Formally, a causal graph is a DAG G = {N , E},
where the node set N denotes the variables, and the edge set E denotes the
causal relationships among variables. An edge from node X to node Y (de-
noted as e = X → Y) signifies that variable X is a direct cause of variable Y. It
is worth noting that such directed edges differ from those in Bayesian networks,
as they possess strong causal semantics, whereas the latter may lack specific
meaning and can even be antitemporal. For instance, while the graph X → Y
is equivalent to Y → X in terms of probability graphs, their interpretations can
be entirely different in causal graphs [1].

As shown in Fig. 1, there are three elemental structures in the causal graph.

⋆ The corresponding authors.
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(a) Chain structure. (b) Fork structure. (c) Collider structure.

Fig. 1: Three elemental structures in causal graph.

• Chain structure (Fig. 1a) is represented as X → Y → Z, where Z acts
as an intermediary variable between X and Y. This structure implies that
knowing the value of Z renders X and Y independent as X provides no ad-
ditional information about Y in this context. Consequently, an intervention
on Z would block the causal path from X to Y.

• Fork structure (Fig. 1b) is represented as X ← Z → Y, with Z serving as
the common cause (i.e., the confounder) of X and Y. This configuration
leads to a spurious correlation between X and Y due to their shared cause,
despite the absence of a direct causal link between them. For instance, let X
denote the sales of umbrellas and Y denote the number of car accidents and
Z as the rainfall. From the causal perspective, there exists no direct causal
relationship between X and Y. However, the correlation between X and Y
can be induced by Z, as rainfall can cause both the increase in umbrella
sales and the increase in car accidents. Moreover, an intervention on Z shall
block the correlation between X and Y and make them independent. In
the aforementioned example, if we consider only the days with (or without)
rainfall, the correlation between X and Y shall be blocked and the sales of
umbrellas and number of car accidents shall be independent.

• Collider structure (Fig. 1c) is denoted as X → Z ← Y, where Z is the
common effect of X and Y. In this structure, X is naturally independent of
Y. However, if conditioned on Z, X and Y could be correlated. Therefore,
for analyzing the causal effect from X to Y, we should leave the common
effect Z unconditioned.

These three elemental structures are the basic modules of a causal graph.
Moreover, their aforementioned properties provide us with the basic tools for
analyzing the causal effects among variables and for blocking the paths between
variables. In conclusion, to block the causal effect from X to Y, we should in-
tervene on Z in both the chain structure and the fork structure, while doing
nothing for the collider structure.

A.2 The Confounder and do-calculus

As described in Appendix A.1, the correlation between two variables X and Y
does not necessarily imply a direct causal relationship between them. In example,
X ← Z → Y also indicate a correlation between X and Y. A simple proof would
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involve noting the fact that:

P (Y|X )− P (Y) =
∑
z

P (Y|X , z)P (X|z)−
∑
z

P (Y|z)P (z)

=
∑
z

P (Y|z)P (X|z)−
∑
z

P (Y|z)P (z)

=
∑
z

P (Y|z)[P (X|z)− P (z)].

(12)

Due to the direct causal relation between X and Z, typically P (X|z) ̸= P (z).
And that would lead to P (Y|X ) − P (Y) ̸= 0 which indicates A and X are not
independent. Such a common cause like Z is called “confounder” in causal in-
ference, and usually induces spurious correlation between the variables it causes,
as illustrated int the fork structure of Appendix A.1.

Since the correlation does not mean causation, our goal is to model the actual
causal effect between variables. One approach is to use an ideal intervention: do-
calculus [3,4]. The do-calculus in P (Y|do(X = x)) (abbreviated as P (Y|do(X )))
represents that we actively assign value x to variable X without any immediate
effect instead of passively observing it as in P (Y|X = x)). As we have assigned
the value to X , X shall not be influenced by its parent. Therefore, the do-calculus
intervenes in the causal effect of the parent of X in the causal graph, and such do-
calculus-involved probability is also called intervention query. For example,
in Fig. 1a, calculating P (Y|do(X )) representing we set the variable X to be x
and ignore the influence from its parent (i.e., Z). That is, we are cutting off
all edges ending at X while calculating P (Y|do(X )). Therefore, the probability
P (Y|do(X )) shall represent the causal effect from X to Y.

By definition, the calculation of P (Y|do(X )) is to physically intervene on X
and observe the change of Y. That is, we shall collect (the possibly counterfac-
tual) data by forcing X to be x without causing any other effect and observe
the probability distribution of Y. For example, if X represents the mutation
of specific gene and Y represents the probability of having cancer, calculating
P (Y|do(X )) involves collecting data by force the gene to mutate or not for all
collected samples without having other immediate effect and observe the proba-
bility of having cancer conditioned on the existence of gene. Such an operation
is usually impractical. However, we are still capable of reformulating the calcu-
lation of do-calculus into observational probabilities as shown in Appendix A.3.

A.3 Backdoor Path and Backdoor Adjustment

A backdoor path from X to Y represents a path that contains both causal
edges pointing to X and to Y. It could introduce spurious correlations to X and
Y without direct causal relations. To remove this spurious correlation, we use
backdoor adjustment to calculate the actual causal effect P (Y|do(X )).

The backdoor adjustment formula claims that, if Z is a set of variables that
blocks all backdoor paths from X to Y and has no node in the descendant of X ,
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then we may reformulate the intervention query P (Y|do(X )) as

P (Y|do(X )) =
∑
z

P (Y|X , z)P (z). (13)

Proof. We may use standard probabilistic rules to conclude that

P (Y|do(X )) =
∑
z

P (Y|do(X ), z)P (z|do(X )). (14)

For the former terms, since Z blocks all backdoor paths, X and Y are indepen-
dent given Z on the graph where the outgoing edges of X are cut. Therefore,
all information from X to Y goes through the outgoing edges from X . Since
the do-calculus only affects the incoming edges of X , whether the value of X is
assigned by do-calculus or observed form data does not affect the distribution
of Y. Therefore, we conclude that

P (Y|do(X ), z) = P (Y|X , z). (15)

For the second term, as no node in Z is a descendant of X , we can conclude
that the intervention on X shall not influence the distribution of Z. Formally,

P (z|do(X )) = P (z). (16)

By combining these formulas, we have

P (Y|do(X )) =
∑
z

P (Y|X , z)P (z). (17)

B Detailed Proofs for Equations

In this section, we give more detailed proofs and explanations for the equations
in the main submission using the background detailed in Appendix A.

B.1 Proof of Equation (3) and (4)

In Equation (3) and (4), we simplify the intervention query P (A|do(I,F ,B))
into observational probabilities. In the main submission, we formulated:

P (A|do(I,F ,B)) =
∑
t

∑
c

P (A|do(I,F ,B), t, c)P (c, t|do(I,F ,B))

=
∑
t

∑
c

P (A|i,f , b, t, c)P (c, t)

=
∑
t

∑
c

P (A|f , t, c)P (t, c) = Et,c[P (A|f , t, c)]

(18)

Since C and T blocks all backdoor paths A ← F ← C → B, B ← I ← C → F →
A, and A ← F ← T → I → B, we may apply the backdoor adjustment formula,
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resulting in the first two steps. The former step corresponds to Eq. (14) and the
latter step corresponds to Eq. (17). The third step involves removing redundant
variables in the condition set using the condition independence property of the
causal graph in Figure 3(b) of the main submission. Note all input edges of I,F
and B are removed since we have intervened their value, and their direct causes
have nothing to do with this. Formally, we derive the following formulas:∑

t

∑
c

P (A|i,f , b, t, c)

=
∑
t

∑
c

P (A|f , i, t, c)P (t, c) · · · · · · A ⊥⊥ B|I,F , t, c

=
∑
t

∑
c

P (A|f , t, c)P (t, c) · · · · · · A ⊥⊥ B|F , t, c.

(19)

The last simplification is the definition of expectation.

B.2 Proof of Equation (5)

In Equation (5) of the main submission, we formulated:

P (F|do(I,B)) =
∑
t

∑
c

P (F|i, b, t, c)P (c, t)

=
∑
t

∑
c

P (F|i, t, c)P (c, t) = Ec,t[P (F|i, t, c)].
(20)

As C and T blocks all backdoor paths F ← C → B, B ← I ← C → F , and
F ← T → I → B, we apply the backdoor adjustment formula and result in the
first step. The second step comes from the fact that B and A are independent
given F in Figure 3(b) of the main submission. The last step is the definition of
expectation.

B.3 Proof of Equation (7)

Equation (7) in the main submission is formulated as

P (A|do(I,F ,B)) = EzP (A|f , z) = Ez σ(g(f , z)) ≈ σ(g(f ,Ez[z])), (21)

The first step comes from Equation (6) of the main submission. The second step
denotes the implementation of producing alpha matte of the matting framework.
In detail, it denotes that for every scale, we concatenate the foreground feature
f and confounder representation z to produce the alpha representation via a
linear transformation g(·), then a sigmoid function σ(·) is applied to normalize
the output. The third step involves the Normalized Weighted Geometric Mean
(NWGM) approach [5,6]. As the sigmoid function can be viewed as a degradation
of the softmax function in the binary classification, we prove the more generalized
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softmax form in the following. Consider Ez[softmax(g(f, z))] By applying the
Weighted Geometric Mean (WGM) [5], we approximate the expectation as

Ez[softmax(g(f, z))] ≈WGM[softmax(g(f, z))]. (22)

Then, we move the expectation to the feature level. Given Softmax(g(f, z)) ∝
exp[g(f, z)], we have

WGM[softmax(g(f, z))] =
∏
z

exp[g(f, z)]P (z)

= exp

[∑
z

P (z)g(f, z)

]
= exp [Ez[g(f, z)]] .

(23)

Therefore, to normalize the distribution, we apply the softmax function to the
expectation, resulting in the Normalized Weighted Geometric Mean (NWGM)
approach as

NWGM[softmax(g(f, z))] =
exp[Ez[g(f, z)]]∑
z exp[Ez[g(f, z)]]

= softmax(Ez[g(f, z)]). (24)

Further, as g(·) is a linear transformation, we can move the expectation into it,
resulting in the feature level expectation as

Ez[g(f, z)] = g(f,Ez[z]). (25)

By combining Eqs. (22) to (25), and degrading the softmax function in the
binary classification scene, we conclude the third step of Equation (7) in the
main submission.

B.4 Proof of Equation (8)

Equation (8) in the main submission is formulated as

P (F|do(I,B)) = EzP (F|i, z) = Ez g(i, z) = g(i,Ez[z]). (26)

The first step comes from Equation (6) of the main submission, and the second
step implements the feature transformation from the (multi-scale) image feature
to the foreground feature via a linear transformation. The third step performs
the move-in of an expectation, which can be explained as g(·) is a linear trans-
formation.

C Implementation Details

In this section, we provide more implementation details about our COIN matting
framework. For the implementation of the confounder spaces, the dimension of
space representation for each level corresponds to the number of channels in the
feature map extracted by the feature extractor. To produce the alpha matte, we
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Image Trimap Alpha matte MatteFormer COIN

Fig. 2: The visualized comparison of applying our COIN framework on Matte-
Former [2]. Images are best viewed when zoomed in.

follow [2,7] which applies a progressive refinement strategy. Such a strategy uses
the multiscale alpha mattes to generate the final alpha matte in both training
and testing and is also capable for the multiscale feature space in our framework.
The training procedures are consistent with the baselines. Typically, the losses
include alpha loss, compositional loss, and Laplacian loss. Further, we supervise
the attention scores, which act as the probability in calculating the expectations,
with the ground truth contrast level and transparency level. To address the
continuity semantic of the contrast level and transparency level, we smooth the
label with N (0, 1.2) Gaussian kernel for a more smoothed representation. During
training, we employ the same data preprocessing, learning rate schedule, and
optimizer as the baselines.

.

D More Qualitative Results

In Fig. 2, we give more qualitative comparisons to illustrate the effectiveness of
our COIN matting framework. The first two rows show two examples of contrast
bias. The areas located by the red boxes have low contrast, and the baseline
predicts lower even zero alpha values on it. In contrast, after applying our COIN
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Image Trimap Alpha matte MatteFormer COIN

Fig. 3: An example of the failure case.
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(a) Contrast bias.
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(b) Transparency bias.

Fig. 4: The contrast bias and transparency bias in datasets.

framework, such bias is relieved and the alpha matte is more consistent with the
ground truth. The lower two rows show two examples of transparency bias. The
areas located by the red boxes have medium transparency, and the texture of the
background (i.e., the reflection light in the third row and the texture of blinds
in the fourth row) mistakenly appears in the alpha matte of the baseline. By
applying out COIN framework, the transparency bias is reduced by intervening
the confounder variable, resulting in less background texture in the alpha matte.

E Biases on the Real-World Matting Datasets

To address such concern on whether the proposed biases can generalize to real-
world matting scenarios, we firstly verified the existence of the transparency bias
and contrast bias in the training datasets, as shown in Figure 4. The contrast
and transparency bias in the real-world dataset (i.e., AM-2K and P3M-10K)
are both similar to those in the synthetic dataset (i.e., Compositional-1K). This
suggests that the contrast bias and transparency bias are generally exist, no
matter in real-world dataset or in synthetic dataset. Therefore, our framework
is able to generalize to real-world matting datasets and effectively reduce the
biases in them. To further demonstrate that the improvement of our framework
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Model AM-2K P3M-10K RWP-636

SAD ↓ MSE ↓ SAD ↓ MSE ↓ SAD ↓ MSE ↓

MatteFormer 5.72 4.65 4.73 9.87 21.37 51.85
+ COIN 5.11 −0.61 4.22 −0.43 4.18 −0.55 8.96−0.91 19.21 −2.16 46.31 −5.54

Table 1: The improvement of COIN framework on real-world matting datasets. Metrics
are computed on the unkown area of trimap.

can generalize to real-world scenarios, we conduct experiments on multiple real-
world matting datasets, including AM-2K, P3M-10K and RealWorldPortrait-636
(RWP-636). For the RWP-636 dataset, since it only contains test set, the mod-
els are trained on Composition-1K dataset and tested on RWP-636 dataset to
evaluate the generalization ability of models from synthetic scene to real-world
scene. For the AM-2K and P3M-10K dataset, we estimate the foreground and
background based on image and alpha with Closed-Form Matting to compute
the contrast and compositional loss during initialization and training. The re-
sults are listed in Table 1. As shown in Table 1, we could observe that our COIN
framework still significantly improves the performance of the matting backbone
on real-world matting datasets, which further proves the generalization abil-
ity of our framework to real-world scenarios. In detail, our framework achieves
improvements from 9.21% to 11.62% across the real-world datasets in various
metrics. Such improvements indicates that, since there still exist similar contrast
and transparency bias in the real-world datasets, the COIN framework can still
effectively reduce the bias in them.

F Limitation and Future Work

Our COIN framework is a general framework for addressing the confounding
bias in the matting task, and can efficiently reduce the observed contrast bias
and transparency bias. However, due to the full disentangling of all confounder
variables being impractical, other biases may still exist, causing the background
still correlated to the predicted alpha matte via other biases. Therefore, exploring
more confounder variables or using other causal tools to reduce the biases may
be a future work.

Moreover, while implementing the intervention, we applied several approx-
imations (i.e., in Equation (7) and the condition of the feature-level expec-
tations). These approximations prevent our framework from completely elimi-
nating the contrast biases and transparency biases, but can only significantly
reduce them. An example is shown in Fig. 3. The area highlighted with the red
box is semi-transparent. Although the most apparent background texture (i.e.,
the shape of the right part of the stone and its boundary line with the sky)
disappears, there still slightly exists the texture of the left part of the stone.
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