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Abstract. Deep learning methods have significantly advanced the per-
formance of image matting. However, dataset biases can mislead the
matting models to biased behavior. In this paper, we identify the two
typical biases in existing matting models, specifically contrast bias and
transparency bias, and discuss their origins in matting datasets. To
address these biases, we model the image matting task from the per-
spective of causal inference and identify the root causes of these biases:
the confounders. To mitigate the effects of these confounders, we employ
causal intervention through backdoor adjustment and introduce a novel
model-agnostic cofounder intervened (COIN) matting framework. Ex-
tensive experiments across various matting methods and datasets have
demonstrated that our COIN framework can significantly diminish such
biases, thereby enhancing the performance of existing matting models.
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1 Introduction

Image matting aims at separating accurate foreground objects from natural im-
ages and precisely estimating the opacity on the boundary of the object. It
serves as the basis for image editing, live-streaming, virtual meetings, and movie
production [2, 16,22,30,34]. Given an image I, it is formulated as:

I = F ◦α+B ◦ (1−α), (1)

where F represents the foreground object, B denotes the background, α ∈
[0, 1] is the opacity map, and ◦ denotes element-wise multiplication. As shown
in Eq. (1), solving the 7 unknown values in {F ,B,α} from the given 3 values
in I is a highly ill-posed problem. Therefore, some matting methods require
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(b) The transparency bias.

Fig. 1: The observed contrast bias and transparency bias for MatteFormer [25] on the
Compositional-1K dataset [40]. α and α̂ denote the ground truth and predicted alpha
mattes, respectively. Images are best viewed when zoomed in.

additional user input as guidance, leading to a classification of matting methods
based on whether and what type of user input is used. Trimap-based methods [40]
are the most widely used, but obtaining a trimap can be challenging in some
scenarios. Therefore, more flexible guidance, such as background [16,30] and user
interaction [6, 37, 38], have been explored. Moreover, some methods [12, 38] can
also work without user guidance, which is concluded as guidance-free methods.

The rapid advances in deep learning have significantly boosted the perfor-
mance of image matting. However, the matting dataset may contain biases, which
may further lead to the biased behavior of image matting models. We identify
two primary types of bias in existing models: contrast bias and transparency
bias. To illustrate these biases, we present some results of a state-of-the-art
(SOTA) model, namely MatteFormer [25], in Fig. 1. The contrast bias refers
to the correlation between the contrast and the predicted alpha value. Specifi-
cally, the model tends to predict lower alpha values in areas with low contrast
between foreground and background, as highlighted by the red boxes in Fig. 1a.
Regarding the transparency bias, it is observed that the background texture
tends to emerge in the predicted alpha matte for mid-transparent foregrounds. As
highlighted by the red boxes in Fig. 1b, the predicted alpha for mid-transparent
area contains the background texture (i.e., the texture of the rider and building
for the left and right examples, respectively).

Such biased behavior of models can be explained by the biases present in
the dataset. For the contrast bias, we calculate the alpha value at different
contrast levels within the training dataset as shown in Fig. 2a. We observe that
the mean alpha level in low contrast areas (i.e., contrast < 20 in the CIEDE2000
color difference formula [31]) is significantly lower than that in other areas. Such
dataset bias directly contributes to the observed contrast bias as the model
may falsely learn to predict alpha from contrast. Additionally, the number of
samples in the low contrast area is significantly fewer than in other areas, making
the model more easily led by such dataset bias in these areas. Regarding the
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(a) The contrast bias in the dataset.
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(b) The transparency bias in the dataset.

Fig. 2: The observe biases in matting datasets.

transparency bias, we analyze the distribution of transparency levels within
the training dataset in Fig. 2b. We observe that most foreground objects are
either highly salient or very opaque. Therefore, the alpha matte is expected to
be either close to zero or exhibit textures in the image. For the mid-transparency
area, whose alpha matte clearly differs from zero, the model is misled to focus
on the texture of the image. Thus, the texture of the background in such areas
may appear in the alpha matte, explaining the appearance of transparency bias.

To address these biases, we model the image matting task from the perspec-
tive of causal inference, and utilize the power of intervention to reduce the in-
fluence of the biases. The causal graph for image matting is depicted in Fig. 3a,
where I,F ,B, and A are variables representing the image, foreground, back-
ground, and alpha matte respectively, while C and T are confounder vari-
ables denoting the contrast and the transparency of foreground. The notation
B ← I → F suggests that an image can be decomposed into foreground and
background, underpinning the basic assumption of image matting. F → A im-
plies that the alpha matte is directly influenced by the foreground object, indi-
cating that changes in the background should not affect the foreground’s repre-
sentation. The confounder variables, representing the common causes affecting
multiple variables in the foreground, background, and image, serve as the source
of biases. Typically, these can include properties of visual objects. Given that
both the foreground and background consist of objects, these properties typically
cause the presentation of the foreground, background, and images are presented.

However, directly measuring all possible confounders may be impractical,
as we can not enumerate all properties of visual objects. Nevertheless, based
on observed dataset biases, we can identify the most typical confounders. As
highlighted in Fig. 3a, we focus on two typical confounders: contrast C and
transparency T , which underlie the observed contrast bias and transparency
bias, respectively. Contrast measures the color difference between foreground and
background objects, while transparency refers to the opacity of the foreground.
Therefore, we conclude F ← T → I and C → X for all X ∈ {F , I,B} by their
definition. The dotted line indicates a potential correlation between C and T ,
suggesting that we cannot definitively assert that C ⊥⊥ T . While existing matting
methods generally focus on maximizing the likelihood P (A|I), the presence of
backdoor paths B ← C → F → A, B ← I ← C → F → A, and B ← I ← T →
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(a) The causal graph. (b) The backdoor adjustment.

Fig. 3: The causal graph and causal intervention for image matting.

F → A results in B⊥̸⊥ A|I. This lack of conditional d-separation between B and
A elucidates the co-occurrence of background textures in specific transparency
regions and the contrast-induced alpha bias.

To remove the effect of these confounders, we propose our model-agnostic
cofounder intervened (COIN) matting framework. Specifically, we explore the
do-calculus to intervene in the influence of T and C via backdoor adjustment,
as shown in Fig. 3b. The do-calculus actively assigns values to variables, rather
than passively observing them from the data. Therefore, the do-calculus is an
intervention on the influence of their direct causes, which is used for deco-
founding. While the ideal way to calculate the do-operator involves collecting
all images with varying contrast and transparency into the training data, this
approach is evidently impractical. Furthermore, the high cost of labeling the al-
pha matte makes it exceedingly difficult to even approximate the aforementioned
intervention “physically”. To address this issue, we apply backdoor adjustment to
calculate P (A|do(F ,B, I)), as described in Secs. 3.2 to 3.4. By actively assign-
ing values to F ,B, and I, we block backdoor paths and magnify the influence of
cofounders, thus enhancing the robustness of the matting results against the pre-
viously mentioned dataset biases. By applying our framework to state-of-the-art
(SOTA) image matting methods with different types of user guidance (i.e., Mat-
teFormer [25], DIIM [6], and dugMatting [38]) and two datasets (i.e., Comp1K
and Distinct-646), we verified the effectiveness of our framework through exten-
sive experiments. Our contributions are summarized as follows:

1. We examine the biases in matting methods, analyzing how dataset biases
cause them and affect alpha matte prediction.

2. We introduce a novel and model-agnostic confounder-intervened matting
framework that employs causal intervention to sever the influence of con-
founders, thereby mitigating the aforementioned biases.

3. Through comprehensive experiments on various matting methods and multi-
ple datasets, we demonstrate that our framework significantly enhances the
performance of SOTA image matting methods.

2 Related Work

2.1 Image Matting

As described in Sec. 1, image matting presents a highly ill-posed problem. The
solutions can be classified based on the user input prior they rely upon.
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Among the prior-based image matting methods, the trimap is the most widely
utilized prior [1,3,4,9,14,18,21,23,23,25,33,40–42]. Since [40] introduced the first
well-known deep learning-based image matting method, featuring an encoder-
decoder architecture, this framework has been extensively adopted and improved
by subsequent methods. Researchers have enhanced this architecture from var-
ious perspectives, including generative adversarial training [23], matting with
indices [21], affinity-based methods [3, 14], context-aware matting [9], the in-
troduction of vision transformers [1, 25, 41], prior alignment [18], expansion to
ultra-high resolution via sparsity [33], and data augmentation [4, 42].

However, trimap is not always available for real-world applications. Thus,
recent researchers seek for more flexible and accessible user inputs [5, 6, 8, 13,
16, 30, 37, 38, 43]. Background matting [30] uses the background image as the
prior, which can be more accessible for scenes like virtual meeting and live-
streaming. It is further enhanced by recursive excitation [5] and extended into
real-time version [16]. The coarse mask is used instead of trimap in [43] which
shows better penitential of cooperating with the segmentation models [11]. The
user feedbacks, such as clicks [6], scribbles [8], their combination [37], proposal
selection [38] and even natural language [13], are also informative for matting.

2.2 Causal Inference

Causal inference [27, 29] plays a pivotal role in analyzing dataset bias and mit-
igating counter-causal correlations. It can be categorized into two main types:
deconfounding and counterfactual inference. Serving as a fundamental sta-
tistical tool, it finds widespread application across various fields, such as image
segmentation [44], image classification [35], image and video question answer-
ing [10, 15, 24], dialog systems [45], and recommendation systems [36]. Typi-
cally, causal-related methods conceptualize the task within a causal graph, where
nodes symbolize variables, and edges denote their causal interactions. By exam-
ining the causal relations among variables, the causal graph facilitates identifying
confounders and backdoor paths, thereby enabling the control of biases.

3 Methodology

This section outlines our intervention approach to mitigating biases introduced
by confounders, as discussed in Sec. 1. In Sec. 3.1, we examine the role of con-
founder variables within the causal graph (i.e., Fig. 3), illustrating their im-
pact on the performance of matting models through mathematical analysis.
In Sec. 3.2, the concept of backdoor adjustment is introduced to counteract
biases. In Sec. 3.3, we discuss the construction of space representations for each
variable in the causal graph to facilitate backdoor adjustment implementation.
In Sec. 3.4, the calculation of expectations, as derived in Sec. 3.2, is explained
to execute the causal intervention. Finally, in Sec. 3.5, we integrate the above
components into our model-agnostic COIN matting framework. Throughout this
section, we denote variables by calligraphic letters (e.g ., A, F , I), feature spaces
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by boldface capital letters (e.g ., A, F , I), and feature vectors by boldface low-
ercase letters (e.g ., a, f , i). Additional introduction of background and more
detailed derivations are provided in the supplementary material.

3.1 Confounders and the Backdoor Paths

In the task of image matting, confounders are variables that are the direct cause
of at least two of the following: the foreground, background, and the image. As
illustrated in Fig. 3a, the observational probability can be expressed as

P (A|I) =
∑
t

∑
c

P (A|I, t, c)P (c, t|I), (2)

where t and c represent the split of confounder C and T , respectively. Given that
the observed distribution P (c, t|I) significantly deviates from a uniform distri-
bution (as depicted in Fig. 2), a specific partition of ⟨C, T ⟩ predominantly influ-
ences the observed probability P (A|I) through a large P (c, t|I). For instance, in
the training dataset, regions with high contrast and low transparency are preva-
lent, leading to their dominance in the observed probability and observed biases.
Specifically, in low-contrast regions, the alpha values are typically to be lower,
causing the observed contrast bias. Furthermore, the model is trained to dis-
cern detailed textures in regions with opaque foregrounds and to assign nearly
zero alpha values in highly transparent areas. Since these conditions consists
most of the dataset, P (c, t|I) with extreme values of t significantly contributes
to P (A|I). Consequently, the model tends to extract highly textured patterns
in medium transparency areas as in opaque foreground areas, where alpha val-
ues are apparently not as minimal as in transparent regions. Such background
textures in the predicted alpha matte are concluded as transparency bias.

By adopting a causal perspective on Fig. 3a, we identify the presence of
backdoor paths introduced by the confounder variables C and T . In particular,
the backdoor paths A ← F ← C → B, B ← I ← C → F → A, and A ← F ←
T → I → B result in A⊥̸⊥ B|I, elucidating the influence of the background on
the predicted alpha matte. More specifically, the former two paths and the latter
are directly accountable for the contrast bias and transparency bias, respectively.
To intervene the effects of the confounders and sever the backdoor paths they
establish, we employ the backdoor adjustment [27,29] as detailed in Sec. 3.2.

3.2 Causal Intervention via Backdoor Adjustment

The do-calculus [27, 28] signifies active assignment of values to variables, dis-
tinguishing it from passive observation within the data, which constitutes inter-
vention on the causal factors of variables. For brevity, we denote P (do(X = x))
as P (do(X )), implying active assignment of a value to variable X . As illustrated
in Fig. 3b, to sever all incoming causal links of I,F ,B (i.e., nullifying the influ-
ence of C and T ), we focus on computing P (A|do(I,F ,B)). Given that T and
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C block all specified backdoor paths, we can derive:

P (A|do(I,F ,B)) =
∑
t

∑
c

P (A|do(I,F ,B), t, c)P (c, t|do(I,F ,B))

=
∑
t

∑
c

P (A|i,f , b, t, c)P (c, t).
(3)

Moreover, based on Fig. 3b, we observe A ⊥⊥ b|(f , i, c, t) and A ⊥⊥ i|(f , c, t).
Thus, the equation simplifies to:

P (A|do(I,F ,B)) =
∑
t

∑
c

P (A|f , t, c)P (t, c) = Et,c[P (A|f , t, c)]. (4)

Therefore, to predict the alpha matte with confounders intervened, we need to
model the relevant spaces and calculate the expectations in Eq. (4), which are
further discussed in Sec. 3.3 and Sec. 3.4, respectively.

However, to calculate the expectation in Eq. (4), obtaining the foreground
representation is also necessary. Although the only input is the image (and
the possible user guidance), directly inferring the foreground representation
from the image representation is biased, as the confounders similarly facilitate
backdoor paths to F as to A. Specifically, the backdoor paths F ← C → B,
B ← I ← C → F , and F ← T → I → B lead to F ⊥̸⊥ B|I, indicating that the
background’s transparency and contrast similarly affect the foreground as influ-
encing the prediction of the alpha matte. To address this issue, we also conduct
an intervention for predicting the foreground, yielding:

P (F|do(I,B)) =
∑
t

∑
c

P (F|i, b, t, c)P (c, t)

=
∑
t

∑
c

P (F|i, t, c)P (c, t) = EcEt[P (F|i, t, c)],
(5)

where the multi-scale image representation i = ⟨i1, i2, . . . , in⟩ is parameterized
by the matting backbone, aligned with the scales of C and T as described
in Sec. 3.3. The expectations are calculated as detailed in Sec. 3.4.

3.3 Space Representations

Transparency Space T . Given the importance of multi-scale information in
image matting, we divide the transparency space into several sub-spaces across
different scales. Specifically, the transparency space T = ⟨T1,T2, . . . ,Tn⟩, with
Ti representing the transparency at the i-th scale, and n indicating the total
number of sub-spaces. The i-th scale denotes the transparency of the image
patches sized 2i × 2i. Considering the average alpha value as an approximation
for the “transparency level” of an area, we define Ti as the average alpha value
of pixels within the i-th scale patches. This formulation allows us to discretize
the transparency sub-spaces further by categorizing the transparency level into
Kt distinct classes, given its bounded nature within [0, 1]. The construction of
the feature space entails the following steps:
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1. Utilize a pretrained image feature extractor to derive the patch features at
the i-th scale, for each i ∈ {1, . . . , n}.

2. Determine the transparency level category k ∈ {1, . . . ,Kt} for every patch.
3. Compute the average patch representation for all patches within the k-th

category as the representation of this transparency category.

Hence, we formulate the feature space Ti ∈ Rdi×Kt , where di signifies the di-
mensionality of the feature extracted at the i-th scale.
Contrast Space C. Similarly to the transparency space, the contrast space
is partitioned into multiple sub-spaces across various scales. We define C =
⟨C1,C2, . . . ,Cn⟩, with each Ci representing contrast at the i-th scale, and n
marking the total number of sub-spaces. Each i-th scale denotes the contrast of
the foreground and background within 2i × 2i image patches.

Quantifying contrast, however, presents more complexity than measuring
transparency. Initially, we estimate the color of a patch using the average color
vector of all pixels within it in the color space. Subsequently, the contrast between
foreground and background patches is determined by the color distance between
their average color vectors. Given the multifaceted nature of color perception,
we employ the CIEDE2000 color difference formula [31] for calculating color dis-
tance, as it closely aligns with human visual perception of color differences. This
formula, incorporating lightness, chroma, and hue, yields a distance within the
range of [0, 100]. Following this approach, we categorize the contrast level into
Kc discrete classes and construct the feature space Ci ∈ Rdi×Kc , mirroring the
methodology used for the transparency space. The primary adjustment involves
transitioning from transparency to contrast categories for the classification.
Joint Confounder Space Z. Given that T and C may not be independent,
we cannot decompose the joint expectation in Eq. (4) into separate expectations
for each. Therefore, it becomes necessary to model the joint space of T and C.
An effective approach is to define the joint space as the Cartesian product of the
sub-spaces. Consequently, the joint confounder space Z = ⟨Z1,Z2, . . . ,Zn⟩ =
⟨T1 ×C1,T2 ×C2, . . . ,Tn ×Cn⟩, where each Ti ×Ci ∈ Rdi×(Kt·Kc) represents
a multidimensional space formed by the Cartesian product of transparency and
contrast spaces at the i-th scale. Thus, Eqs. (4) and (5) are simplified as following:

P (A|do(I,F ,B)) =
∑
z

P (A|f , z)P (z) = Ez[P (A|f , z)],

P (F|do(I,B)) =
∑
z

P (F|i, z)P (z) = Ez[P (F|i, z)],
(6)

where z = ⟨c, t⟩ represents the split of joint observed confounders Z = ⟨T , C⟩.

3.4 Expectations

The expectations are calculated over the joint confounder space Z. Utilizing the
Normalized Weighted Geometric Mean (NWGM) approach [32,39], we reformu-
late the expectation as follows:

P (A|do(I,F ,B)) = EzP (A|f , z) = Ez σ(g(f , z)) ≈ σ(g(f ,Ez[z])), (7)
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Fig. 4: The COIN framework. i and f denote the image feature and foreground feature.
T , C and Z are transparency space, contrast space, and their joint confounder space
respectively, which are constructed in Sec. 3.3. Spaces corresponding to the confounder
variable are marked gray. EXP represents the expectations described in Sec. 3.4. σ(·)
and g(·) are ignored for simplicity. ⊙ represents the dot production.

where σ(·) denotes a sigmoid function and g(·) represents a linear transformation
for each sub-space. Similarly, for the foreground parameterization:

P (F|do(I,B)) = EzP (F|i, z) = Ez g(i, z) = g(i,Ez[z]). (8)

This approach shifts the expectations to the feature level. To prevent model col-
lapse, we use Ez|F and Ez|I as approximations for Ez respectively. To emulate
these feature-level expectations, we leverage a sub-space-wise attention mech-
anism. Take Ez|I [z] as an example. As spaces Zi are heterogeneous with the
feature spaces of ij when i ̸= j, we apply the attention mechanism for each scale
respectively. Therefore, the expectation is

Ez|I [z] =
〈
Ez1|I1

[z1],Ez2|I2
[z2], . . . ,Ezn|In

[zn]
〉
. (9)

where n is the number of sub-spaces. For attention on image patches at the i-th
scale, the input is the contrast sub-space Zi ∈ Rdi×(Kt·Kc) and the image patch
representation îi ∈ Rdi parameterized by the matting backbone, where di is the
dimension of the latent representations. During such attention, the attention
score emulates the distribution of P (z|I), thus the weighted sum on values (i.e.,
z) emulates the expectation Ez|I [z]. The mathematical formulation is given by:

headk
i = softmax(îkiW

k
i,1(ZiW

k
i,2)

T /
√
d)(ZiW

k
i,3)

z̄Ii
= Ezi|Ii

[zi] = Concat(head1
i ,head

2
i , . . . ,head

Nh
i )Wi,o

z̄I = EXP(î,Z) = Ez|I [z] = ⟨z̄I1
, z̄I2

, . . . , z̄In
⟩ ,

(10)

where W k
i,1,W

k
i,2,W

k
i,3,Wi,o are trainable parameters, Nh represents the number

of heads, and Concat(·) is the concatenation operation. This process effectively
captures the expectations across different confounder sub-spaces.

3.5 COIN Matting Framework

The overall structure of our COIN framework is shown in Fig. 4. The con-
founder space T is similarly constructed as C, as described in Sec. 3.3. The mat-
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ting backbone is employed to parameterize the image representation î. Rather
than directly predicting P (A|I) as the matting backbone does, we engage in
confounder intervention through backdoor adjustment to address the issues of
contrast bias and transparency bias. The backdoor adjustment is implemented
by the feature-level expectations. Specifically, we first process the joint space Z
alongside the image representation i to compute Ez|I [z] via attention. This ex-
pectation is subsequently concatenated with the image representations to yield
the foreground representation. Similarly, the foreground representation is used
to calculate Ez|F [z] with joint confounder space Z, and the expectations are
further concatenated with the foreground representation to produce the alpha
matte at various scales. Thus, we can express the overall framework as follows:

î = MattingBackbone(I); z̄I = EXP(î,Z); f̂ = gf (î, z̄I);

z̄F = EXP(f̂ ,Z); α̂ = P (A|do(I,F ,B)) = σ(gα(f̂ , z̄F )),
(11)

where gf (·) and gα(·) represent per-sub-space linear transformations, and EXP(·,
·) denotes the feature-level expectations described in Sec. 3.4.

During the training of this framework, we supervise the alpha matte at each
scale, similar to the approach taken by the backbone. Furthermore, we super-
vise the attention score, which approximates the probability distribution of the
confounders when calculating expectations, with the ground truth categories
of contrast and transparency. It is important to note that a closer category
index of contrast and transparency signifies a more similar meaning, as these
are discretized from the continuous values of color distance and transparency.
Therefore, we employ Gaussian label smoothing prior to the cross-entropy for
supervising the attention score. Additional details regarding the framework can
be found in the supplementary material.

4 Experiments

In this section, we evaluate our COIN framework on extensive image matting
baselines across various datasets. Specifically, we integrate our framework with
SOTA image matting methods across all three types of matting methods: trimap-
based methods (i.e., MatteFormer [25]), flexible guidance-based methods (i.e.,
DIIM [6] an dugMatting [38]) and guidance-free methods (i.e., dugMatting with-
out human interaction [38]). We evaluate the improvement of our framework on
Composition-1k [40], and Distinctions-646 [43] datasets. Additionally, we elabo-
rate on the benefits of intervening on each confounder and the computational cost
of implementing our framework in Sec. 4.3. The qualitative results are in Sec. 4.4.

4.1 Experiment Settings

Datasets. We conduct the experiments on Composition-1k [40] and Distinctions-
646 [43] datasets following [25]. Composition-1k dataset consists of 431 and 50
foreground objects in the training set and test set respectively. These foregrounds
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are composited with MS COCO [17] images for training and with VOC 2012 [7]
images for testing. For testing, each foreground object is combined with 20 differ-
ent images, generating a total of 1000 test images. The Distinctions-646 dataset
contains 646 unique foreground objects, which are divided into 596 for training
and 50 for testing. The composition process with background images follows the
same procedure as in the Composition-1k dataset.
Metrics. For measuring the overall performance of our framework, we adopt
the widely used image matting metrics [12,25,26,43]: sum of absolute difference
(SAD), mean square error (MSE), and the gradient (Grad) and connectivity
(Conn). Additionally, to assess the improvement in reducing transparency and
contrast biases, we measure SAD conditioned on each contrast and transparency
category. The number of parameters and FLOPs are also reported to evaluate
the computational complexity of implementing our framework.
Implementation Details. We set the number of sub-spaces as n = 5 for
I,F ,A,T , and C. For transparency and contrast levels, we set both Kt and Kc

to 25. The contrast and transparency space is initialized by the average multi-
scale feature extracted by pretrained Swin-B [19,20] as described in Sec. 3.3. We
employ a N (0, 1.2) Gaussian distribution to smooth the label of attention score.
More details can be found in in the supplementary material.

4.2 Main Results

The improvement of our COIN framework is demonstrated in Tab. 1. It is evident
that by intervening on the confounder variables, our COIN framework signifi-
cantly enhances the performance across all matting baselines with varying guid-
ance mechanisms on both the Composition-1k and Distinctions-646 datasets.
Our framework substantially improves results for both guidance-free methods
(e.g ., dugMatting (0-sel)) and flexible-gudance based methods (e.g ., dugMatting
(1-sel) and DIIM). Additionally, even for the SOTA trimap-based baseline (e.g .,
MatteFormer), our COIN framework achieves significant performance gains, de-
creasing SAD by 1.9 and 2.6, and MSE by 0.7 and 1.5 on the two datasets
respectively. Notably, our framework tends to exhibit greater improvements on
the Distinctions-646 dataset compared to the Composition-1k dataset. This dis-
crepancy is likely attributable to the more pronounced biases present within the
Distinctions-646 dataset. Furthermore, enhancements are generally more sub-
stantial for flexible guidance-based or guidance-free matting methods than for
trimap-based methods, since the former methods are typically more susceptible
to biases in the absence of the detailed information provided by a trimap.

To demonstrate that the enhancements are truly attributable to the reduction
of contrast bias and transparency bias, we further evaluate the SAD improve-
ments across each contrast and transparency category, as shown in Fig. 5. We
selected MatteFormer as the baseline because it presents the most substantial
challenge and exhibits the highest performance among the baselines. Regarding
transparency, it is observable that our framework enhances the performance of
baseline matting methods across all transparency levels. Furthermore, we note
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Table 1: The comparison of applying our COIN framework on Composition-1k and
Distinctions-646 dataset. The improvements are highlighted as superscripts.

Method Composition-1K Distinctions-646

SAD ↓ MSE ↓ Grad ↓ Conn ↓ SAD ↓ MSE ↓ Grad ↓ Conn ↓

DIIM 37.5 10.3 18.5 34.5 36.2 11.8 19.6 35.6
dugMatting (0-sel)∗ 34.1 5.7 15.6 31.2 33.2 8.8 18.2 33.2
dugMatting (1-sel)∗ 25.8 4.3 9.7 22.3 24.1 7.1 12.4 24.0
MatteFormer 23.8 4.0 8.7 18.9 21.9 6.6 11.2 20.5

COIN(DIIM) 33.8 −3.7 8.1 −2.2 16.1 −2.4 32.0 −2.5 32.4 −3.8 9.6 −2.2 16.5 −3.1 32.3 −3.3

COIN(dugMatting (0-sel)∗) 30.8 −3.3 4.5 −1.2 13.9 −1.7 28.0 −3.2 29.7 −3.5 7.4 −1.4 15.4 −2.8 30.1 −3.1

COIN(dugMatting (1-sel)∗) 23.7 −2.1 3.5 −0.8 8.0 −1.7 19.1 −3.2 21.2 −2.9 6.3 −0.8 10.8 −1.6 21.1 −2.9

COIN(MatteFormer) 21.9 −1.9 3.3 −0.7 7.2 −1.5 16.8 −2.1 19.3 −2.6 5.1 −1.5 9.4 −1.8 17.8 −2.7

* k-sel denotes k times human interaction during matting.
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(a) The SAD conditioned on transparency.

0 20 40 60 80 100
contrast level

0.01

0.02

0.03

0.04

0.05

0.06

er
ror

baseline error
ours error
contrast distribution

0.2

0.4

0.6

0.8

1.0

1.2

1.4

rel
ati

ve
 ra

tio

(b) The SAD conditioned on contrast.

Fig. 5: The improvement of applying our framework to MatteFormer on Composition-
1K dataset conditioned on each contrast and transparency category.

that the improvement is particularly pronounced in regions where the trans-
parency level is within the range of [50, 85]. The training data within this range,
as discussed in Sec. 1, is notably scarce but exhibits a unique alpha pattern
which differs from the pattern in highly opaque or transparent foregrounds. The
observed probability distribution, dominated by data from regions with high
opacity or transparency, causes the transparency bias we identified. The signifi-
cant enhancements in these regions indicate that our framework is reducing the
transparency bias through confounder intervention. In terms of contrast, our
framework not only significantly reduces the SAD error across all contrast levels
compared to the baseline method but also shows that the most notable improve-
ment occurs in areas of relatively low contrast, particularly where the contrast
level ranges from [10, 25]. In these regions, the detail patterns increase rapidly
as average contrast value and mean alpha value raises (as shown in Fig. 2a).
However, owing to the insufficient data relative to other regions, these areas are
most susceptible to contrast bias. Thus, the most notable improvements in low-
contrast areas suggest that our framework enhances performance by alleviating
the contrast bias through intervention on the contrast confounder.
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Table 2: The comparison of applying intervention on different confounder variables
on the Distinctions-646 dataset using MatteFormer as the baseline. The improvements
are highlighted as superscripts. The GFLOPs is calculated on 1024× 1024 image.

Method Errors Complexity

SAD ↓ MSE ↓ Grad ↓ Conn ↓ Parameters FLOPs

MatteFormer 21.9 6.6 11.2 20.5 44.8M 459G
MatteFormer + T intervene 20.4 −1.5 5.8 −0.8 10.3 −0.9 19.1 −1.4 47.7M 468G
MatteFormer + C intervene 20.2 −1.7 5.7 −0.9 10.0 −1.2 18.8 −1.7 47.7M 468G
COIN(MatteFormer) 19.3 −2.6 5.1 −1.5 9.4 −1.8 17.8 −2.7 49.5M 508G

4.3 Ablation Study

Confounder Spaces. We discuss the improvement from intervening in each
confounder space individually rather than their joint confounder in Tab. 2. By
comparing line 3 and line 2 with line 1, it is observed that intervening on either
C or T can improve the performance of the baseline methods. However, because
such interventions do not block the backdoor path opened by T and C respec-
tively, the condition A⊥̸⊥ B|I still exists, which leads to transparency bias and
contrast bias respectively, resulting in a limited performance of the intervention
framework. Moreover, it was noted that the performance of intervening on C is
slightly better than that of intervening on T . This may be due to the fact that
the contrast bias is more pronounced than the transparency bias in the dataset.
By jointly intervening both C and T , we may block all aforementioned backdoor
paths, thus further performance improvement in the COIN framework.
Complexity Analysis. As we introduce a framework atop existing matting
methods, we further analyze its space and time complexity in terms of both
parameters and FLOPs to delineate the cost of integrating our framework. As
indicated in Tab. 2, the additional cost imposed by our framework is minimal
when compared to the baseline methods. The incremental parameters (about
10.5%) stem exclusively from the feature space and its corresponding attention
mechanism, which are negligible relative to the baseline model. The only extra
FLOPs (about 10.6%) originate from the computation of expectations within
feature spaces, which are characterized as n attentions across di × (Kt · Kc)
matrices and di×L image features, where L denotes the number of image patches
at the i-th scale. Such attention is also lightweight compared to the matting
baseline. Overall, our framework improves the performance of the SOTA image
matting baseline between 11.6% and 22.7% in different metrics with about 10%
computation cost, which is remarkably efficient for integrating with the baselines.

4.4 Qualitative Results

In this section, we present qualitative comparisons of our COIN framework.
In Fig. 6, we compare the alpha matting results from baseline methods with
those obtained using our COIN framework. Rows 1 showcase examples illus-
trating the reduction of contrast bias. It is evident that the low-contrast areas
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Image Trimap Alpha matte MatteFormer COIN

Fig. 6: The visualized comparison of applying our COIN framework on Matte-
Former [25]. Images are best viewed when zoomed in.

highlighted in the red boxes yield alpha mattes with lower values when pro-
cessed by MatteFormer. However, the integration of our COIN framework sig-
nificantly diminishes this contrast bias, resulting in more precise alpha mattes.
Rows 2 and 3 demonstrate the reduction of transparency bias. The highlighted
mid-transparent regions in the red boxes contain background textures (i.e., the
texture of text and the car cage respectively) in the predicted alpha mattes.
Nevertheless, with the application of our COIN framework, the alpha mattes
become markedly more accurate, effectively eliminating such textures from the
mid-transparent areas. Such qualitative results prove that our COIN framework
can effectively reduce both contrast bias and transparency bias, therefore im-
proving the performance of the existing image matting methods.

5 Conclusion

In this work, we have concentrated on the contrast bias and transparency bias in
existing matting methods and demonstrated how dataset biases lead to biased
behaviors of models. We analyzed these biases from a causal perspective and
designed the confounder intervention framework to alleviate them. Extensive
experiments have demonstrated that our framework markedly alleviates these
biases and enhances SOTA matting methods with minor computational cost.
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