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A AVSyncNet

A.1 SyncNet

In audio-driven talking face generation, an explicit loss for evaluating lip syn-
chronization is essential for achieving proper audio-lip alignment (called lip syn-
chronization). Typically, a pretrained model for audio-visual feature extraction
is employed to calculate the loss function. A commonly used method is incor-
porating SyncNet, as proposed by the Wav2Lip [8]. SyncNet consists of both
an audio encoder and an image encoder. Each has consecutive 2D convolutional
layers followed by Batch Normalization and ReLU activation function. During
training, these two encoders are trained jointly. First, five consecutive face and
audio sequences are provided as input. Notably, the image encoder focuses on the
bottom half of the face, as only the mouth region contains relevant information
for lip synchronization. After extracting audio and image features with the re-
spective encoders, cosine similarity is computed, followed by binary cross-entropy
loss, which we call as lip-sync loss. While aligned audio-lip pairs are treated as
positive samples, non-aligned pairs serve as negative samples throughout the
training process. Eq. (A) shows the cosine similarity calculation, while Eq. (B)
indicates the binary cross-entropy loss.

Psync =
FI · FA

max(||FI ||2 · ||FA||2, ϵ)
(A)

Lsync =
1

N

N∑
1

−log(P i
sync) (B)

where FI ∈ R1×1×512 and FA ∈ R1×1×512 state image features and audio
features extracted by SyncNet respective encoders.

A.2 AVSyncNet Architecture

Our audio encoder is based on ResNetSE34. It contains consecutive convolutional
layers followed by SE block and self-attentive pooling (SAP) block. For the image
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(a) SyncNet [8]
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(b) AVSyncNet (ours)

Fig.A: Lip-sync loss between GT audio-lip pairs on random LRS2 test samples,
demonstrating the instability of SyncNet and more accurate AVSyncNet. This graph is
similar with Fig. 1 in the main paper. After the cosine similarity, we calculate lip-sync
loss as shown in Eq. (B).

encoder, We employ ResNet-50. Since we provide the bottom-half face (namely
mouth region), we modify the input layer to be able to process 112× 224 input.

A.3 AVSyncNet Training

In order to learn lip synchronization between the mouth region and audio snip-
pet, it is crucial to train the image and audio encoders jointly. For the train-
ing, we follow the similar strategy as in SyncNet [8]. In the training, we first
pass the bottom half of the face images (five images) and the corresponding
audio sequence through their respective encoders. After each encoder, we have
an additional convolutional layer to further process the features. Then, we ob-
tain feature representations for face and audio modalities: FI ∈ R1×1×512 and
FA ∈ R1×1×512. We calculate the cosine similarity between them. In the end, by
using this cosine similarity, we compute binary cross-entropy loss, as in Eq. (A)
and Eq. (B). We choose the audio-lip pairs as positive samples and non-aligned
audio-lip pairs (random audio sequence selection from the video that does not
overlap with the given face sequence) as negative samples throughout the train-
ing. We conduct training on the LRS2 dataset and use the same train-val-test
setups as we use in the training of the talking face generation model.

A.4 Performance Comparison

In Fig. A, we share the lip-sync loss version of Fig. 1a-b in the main paper.
After we calculate cosine similarity, we obtain the lip-sync loss, which is a bi-
nary cross-entropy loss as shown in Eq. (B). The lip-sync loss comparison clearly
demonstrates that our AVSyncNet is much more accurate and stable than Sync-
Net [8].
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Table A: Comparison of SyncNet [8] and our proposed AVSyncNet on LRS2 traing
and test sets [1].

Model Data Cosine Sim ↑ Lip-sync Loss ↓

SyncNet Train set 0.614 0.763
Test set 0.648 0.532

AVSyncNet Train set 0.790 0.216
Test set 0.778 0.280

Original Face 10 20 40 50 60 70 80 100 120
(a) Horizontal Shifting

(b) Random Shear

Original Face 10 20 30 40 50 60 70 80 90
(c) Rotation

Original Face 10 20 30 40 50 60 70 80 90
(d) Rotation - mouth region

Fig. B: Applied data augmentation methods to test SnyncNet and AVSyncNet against
the transformation. (a) shows the horizontal shifting. (b) indicates the random shear.
(c) demonstrates the rotation, while (d) is the bottom half of the images in (c).

In Tab. A, we show the average cosine similarity and lip-sync loss on the
LRS2 [1] train and test sets for GT audio-lip pairs. Both the cosine similarity and
lip-sync loss demonstrate the superiority of our AVSyncNet over the SyncNet [8].

In Fig. 6 in the main paper, we analyse the performance of SyncNet and our
AVSyncNet over the transformed data. We first apply horizontal shift as in [7]
to explore the shift-invariance capacity. Then, we apply the same strategy for
other transformations: random shear and rotation. We present sample images to
illustrate these transformations in Fig. B.

B Stabilized Synchronization Loss

We analyze the behaviour of SyncNet [8] and utilize lip-sync loss [8] in order to
show the unstable nature and poor representation capacity of them. In Fig. C,
we show the cosine similarity between audio features and ground truth image
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features for LRS2 dataset. While Fig. Ca and Fig. Cb represent the cosine sim-
ilarity between audio features and ground truth image features, Fig. Cc and
Fig. Cd indicate the cosine similarity between audio features and generated im-
age features. In Fig. Cc, we generated samples with a model that was trained
with lip-sync loss [8] (Setup A from main paper Table 2). On the other hand,
in Fig. Cd, the images are synthesized by a model that was trained with our
proposed full model (Setup H). Fig. Cg and Fig. Ch show the distance between
(a)-(c) and (b)-(d).

In order to compute these cosine similarities, we employ SyncNet [8] and
extract features. Then, we calculate cosine similarity between them. This is the
fundamental step of lip-sync loss [8]. The graph explicitly shows the unstable co-
sine similarity between audio and ground truth images (a). Therefore, calculating
synchronization loss may cause unstable training as well as harm the synchro-
nization since it sometimes cannot represent the audio-visual information. On
the other hand, our proposed method(s) allows the network to have more similar
similarity scores (d) with the ground truth data (b). Thus, the model has better
audio-lip synchronization and the training was much more stable.

C Silent-Face Generation (GS)

In Fig. D, we present input images and generated silent version with our silent-
lip generator GS . The results clearly indicate the quality of our GS in terms of
making lips silent (flat) as well as preserving identity along with other visual
details such as texture, pose, eyes.

D Evaluation Metrics

SSIM Structural similarity index measure (SSIM) [11] is a metric to measure
the perceived quality of the generated images. It requires ground truth images
to calculate the score. Higher SSIM score indicates better quality.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(C)

PSNR Peak signal-to-noise ratio (PSNR) is a metric to measure the image
quality. It benefits from the ratio between the maximum possible square of a
pixel value and mean squared error (MSE) between the generated image and
the ground truth one. Higher PSNR score states better quality.

PSNR(I ′, I) = 10 ∗ log10
max(I ′)2

MSE(I ′, I)
(D)

MSE(I ′, I) =
1

HW

H−1∑
i=0

W−1∑
j=0

|I ′i,j − Ii,j |2 (E)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. C: Cosine similarity analyses on LRS2 test set. (a) and (b) are identical and
provided for visual reference to the vertically aligned figures below. They show cosine
similarity between audio and ground truth image pairs. (c) shows the cosine similarity
between audio and generated images. These images are synthesized by using lip-sync
loss [8]. (d) presents cosine similarity between audio and generated images by using
our proposed stabilized synchronization loss. (e) and (f) are the same, they show the
cosine similarity between audio and randomly selected reference images. (g) and (h)
are the distance between (a)-(c) and (b)-(d) respectively.
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Fig.D: Generated silent face samples with our silent-lip generator GS .
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Although it is one of the common image quality metrics, it is not as infor-
mative and robust as FID and SSIM.

FID Fréchet Inception Distance (FID) metric [6] is a quality metric and in-
dicates the feature level distance between generated images and ground truth
images. Lower FID score means higher similarity between these real and gener-
ated samples and least possible score is 0. In order to calculate this metric, first,
features from real and generated samples are extracted by pretrained inception
v3 model [9] that was trained on ImageNet dataset [5] for image classification.
The features are extracted from the last pooling layer of this network. Then, the
following formula is employed to find FID score.

FID(F ′, F ) = |µF ′ − µF |+ TR(ΣF ′ +ΣF − 2(ΣF ′ΣF )
1
2 ) (F)

IFC Inter-frame consistency, also known as motion constraint loss, is proposed
in [15] as a loss function. In that paper, the authors tried to synthesize a video
that contains the response of a subject for the given audio. Since the authors
generated the video, temporal consistency is crucial to have a natural video.
Therefore, this is used as a loss function to evaluate the inter-frame consistency.
The idea is rather simple. First, the difference between consecutive frames of the
generated video is calculated in the pixel space. Then, it is done for the ground-
truth video in the same manner. Afterward, the difference between these two
distance sets is calculated. We propose to use this loss function as an evaluation
metric in the same manner in order to measure the inter-frame consistency of
the generated video and ground-truth video. The utilized formula is as below:

IFC =

T∑
t=2

||µ(βt)− µ(β̂t)||2 (G)

where µ(βl
t) = βl

t − βl
t−1 measures the changes between current frame t and

previous frame t− 1 in pixel space. While t is an index to represent frame time
step, β and β̂ indicate the ground truth video and generated video, respectively.

LMD We extract landmarks from generated and ground truth images [2]4 and
calculate distance between them [3]. Please note that we only consider the land-
marks in the mouth region, not the entire face. Although it compares the distance
between landmark points of the generated image and the ground-truth one, it
is hard to say that it evaluates synchronization. Because the different landmark
point does not only depend on the lip movement. Even if the generated face has
the correct lip movement as the ground-truth image has, the landmark points
on the generated image might be quite different than the ground-truth one. For
instance, the pose differences due to generation error or shifting on the image

4 https://github.com/1adrianb/face-alignment
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Table B: Quantitative results on HDTF dataset [13].

HDTF

Method SSIM ↑ PSNR ↑ FID ↓ IFC ↓ LMD ↓ LSE-C ↑ LSE-D ↓
Wav2Lip [8] 0.841 24.812 35.41 0.248 1.341 9.054 6.141
VideoReTalking w/ FR [4] 0.830 24.551 29.77 0.287 3.085 6.121 7.368
TalkLip [10] 0.820 25.229 25.10 0.305 2.981 6.189 7.276
IPLAP [14] 0.869 27.801 22.09 0.263 2.217 5.563 8.495
Ours w/o FR 0.893 28.602 21.46 0.201 1.296 8.304 6.366
Ours w/ FR 0.885 26.454 24.25 0.346 1.688 8.155 6.347

can affect the LMD. Therefore, LMD considers the pose difference, shifting, gen-
eration error, and lip synchronization altogether although it is mostly affected
by lip movements.

LSE-C and LSE-D [8] LSE-C is the average confidence score and benefits from
audio and lip representations from SyncNet. Higher confidence scores insicate
better audio-lip synchronization. On the other hand LSE-D metric measures the
distance between audio and lip representations by using SyncNet. Lower LSE-D
means higher audio-lip synchronization.

E Additional Quantitative Results

E.1 HDTF

We conduct experiments on HDTF dataset [13] with our model and also baseline
models. The results are presented in Tab. B. Please note that DINet was trained
on HDTF dataset. In their paper, the authors mentioned that they selected
20 videos from HDTF dataset randomly for test set. As we do not know which
videos were selected for test, we did not present the results for DINet as it would
be a test on a training data, harming fair comparison. On the other hand, all
other models were not trained (or finetuned) on HDTF dataset.

F Additional Qualitative Results

F.1 HDTF

We present more sample images generated by our model and other models along
with GT images in Fig. E.

G User Study

We conducted a user study with videos from HDTF dataset [13] and present
the results in Tab. C. We chose 10 different videos for each model. In total, 15
participants joined our user study.
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Ground TruthOurs w/ FROurs w/o FRIP-LAPTalkLipVideoReTalkingDINetWav2Lip

Fig. E: Comparison of different models. The videos are selected from HDTF
dataset [13].
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