
Train Till You Drop: Towards Stable and Robust
Source-free Unsupervised 3D Domain Adaptation

— Supplementary Material —

Björn Michele1,2 , Alexandre Boulch1 , Tuan-Hung Vu1 , Gilles Puy1,
Renaud Marlet1,3 , and Nicolas Courty2

1 Valeo.ai, Paris, France
2 CNRS, IRISA, Univ. Bretagne Sud, Vannes, France

3 LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France

Overview

In this document, we provide: experiments on the application of TTYD to
the image modality (Sec. A), additional implementation details (Sec. B), a
guarantee of the soundness (Sec. C), and additional ablations: on the parameters
to adapt (Sec. D), on alternative distances for the consistency validator TTYDstop
(Sec. E) and on other reference models (Sec. F). We also report the performance
of TTYDstop with other training schemes (Sec. G) and discuss the SFUDA
hypothesis for our training scheme (Sec. H). Additionally, we also provide the
per-class results and comparison to non-SF UDA approaches (Sec. I), qualitative
results (Sec. J), and more details on the datasets and class mappings (Sec. K).

A Application to image modality

While developed for 3D SFUDA, the formulation of TTYD appears to be general
enough to be used for other modalities. To study this aspect, we conducted
experiments on image segmentation. We used the GTA5 dataset [16] as source,
and the Cityscapes (City) dataset [4] as target.

Table 5: SFUDA for image modality.

Valid. GTA5 →
Method ref. model City

Source-only 36.8
URMDA [17] 45.1
SFDA [10] 45.8
SDF [24] 49.4
HCL [6] 48.1
DT-ST [27] 52.1
TTYD PTBN 53.4
TTYD DT-ST 53.2

This is also an opportunity to eval-
uate if different models can be used as
reference models for the validation. We
remark, nevertheless, that it is common
practice for image semantic segmentation
to keep the ImageNet-pretrained batch-
norm frozen during training on the source
dataset. We cannot directly use a PTBN
version of such source-only models as refer-
ence for TTYDstop, in particular because
the ImageNet-pretrained batchnorm statis-
tics differ too much from those we would
have obtained on the source training set. Therefore, we use a PTBN model built

https://orcid.org/0009-0004-1902-6232
https://orcid.org/0000-0002-4196-9665
https://orcid.org/0000-0002-9765-8233
https://orcid.org/0000-0003-1612-1758
https://orcid.org/0000-0003-1353-0126


2 B. Michele et al.

using a source-only model trained without freezing the BN layers [3]. We also
test the DT-ST model from [27].

Our results are presented in Tab. 5. We also reach SOTA performances for
the GT5→City adaptation pair. As we use the self-training module of DT-ST, we
can conclude that, as for 3D SFUDA, the final performance relies on the quality
of the self-training starting point, which is provided here by TTYDcore.

B Additional implementation details

We use PyTorch for our implementation [15]. The models for NS→SK10, SL→SK19,
and NS→PD8 are trained on a single NVIDIA GeForce RTX 2080 Ti (11 GB)
GPU. For SL→SP13, NS→SP6, and NS→PD8, we use a split NVIDIA A100-40GB
GPU with 20 GB memory.
Code. AdaBN [8] and PTBN [13] were not designed specifically for 3D point
clouds; we implemented them. MeanBN is derived from the idea of MixedBN [11]
(rather than the code of MixedBN, which requires source data, see just below); we
implemented it ourselves. AdaBN, PTBN and MeanBN are hyperparameter-free.
For DT-ST [27], we used the official code repository and default parameters, as
recommended. Code for SHOT [9], TENT [21] and URMDA [17] was taken from
their official repository, with parameters set as described below.
Note on MixedBN and MeanBN. In the main paper, we introduce MeanBN
as a SFUDA version of MixedBN [11]. Indeed, MixedBN computes the average
running statistics of the source and target datasets by mixing them during the
training, which cannot be done in an SFUDA setting. MeanBN just averages
(with equal weight) the running statistics from source training and from passing
the target data through the source-trained network: it is the average of the
running statistics of Source-only and AdaBN.
Parameters selected for SHOT, TENT and URMDA. For SHOT [9], we
obtained the best results on the target validation set with a learning rate of 10−6

and a balancing hyperparameter of β=10−5. For TENT [21] and URMDA [17],
we used a learning rate of 10−5. Additionally, as URMDA relies on [28] for
setting per-class confidence thresholds, we achieved optimal results with sig-
nificantly different values for the target portion p, depending on source and
target domains: p=0.01 (NS→SK10, NS→WO10), p=0.9 (SL→SK19, SL→SP13,
NS→PD8), p=0.1 (NS→SP6).
Self-training (ST) propagates and somehow denoises uncertain pseudo-labels.
It has been successfully used in UDA [11,19] and SFUDA [27]. Table 3 in the main
paper shows the benefits of adding self-training in our context (line TTYDcore
vs line TTYD).

We used the self-training from [27], which we adapted for point clouds, e.g.,
regarding augmentations. This self-training handles a confidence level for each
class, making sure to also promote rare classes. This allows us to train on the
target data, selecting a mostly-correct set of labels while keeping a sufficient
balance of rare classes, also preventing collapse, which may occur when focusing
mainly on most frequent classes.
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Training time. Our stopping criterion TTYDstop saves a lot of time and
computation at the training stage. For example, we stop the training for NS→SK10

after 1.1 hr, compared to 6 hrs for a full 20k-iteration training.
The design of our training scheme itself makes it also faster, as there is no

costly centroid generation after each epoch like in SHOT [9], where 20k iterations
require 30 hrs, or time-consuming surface reconstruction regularization like in
SALUDA [11], which is reported to run in 120 hrs. The self-training step then
takes about 10 hrs.

GPU memory footprint. Our training scheme is also memory efficient at
training time, as only one semantic segmentation network is needed. This is in
contrast, e.g ., to DT-ST [27], where an additional teacher network is used, or to
SALUDA [11], which uses an additional geometric regularization head during
training.

C Soundness guarantee

We can show that TTYDstop is sound because the agreement A(f, g) (cf. Eq. (5)),
which is bounded by 1, can only take at most |X |+1 different values. Hence, the
number of iterations, as defined by Eq. (7), is bounded by |X |. Also, to check
the stopping criterion efficiently, we actually only evaluate Eq. (7) after a fixed
number N of iterations (typically, N =1000). Even so, the number of iterations
remains bounded, by N |X |. In our experiments, the number of iterations at the
stopping point is however much smaller than N |X |, typically between 5 and 10k.

However, it is to be noted that we have no performance guarantees, as most
UDA and SFUDA methods, including validators [12, 18], whose performance
results are generally empirical.

D Ablation: Model parameters to adapt

In Tab. 6, we explore a wide range of possible options concerning the parameters
to adapt, some of which are already proposed in the literature [8, 9, 11, 21, 27].
Please note that reported values represent the maximum performance over a
training for 20k iterations; a stopping criterion is to be used on top of that.

Although they differ in terms of maximum performance, most adaptation
strategies make sense, except adapting the classification layer only (Tab. 6.a). On
the contrary, adapting the features in the backbone, including before each layer,
is key to the performance, to obtain linearly separable features. Adapting the
running statistics online both at train and eval time also is detrimental (Tab. 6.b),
probably because it does not “see” enough target data. In the end, we adopt for
our method the affine transformations before each batch normalization layer as
it performs the best, although adapting the backbone is on average nearly as
good. Besides, it reduces the memory footprint as fewer parameters have to be
updated (although not reducing gradient computation) and it could facilitate
investigations for a deeper understanding of the adaptation.
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Table 6: Ablation study

(a) Parameters to adapt. Assuming frozen statistics, parameters to update can be
replacement of BN by linear layer, or the backbone weights only (without the

classification layer) for different learning rates, or the classification layer only, or the
complete network (backbone + classification layer).

BN→ Lin. Backbone only Classif. Backbone+classif.
Adaptation w/o w/ 10−5 10−6 10−7 layer 10−5 10−6 10−7

bias bias

NS→SK10 44.0 44.7 40.3 42.1 42.0† 34.4 41.5 41.4† 35.7†

SL→SK19 27.9† 28.2 27.9 28.5 26.7† 22.4 28.1 28.0† 23.3†

SL→SP13 36.1 36.0 31.3 36.6 36.9† 34.1 36.6 36.9 30.0†

NS→SP6 61.5 61.4 60.5 61.5† 60.9† 60.4 61.5 61.4 61.0†

(b) Choice of running statistics for BN layers,
either fixed or variable (per-instance norm. at train
and eval time, or only at train and fixed at eval).

(c) Class distribution to
target, uniform or obtained
from source data.

Fixed statistics Online statistics
Adaptation source target mean train train

+eval

NS→SK10 44.7 43.4 45.9 39.1 43.7∗

SL→SK19 28.2 26.2 27.4 22.2 26.7∗

SL→SP13 36.0 30.9 34.4 23.7 26.8∗

NS→SP6 61.4 59.3 61.1 54.7 60.4∗

Distribution
Adaptation uniform source

NS→SK10 35.0 44.7
SL→SK19 23.8 28.2
SL→SP13 25.6 36.0
NS→SP6 60.7 61.4

Maximum mIoU% over 20k iterations, learning rate 10−5 unless otherwise stated.
∗: performance strongly fluctuating. †: maximum reached at 20k iterations.

Table 7: Performance of our criterion TTYDstop and other using soft measurements
to select a model being trained over 20k iterations (one model for each 1k iteration
increment).

Adaptation NS→
Validator SK10

TTYDstop (i.e., hard choice A) 44.5

TTYDstop L2 44.5
TTYDstop L1 44.5
TTYDstop Symmetric KL 44.5

E Ablation: Other distances for consistency validator

We show in Tab. 7 the results of our stopping criterion using various divergences
to measure the agreement (symmetric KL divergence, L1 and L2 norms), instead
of the default hard counting of identical predictions. As all different options
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Table 8: Performance of our TTYDstop with different reference models to select a
model being trained over 20k iterations (one model for each 1k iteration increment).

Adaptation NS→ SL→ SL→ NS→ NS→ NS→
Validator SK10 SK19 SP13 SP6 WO10 PD8

Source-only 34.4 22.3 25.6 60.4 46.1 60.4
TTYD-train (last iter.) 39.2 27.8 28.1 23.4 47.7 60.8
TTYD-train (max. value) 44.7 28.2 36.0 61.4 51.4 64.9

TTYDstop (i.e., w/ PTBN) 44.5 28.2 35.9 61.1 51.4 63.3
TTYDstop w/ AdaBn 44.5 28.2 36.0 61.1 51.4 63.3
TTYDstop w/ MeanBN 39.0 26.9 32.3 61.1 49.8 60.4

TTYDstop w/ SHOT [9] 43.8 22.3 29.8 60.4 46.1 63.3
TTYDstop w/ TENT [21] 43.0 27.4 35.9 61.4 50.2 64.5
TTYDstop w/ URMDA [17] 39.0 24.7 25.6 60.4 46.1 60.4
TTYDstop w/ SHOT+ELR [26] 44.6 28.1 32.3 60.4 51.0 63.3
TTYDstop w/ DT-ST [27] 42.4 26.9 32.3 60.4 49.8 63.3

give the same results we keep the simplest one, the hard counting of identical
predictions.

F Ablation: Other reference models

In Tab. 8, we compare the performance of the model selected by TTYDstop
using PTBN as a reference model, against the selection of models using AdaBN
and MeanBN as reference models. It can be seen that using PTBN or AdaBN as
reference model are mostly equivalent. Using MeanBN is clearly inferior, probably
because it is too close to the source-only model: it always selects a model trained
for less iterations than our proposed alternatives.

We also tested other models as potential reference models: DT-ST, SHOT+ELR,
SHOT, TENT and URMDA. We use the model obtained after 20k iterations
as reference model for all these methods. DT-ST and and SHOT-ELR are able
to select competitive checkpoints, improving performance over the source-only
one in 5 out of the 6 domain adaptation scenarios. Although SHOT suffered
from a strong performance degradation during training, and therefore would
not be a natural choice as reference model, SHOT allows selection a better
performing model that the source-only model in half of the domain adaptation
settings, and never select a model performing worse than the source-only one.
It is to be noted that PTBN, AdaBN, MeanBN are hyperparameter-free. We
use default hyperparameters for DT-ST. For SHOT, TENT, URMDA, we use
target-validated hyperparameters to study their potential.
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Table 9: Performance of our criterion TTYDstop to select a SHOT or URMDA model
being trained over 20k iterations (one model for each 1k iteration increment).

Adaptation NS→ SL→ SL→ NS→ NS→ NS→
Validator SK10 SK19 SP13 SP6 WO10 PD8

Source-only 34.4 22.3 25.6 60.4 46.1 60.4

TTYD-train (last iter.) 39.2 27.8 28.1 23.4 47.7 60.8
TTYD-train (max. value) 44.7 28.2 36.0 61.4 51.4 64.9
TTYDcore 44.5 28.2 35.9 61.1 51.4 63.3

SHOT last iter. 34.9 18.4 21.7 42.4 37.3 43.7
SHOT max. 42.7 27.9 36.7 61.2 50.1 62.9
SHOT w/ TTYDstop 40.7 27.9 35.9 61.2 50.1 62.9

URMDA last iter. 29.4 25.4 24.5 30.8 42.7 56.9
URMDA max. 37.5 25.5 33.4 63.0 48.4 60.4
URMDA w/ TTYDstop 37.2 25.6 25.6 60.4 46.1 60.4

G TTYDstop for other training schemes

In Tab. 9 we also apply TTYDstop to SHOT and URMDA, as both methods
are facing strong model degradation during training. We report the maximal
achieved performance during training (max.), the performance reached after 20k
iterations (last iter.), and the performance reached using our stopping criterion
(TTYDstop). We see that our stopping criterion is able to pick a model whose
performance is close to the best achieved performance during training (max.).

The application of our stop criterion on TENT does not make sense as the
starting point for the TENT method is identical to the reference model.

H SFUDA hypothesis

For our training scheme, we use no source data. Besides a source-only trained
model f [θs], we only use global statistics Ds =D(X s) on source data, i.e., a few
class frequencies. These class-wise point ratios are in fact often already provided
on dataset datasheets, e.g ., SemanticKITTI [1], nuScenes [2]. This very minor
requirement complies with motivations of source-free approaches, e.g ., privacy,
lost access or computation saving. As it can be seen in Tab. 10: alternatives to our
prior (DS) in Eq. (2) (main paper) do not perform well on NS→SK10. However,
the correct target class data distribution (DT ), which of course is not available,
but could be seen of a kind of oracle, helps to further improve the performance.

I Classwise results and related approaches

In this section, we detail classwise results of semantic segmentation after domain
adaptation. We also compare to UDA methods.
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Table 10: Comparison of different priors in Eq. (2) on NS→SK10. For easier comparison
we report the maximal obtained performance with our training scheme without the
selection of TTYDstop.

KL(D(P )|| ? ) unif. D(f [θs](X t)) Ds(ours) Dt (oracle)

Ours (mIoU%) 35.0 34.4 44.7 47.0

Per-class results. We provide in Tabs. 11 to 16 the classwise results for methods
and domain adaptation settings reported in Tab. 2 of the main paper. It can be
seen that the gain in performance (mIoU) achieved by our TTYDcore originates,
on all dataset settings, from a consistent improvement over a broad range of
classes, not just a few of them.

UDA (with source data) as a kind of SFUDA upper bound. General
UDA is privileged over the SFUDA setting because it has access to the source
data at training time. UDA resutls thus represents a kind of upper bound to
SFUDA’s. To analyze this aspect, we compare to two state-of-the-art UDA
methods, namely CoSMix [19] and SALUDA [11], on the domain adaptation
settings we experimented with and for which UDA results are available, i.e.,
NS→SK10, SL→SK19, SL→SP13 and NS→SP6.

Please note that CoSMix has hyperparameters, which have to be (and are)
optimized for each setting on the ground-truth target validation set (which
somewhat detracts from the lack of supervision). On the contrary, SALUDA uses
an unsupervised validator (Entropy [12]), like we do with our own unsupervised
stopping criterion and validator.

As can be seen in Tabs. 11 to 12, although CoSMiX and SALUDA do have a
better mIoU on average, our method TTYDcore still outperforms CoSMix on 2/4
domain adaptations and is only 1.8 to 4.7 percentage points behind SALUDA,
except on SL→SP13, where SALUDA remains 7.0 p.p. ahead. TTYD reduces
the gaps with SALUDA down to 0.8 to 3.8 p.p., and even outperforms SALUDA
by 1.2 p.p. on SL→SK19.

Please note that we compare to values reported in the SALUDA paper [11],
including for CoSMix [19], as the evaluation protocol in [19] for mIoU calculation
differs from the official evaluation metric [1], which we use instead. Furthermore,
[11] report results as an average over 3 runs, whereas we provide here only the
results of a single run.
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Table 11: Classwise results for NS→SP6. † from [11].

NS→SP6

(% IoU) %
mIoU
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e

Strict SFUDA
Source-only 60.4 56.1 7.5 65.0 79.4 79.0 75.7
AdaBN [8] 57.7 58.8 14.9 42.8 76.8 79.2 73.7
PTBN [13] 54.7 55.2 10.5 41.0 75.7 74.8 70.9
MeanBN [11] 60.9 58.6 12.4 60.7 78.0 80.0 75.5
TTYDcore (ours) 61.1 57.0 11.3 64.2 79.0 80.6 74.4

Loose SFUDA
SHOT [9] 42.4 19.0 0.0 13.3 78.7 71.6 72.1
TENT [21] 45.1 36.0 0.1 35.9 76.1 62.0 60.5
URMDA [17] 30.8 36.2 7.7 2.6 71.1 26.2 41.1
SHOT+ELR [26] 59.4 54.0 1.2 67.0 79.9 78.3 75.9
DT-ST [27] 63.1 59.8 7.6 72.9 81.0 79.2 78.2
TTYD (ours) 64.5 61.0 10.4 74.5 80.9 81.6 78.8

UDA methods with src data and (for CoSMix) parameters
CoSMix† [19] 65.2 60.3 24.1 66.4 80.4 81.4 78.3
SALUDA† [11] 65.8 59.0 20.5 70.6 82.6 81.4 81.0

Table 12: Classwise results for NS→SK10. † from [11].

NS→SK10

(% IoU) %
mIoU

Car Bicy
cle

M
ot
or
cy

cle

Tr
uc

k
Oth

er
ve

hic
le

Pe
de

str
ian

Driv
ea

ble
su

rf.

Sid
ew

alk

Te
rra

in

Ve
ge

ta
tio

n

Strict SFUDA
Source-only 34.4 77.5 8.8 18.3 5.7 4.6 52.0 38.8 25.6 29.7 83.2
AdaBN [8] 39.9 80.8 14.5 16.7 8.6 3.8 23.8 75.0 38.9 52.9 84.0
PTBN [13] 39.4 80.0 14.7 27.0 7.3 5.5 23.2 71.3 35.4 48.8 80.6
MeanBN [11] 41.7 87.0 17.6 29.6 12.1 4.4 43.8 61.3 33.3 40.2 87.5
TTYDcore (ours) 44.5 87.4 7.8 30.1 16.6 8.3 50.1 71.9 33.2 51.9 87.3

Loose SFUDA
SHOT [9] 34.9 90.2 1.2 8.6 20.9 6.2 1.2 68.9 19.0 60.4 72.3
TENT [21] 37.9 58.4 0.1 4.6 43.1 10.2 41.6 66.1 20.3 57.8 76.4
URMDA [17] 29.4 72.0 1.4 3.4 3.3 3.1 18.3 36.4 36.8 41.4 78.0
SHOT+ELR [26] 40.5 90.1 2.8 18.2 16.2 10.6 44.9 69.3 15.8 51.2 86.1
DT-ST [27] 35.6 88.6 0.0 26.3 9.1 4.1 54.9 39.9 17.2 29.2 87.2
TTYD (ours) 45.4 92.4 0.0 37.0 26.9 2.1 49.0 72.8 27.7 56.3 89.7

UDA methods with source data and (for CoSMix) hyperparameters
CoSMix† [19] 38.3 77.1 10.4 20.0 15.2 6.6 51.0 52.1 31.8 34.5 84.8
SALUDA† [11] 46.2 89.8 13.2 26.2 15.3 7.0 37.6 79.0 50.4 55.0 88.3
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Table 13: Classwise results for SL→SK19. † from [11].

SL→SK19

(% IoU) %
mIoU
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Strict SFUDA
Source-only 22.3 40.7 7.6 9.6 1.5 1.7 21.0 47.1 1.6 21.9 4.7 34.0 0.0 36.3 22.2 62.3 28.3 48.5 28.8 5.6
AdaBN [8] 24.6 64.2 8.5 9.1 2.9 3.3 20.8 27.0 0.4 56.5 6.8 30.5 0.0 64.9 17.8 59.2 19.2 36.6 28.0 11.5
PTBN [13] 22.4 53.5 6.5 11.2 4.7 3.5 18.8 30.4 0.3 52.4 3.9 33.2 0.0 58.5 14.4 45.3 20.2 32.7 25.7 10.4
MeanBN [11] 26.9 59.6 9.1 9.8 2.4 3.1 23.6 37.3 1.2 42.5 6.8 34.0 0.1 60.2 28.8 68.9 29.3 42.3 38.0 14.5
TTYDcore (ours) 28.2 63.9 11.1 11.0 3.6 3.0 26.5 33.0 1.7 63.2 5.9 32.3 0.2 67.4 19.1 72.6 30.5 35.4 40.9 15.2

Loose SFUDA
SHOT [9] 18.4 49.5 1.0 2.1 4.5 4.2 13.7 8.0 0.5 60.0 4.2 24.0 0.5 46.5 16.7 38.0 22.8 15.1 37.4 0.9
TENT [21] 24.5 57.8 3.3 9.5 12.4 2.5 11.7 20.3 0.0 52.0 0.3 34.2 0.0 60.8 15.6 66.9 29.9 44.4 40.6 3.5
URMDA [17] 25.4 52.0 3.3 6.3 1.3 1.1 14.7 52.0 1.2 26.2 5.6 37.0 0.1 46.3 32.3 65.3 35.8 51.6 45.8 4.7
SHOT+ELR [26] 27.1 56.7 4.1 10.0 3.3 1.7 31.4 32.7 1.0 62.1 2.8 33.7 0.1 64.9 7.6 71.9 32.3 40.0 46.2 12.2
DT-ST [27] 23.5 34.9 2.1 10.9 2.3 2.0 29.2 66.7 1.0 20.6 3.2 35.1 0.0 27.8 5.4 60.4 30.7 52.9 48.8 12.6
TTYD (ours) 32.4 77.0 5.0 12.8 8.7 2.9 40.0 43.6 1.2 67.4 5.5 34.8 0.0 70.8 8.4 77.5 40.4 38.6 52.8 28.1

UDA methods with source data and (for CoSMix) hyperparameters
CoSMix† [19] 28.0 63.9 5.6 11.4 5.7 7.9 20.0 40.3 3.8 56.4 13.2 37.9 0.1 42.6 29.5 66.9 27.9 29.6 46.0 22.5
SALUDA† [11] 31.2 65.4 7.5 13.6 3.2 5.9 23.9 43.7 1.7 52.9 11.6 39.8 0.3 67.8 28.2 74.2 37.6 43.6 47.5 22.7

Table 14: Classwise results for SL→SP13. † from [11] and uses a voxel size of 5 cm.

SL→SP13

(% IoU) %
mIoU

Pe
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n

Po
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ca

n
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g

Con
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e
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Strict SFUDA
Source-only 25.6 43.2 31.4 22.5 20.8 65.8 1.0 4.5 14.9 53.9 7.0 21.5 3.0 43.4
AdaBN [8] 25.4 38.4 17.8 22.4 23.6 55.9 13.0 7.8 8.8 61.1 6.9 14.9 9.3 50.9
PTBN [13] 23.7 36.3 20.4 27.0 19.9 43.4 10.6 6.8 8.2 58.8 5.2 15.3 8.5 47.7
MeanBN [11] 27.7 38.9 23.2 22.5 26.2 69.5 6.1 7.0 15.6 63.2 9.4 21.2 5.2 52.2
TTYDcore (ours) 35.9 46.1 37.2 43.5 31.3 71.3 4.8 20.5 21.8 69.1 11.5 25.4 4.3 79.9

Loose SFUDA
SHOT [9] 21.7 31.1 5.7 11.8 32.9 37.1 8.0 18.5 4.6 52.3 6.2 18.1 0.1 55.3
TENT [21] 28.3 39.1 30.0 33.4 20.0 63.3 0.0 21.4 3.0 60.0 16.8 31.6 0.7 48.7
URMDA [17] 24.5 42.0 37.7 50.3 23.5 46.1 0.0 21.5 0.0 41.9 0.0 51.7 0.0 3.4
SHOT+ELR [26] 36.9 59.8 29.1 47.7 30.4 71.1 1.3 23.1 12.1 70.9 18.4 34.4 0.4 81.9
DT-ST [27] 36.8 64.1 57.1 47.3 21.5 65.3 3.6 23.6 28.3 58.5 6.2 35.1 0.3 67.1
TTYD (ours) 39.1 64.1 54.8 48.9 27.8 73.0 8.8 29.4 14.1 73.6 5.9 36.8 0.5 70.7

UDA methods with source data and (for CoSMix) hyperparameters
CoSMix† [19] 40.8 50.9 54.5 34.9 33.6 71.1 19.4 35.6 26.8 65.2 30.4 24.0 6.0 78.5
SALUDA† [11] 42.9 59.9 54.6 59.2 33.7 69.8 14.9 40.9 30.8 64.5 26.2 22.1 2.7 78.0
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Table 15: Classwise results for NS→WO10.

NS→WO10

(% IoU) %
mIoU

Car Bicy
cle

M
ot
or
cy

cle

Tr
uc

k
Oth

er
ve

hic
le

Pe
de

str
ian

Driv
ea

ble
su

rf.

Sid
ew

alk

W
alk

ab
le

Ve
ge

ta
tio

n

Strict SFUDA
Source-only 46.1 72.2 6.2 14.0 24.9 24.5 68.1 70.8 47.8 43.8 88.6
AdaBN [8] 47.7 70.5 8.9 9.1 27.6 33.2 58.8 82.2 51.5 46.4 89.0
PTBN [13] 42.3 65.1 4.5 7.7 21.7 22.1 51.8 80.3 46.4 40.4 83.3
MeanBN [11] 50.3 75.2 9.6 12.8 30.0 37.2 67.5 78.5 52.2 48.9 91.5
TTYDcore (ours) 51.4 77.5 7.6 17.3 27.5 36.1 74.2 80.3 53.8 48.4 91.1

Loose SFUDA
SHOT [9] 37.3 56.2 0.8 7.6 15.2 21.7 36.9 61.7 45.9 41.1 85.7
TENT [21] 40.4 56.5 0.4 10.9 18.3 23.8 52.1 82.2 47.8 35.5 76.2
URMDA [17] 42.7 71.9 1.7 1.3 26.2 20.6 60.2 64.9 52.1 41.5 86.5
SHOT+ELR [26] 49.5 79.5 2.2 24.0 26.2 29.0 67.6 76.5 51.9 50.0 88.1
DT-ST [27] 51.8 81.0 6.8 18.9 33.1 42.9 77.6 72.1 47.5 45.7 92.7
TTYD (ours) 55.5 83.1 8.4 20.4 33.1 46.0 79.5 82.2 55.4 53.0 93.5

Table 16: Classwise results for NS→PD8.

NS→PD8

(% IoU) %
mIoU

2-w
he

ele
d

Pe
de

str
ian

Driv
ea

ble
gr
ou

nd

Sid
ew

alk

Oth
er

gr
ou

nd

M
an

mad
e

Ve
ge

ta
tio

n

4-w
he

ele
d

Strict SFUDA
Source-only 60.4 27.6 64.2 71.6 45.1 24.2 88.1 75.0 87.2
AdaBN [8] 59.6 31.3 51.6 77.3 44.5 28.5 86.0 73.1 84.3
PTBN [13] 60.2 32.4 52.3 76.1 46.0 28.3 86.9 74.1 85.6
MeanBN [11] 61.3 31.3 61.6 75.0 44.8 27.0 87.8 75.0 87.5
TTYDcore (ours) 63.3 28.8 65.3 78.1 49.0 30.5 88.2 76.2 90.4

Loose SFUDA
SHOT [9] 43.7 0.7 38.4 27.7 40.1 17.1 84.5 67.8 72.5
TENT [21] 59.1 14.8 50.5 83.6 50.8 25.8 85.5 72.7 89.2
URMDA [17] 56.9 17.0 62.2 68.9 40.1 22.6 88.5 71.9 84.9
SHOT+ELR [26] 60.9 15.2 58.5 78.1 48.3 30.0 88.8 77.4 90.8
DT-ST [27] 62.5 32.7 64.2 75.9 43.8 26.6 89.1 77.5 90.4
TTYD (ours) 65.7 35.2 64.2 81.7 49.5 35.9 88.4 78.3 92.9
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J Qualitative results

Methods with no degradation prevention. We illustrate in Fig. 3 the
performance degradation when training is too long for TENT [21], SHOT [9] and
URMDA [17]. Note that, for these methods, we select the best trained model
by looking at the ground-truth target validation set. It highlights the difference
between what can be achieved in theory and what actually happens if training is
not stopped with a criterion like ours.

One can observe that the TENT model, which estimates the normalization
parameters of the batch norm layers on the target dataset, starts from a better
source-only model, although it has not been trained on target data yet. After 20k
iterations, the motorcycle, the truck, and part of the vegetation are not correctly
classified, although they were correctly classified in the source-only model. A
similar degradation behavior can be seen for the SHOT method. The URMDA
method does not perform as well as the others. After 20k iterations, it also shows
a significant degradation with respect to both the source-only starting point and
the best model: while the source-only model correctly segments the vegetation
and the truck, the final model incorrectly labels part of the vegetation using
various other classes, and wrongly predicts the class on the top of the truck.

Our stopping criterion. In Fig. 4, we show qualitative results for each domain
adaptation setting: ground-truth labels (GT), the source-only result, the result
obtained by our training scheme with TTYDstop, and the result obtained after
20k iterations. These representations highlight that the stopping criterion achieves
a significant, qualitatively visible improvement.

As can be seen, the improvements of our training scheme in combination with
our stopping criterion over the source-only model are dominated by changes in
the “Road”, “Sidewalk”, and “Terrain” classes. If the training is pushed to 20k
iterations, these large classes are little degraded, while objects of other classes like
cars or pedestrians can be totally misclassified. One exception is the NS→SP6

setting, where we can observe a total collapse into a binary classification after
training for 20k iterations.
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T
E

N
T

GT Src.-only (start point) Best model After 20k iterations

SH
O

T

GT Src.-only (start point) Best model After 20k iterations

U
R

M
D

A

GT Src.-only (start point) Best model After 20k iterations

Fig. 3: Examples of results with TENT [21], SHOT [9] and URMDA [17] on NS→SK10:
ground truth (GT), initial model trained only on source data, best model as upper
bound (using ground-truth knowledge of the target validation set), and “full” training
for 20k iterations. “Ignore” points are removed for a better visualisation. Notable errors
due to degradation are marked with a dashed rectangle.
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N
S→

SK
1
0

GT Src.-only (start point) TTYDstop After 20k iterations

SL
→

SK
1
9

GT Src.-only (start point) TTYDstop After 20k iterations

SL
→

SP
1
3

GT Src.-only (start point) TTYDstop After 20k iterations

N
S→

SP
6

GT Src.-only (start point) TTYDstop After 20k iterations

N
S→

W
O

1
0

GT Src.-only (start point) TTYDstop After 20k iterations

N
S→

P
D

8

GT Src.-only (start point) TTYDstop After 20k iterations

Fig. 4: Examples of results with TTYDstop: ground truth (GT), initial model trained
only on source data, training with our training scheme when using our stopping
criterion, and “full” training for 20k iterations. “Ignore” points are removed for a better
visualisation. Notable errors due to degradation are marked with a dashed rectangle.
Due to different class mappings, coloring can vary between the different settings.
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K Datasets and class mappings

Tab. 17 summarizes the main characteristics of the datasets we used in experi-
ments, including details about the lidars used for data capture. As can be seen,
there is a lot of variety among the lidar sensors, not counting variations that
are not even reported here, such as sensor height or laser range. This sensor gap
yields significant dissimilarities at point cloud level. Considering on top of that
the geographical variety of the driving landscapes over 3 continents, including
synthetic scenery, the total domain gap between most of these datasets can be
considered as severe.

Note that the number of classes we report is the number used for the standard
benchmarking of semantic segmentation on each dataset, which may be lower
than the number of finer-grained classes actually annotated in the ground-truth
data. Also, for SemanticKITTI, the class of a moving object is merged with the
class of the same static object.

In Tabs. 18 to 23, we provide the exact class mapping. Unnamed classes are
mapped to ‘Ignore’.

Table 17: Datasets used in our domain adaptation experiments. For each dataset, we
provide: abbreviation in the paper, main reference, lidar sensor used for data capture,
number of beams, vertical field of view (V. FoV), vertical resolution (V. res.), horizontal
resolution (H. res.), number of classes used for standard benchmarking (which may be
lower than the number of finer-grained actually annotated classes), number of frames
for training and/or testing, and region of the world where the data was captured. The
V. FoV of the Pandora (Pandar40) lidar is variable, denser when closer to horizontality:
0.33° for the FoV -6° to +2°, and 1° for the FoV -16° to -6° and +2° to +7°. The V. FoV
of the Pandar64 is even more variable: 0.167° (-6° to +2°), 1° (-14° to -6°, +2° to +3°),
2° (+3° to +5°), 3° (+5° to +11°), 4° (+11° to +15°), 5° (-19° to -14°), 6° (-25° to -19°).

Dataset Ref. Lidar Beams V.FoV V. res. H. res. Classes Train Test Region of the world

nuScenes (NS) [2] Velodyne HDL-32E 32 -30.7° to +10.7° 1.33° 0.33° 16 28,130 – Boston, Singapore
SynLiDAR (SL) [22] synthetic 64 -25.0° to + 3.0° 22 19,840 – 3D experts using

Unreal Engine 4
SemanticPOSS (SP) [14] Pandora (Pandar40) 40 -16.0° to + 7.0° 0.20° 0,33°/1° 14 2,484 499 Peking University

(many dynamic objects)
SemanticKITTI (SK) [1] Velodyne HDL-64E 64 -24.8° to + 2.0° 0.42° 0.18° 19 19,130 4,071 Karlsruhe
Pandaset (PD) [23] Pandar64 64 -25.0° to +15.0° 0.17° 0.20°/6° 37 3,800 2,280 San Francisco,

El Camino Real
Waymo Open (WO) [5] Laser Bear Honeycomb 64 -17.6° to + 2.4° 23 23,691 5,976 Phoenix, San Francisco,

Mountain View
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Table 18: Class mapping
for NS→SK10 (from [25]).

nuScenes NS→SK10 SemanticKITTI

Car Car Car

Bicycle Bicycle Bicycle

Motorcycle Motorcycle Motorcycle

Truck Truck Truck

Construction Other vehicle Other-vehicle,
vehicle, Bus Bus

Pedestrian Pedestrian Person

Driveable
Surface

Driveable
surface

Road,
Parking,

Lane marking

Sidewalk Sidewalk Sidewalk

Terrain Terrain Terrain

Vegetation Vegetation Vegetation, Trunk

Table 19: Class mapping
for NS→SP6 (from [20]).

nuScenes NS→SP6 SemanticPOSS

Pedestrian Person Person

Bicycle, Motorcycle Bike Rider, Bike

Car, Bus,
Car CarConstriction vehicle,

Trailer,Truck

Driveable surface, Ground GroundOther flat,
Sidewalk, Terrain

Vegetation Vegetation Plants

Barrier,
Manmade

Traffic sign, Pole,
Manmade, Garbage can, Building,
Traffic cone Cone/Stone, Fence

Table 20: Class mapping
for NS→WO10 (from [7]).

nuScenes NS→WO10 Waymo Open

Pedestrian Person Person

Bicycle, Motorcycle Bike Rider, Bike

Car, Bus,
Car CarConstriction Vehicle,

Trailer,Truck

Driveable Surface, Ground GroundOther Flat,
Sidewalk, Terrain

Vegetation Vegetation Vegetation, Plant

Barrier,
Manmade

Traffic Sign, Pole,
Manmade, Garbage Can, Building,

Traffic Cone Cone/Stone, Fence

Table 21: Class mapping
for NS→PD8 (from [20]).

nuScenes NS→PD8 Pandaset

2-wheeled

Bicycle, Motorcycle,
Bicycle, Motorized scooter

Motorcycle Pedicab,
Personal Mobility Device

Pedestrian Pedestrian Pedestrian,
Pedestrian w/ objects

Driveable ground Driveable ground Driveway, Road,
Road marking

Sidewalk Sidewalk Sidewalk

Other flat, Terrain Other ground Ground

Manmade

Building, Cones,
Barrier, Construction Barriers/Signs,

Manmade, Other static object,
Traffic cone Pylons, Road Barriers,

Rolling containers, Signs

Vegetation Vegetation Vegetation

4-wheeled

Car, Construction vehicle,
Bus, Car, Emergency vehicle,

Construction vehicle, Bus, Towed object,
Trailer, Truck Truck (all kinds of)

Uncommon vehicle
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Table 22: Class mapping for
SL→SK19 (from [19]).

SynLiDAR SL→SK19 & SemanticKITTI

Car Car

Bicycle Bicycle

Motorcycle Motorcycle

Truck Truck

Bus, Other vehicle Other vehicle

Person Pedestrian

Bicyclist Bicyclist

Motorcyclist Motorcyclist

Road Road

Parking Parking

Sidewalk Sidewalk

Other ground Other ground

Building Building

Fence Fence

Vegetation Vegetation

Trunk Trunk

Terrain Terrain

Pole Pole

Traffic sign Traffic sign

Table 23: Class mapping for
SL→SP13 (from [19]).

SynLidar SL→SP13 & SemanticPOSS

Person Person

Bicyclist,Motorcyclist Rider

Car Car

Trunk Trunk

Vegetation Plants

Traffic sign Traffic sign

Pole Pole

Garbage can Garbage can

Building Building

Traffic-cone Cone

Fence Fence

Bicycle Bike

Road Ground
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