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In the supplementary material, we introduce details about the time-variant
coefficients in the proposed iterative condition refinement strategy, show evalua-
tions on reflection recovery, and provide ablation studies on the network design,
the saturation-aware structure constraint, loss functions, and language descrip-
tions. We further conduct comparisons on the model size and inference time,
alongside additional qualitative comparisons with state-of-the-art reflection re-
moval methods.

6 Details about the time-variant coefficients

In this section, we provide details of time-variant coefficients βt and γt (t ∈
{1, ..., T}) in the proposed iterative condition refinement strategy, controlling
the refinement of the structure and color condition in Eq. (4) (corresponding
to footnote 2 in the main paper). We set βt and γt to the same value for syn-
chronously updating the structure and color condition, which are defined as
follows:

βt = γt :=

t∏
i=1

(1− ψi), (17)

where the variants ψi ∈ Ψ := {ψ1, ..., ψT } are constants increasing linearly from
ψ1 = 10−4 to ψT = 0.02 inspired by [3], which is reasonable since these constants
are small enough related to data scaled to [−1, 1], guaranteeing that the forward
and reverse processes exhibit nearly the same functional form.

7 Evaluations on reflection recovery

In this section, we conduct experiments to evaluate the recovery of reflection lay-
ers (corresponding to footnote 4 in the main paper). Quantitative comparisons
# Equal contributions. ∗ Corresponding author.
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Table 3: Comparison of quantitative results on real datasets for evaluating the recov-
ery of reflection layers, compared with several state-of-the-art single-image reflection
removal methods [2,9,10,12,17,21,23]. ↑ (↓) indicates larger (smaller) values are better.
Bold numbers indicate the best-performing results.

Dataset
(size) Metric

Method

Zhang et al . CoRRN ERRNet IBCLN Dong et al . YTMT DSRNet Ours

SIR2

(500)
PSNR↑ 24.64 25.94 25.37 25.76 26.07 24.48 26.24 26.45
SSIM↑ 0.486 0.513 0.506 0.502 0.519 0.479 0.521 0.532

Real20
(20)

PSNR↑ 25.16 24.83 25.41 25.29 25.21 25.09 25.36 25.51
SSIM↑ 0.506 0.487 0.519 0.508 0.532 0.515 0.529 0.548

Nature
(20)

PSNR↑ 24.97 24.73 24.25 25.55 25.65 24.51 24.89 25.88
SSIM↑ 0.511 0.497 0.542 0.552 0.568 0.458 0.561 0.572

Average
(540)

PSNR↑ 24.67 25.85 25.33 25.73 26.02 24.50 26.16 26.39
SSIM↑ 0.488 0.511 0.508 0.504 0.521 0.480 0.523 0.534

Mixture

ERRNet IBCLN Dong et al.

Transmission:
Green trees on a 

green mountain with 
a stone winding path

Description

Input

Reflection recovery results

Ours CoRRN

YTMT DSRNet ControlNet

Zhang et al.

Mixture

ERRNet IBCLN Dong et al.

Input

Reflection recovery results

Ours CoRRN

YTMT DSRNet ControlNet

Zhang et al.

Description

Reflection:
Black and white 
square stone 
brick aisle

Transmission:
Mummy's sarcophagus 
in a display case

Gradient Gradient

Fig. 8: Qualitative comparison of estimated reflection layers on real mixture images
collected from the Internet, compared with several single-image methods [2, 9, 10, 12,
17,21,23] and a diffusion-based method ControlNet [22]. Please zoom in for details.
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Table 4: Ablation studies on
the network design and the
loss function. ↑ (↓) indicates
larger (smaller) values are bet-
ter. Bold numbers indicate
the best-performing transmis-
sion recovery results.

Metric
Abl. on network design

Both cond. enc. Single trainable Ours

PSNR↑ 24.39 24.86 25.08
SSIM↑ 0.889 0.896 0.905
LPIPS↓ 0.141 0.135 0.123
NIQE↓ 4.696 4.678 4.322
FID↓ 57.12 52.48 46.58

are conducted on existing reflection removal datasets (i.e., SIR2 [18], Real20 [23],
and Nature [12]), and ground truths of reflection layers are obtained as in [10].
We employ PSNR [11] and SSIM [20] as error metrics following [4–8,24]. Quali-
tative comparisons are conducted on images from the Internet. We compare the
proposed method with state-of-the-art single-image methods (including Zhang
et al . [23], CoRRN [17], ERRNet [21], IBCLN [12], Dong et al . [2], YTMT [9],
and DSRNet [10]) and a language-based diffusion model ControlNet [22]. As ER-
RNet [21], ControlNet [22], and the proposed method only estimate the trans-
mission layers T̃ from the mixture images M by networks, we obtain reflection
layers R̃ by R̃ = M − T̃ following [15, 17]. As quantitative and qualitative re-
sults shown in Table 3 and Fig. 8 (corresponding to Fig. 5 in the main paper),
contributing to the high-fidelity and faithful recovery of transmission layers, the
proposed method achieves the state-of-the-art performance on reflection recov-
ery, which indicates the efficacy of the proposed iterative condition strategy and
multi-condition constraint mechanism for leveraging the language-based diffu-
sion model.

8 Additional ablation studies

In this section, we conduct ablation studies to investigate the effectiveness of
the network design, the saturation-aware structure constraint, loss functions,
and language descriptions (corresponding to footnote 5 in the main paper).
Ablation studies on the network design. As mentioned in Sec. 3.1 of the
main paper, the proposed L-diffER utilizes a color encoder Ec and a structure
encoder Es to transform the color and structure condition into latent space, re-
spectively. In practice, the color encoder Ec uses the compression encoder of
Stable Diffusion (SD) [13] and the structure encoder Es uses the condition en-
coder of ControlNet [1, 22]. We conduct an ablation study by replacing Ec with
the condition encoder of ControlNet [22] (denoted as ‘Both cond. enc.’) that
is also the network architecture of Es to investigate the influence of encoders.
Furthermore, following ControlNet [22], two trainable copied modules (denoted
by the pink blocks in Fig. 2 of the main paper) of SD [13] are employed to sepa-
rately extract color and structure features from color and structure latents, so we
conduct another ablation study by only using a single trainable copied module
to jointly extract color and structure features (denoted as ‘Single trainable’). As



4 Y. Hong et al.

Ground truth 𝐓Mixture 𝐌 Description Ours Both cond. enc. Single trainable

Transmission:
Flowers and
green leaves

Transmission:
Metal handrails 
and yellow wall

Reflection:
A bush in front
of a building

Fig. 9: Ablation study on the network design. We show the gradient map (i.e., the
original structure condition) at the lower right of each mixture image (i.e., the original
color condition). Please zoom in for details.

Mixture 𝐌𝐌

Transmission:
A bush with red
flowers in front
of a gray building

Description W/o ΩvOurs W/o Ωs

Fig. 10: The effect of Ωs and Ωv. Please zoom in for details.

Table 5: Ablation studies on pixel loss functions. ↑ (↓) indicates larger (smaller) values
are better. Bold numbers indicate the best-performing transmission recovery results.

Method PSNR↑ SSIM↑ LPIPS↓ NIQE↓ FID↓

W/o LRGB 24.87 0.896 0.137 4.702 52.32
W/o Lgrad 24.68 0.894 0.140 4.813 53.47
W/o Lnum 24.97 0.900 0.131 4.593 48.64
W/o Lpix 24.22 0.884 0.149 4.751 58.21

Ours 25.08 0.905 0.123 4.322 46.58

results shown in Table 4 and Fig. 9, modifications on the encoder or the trainable
copied module lead to performance degradation, indicating the effectiveness of
our network design for condition injection.
Ablation studies on the saturation-aware structure constraint. As men-
tioned in the main paper, Ωs in Eq. (7) is designed to indicate saturated regions
for retaining the generative capability of the diffusion model in these regions,
and Ωv in Eq. (8) is to indicate valid edges for preventing overly generation in
non-saturated regions. We conduct ablation studies shown in Fig. 10 by removing
Ωs and Ωv, respectively, which verifies the effectiveness of the two components.
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W/o neg.

Transmission:
Two white pipes
and white wall

Description

Wrong dsc.

Transmission:
A bookshelf

Description

Mixture 𝐌𝐌

W/o dsc.

OursDescription

Reflection:
Cars in front of

a building

Transmission:
Two white pipes
and white wall

Reflection:
Two white pipes 
and white wall

Transmission:
Cars in front of 

a building

Ex. dsc.Description

Fig. 11: The effect of input language descriptions. Please zoom in for details.

Ablation studies on loss functions. We further investigate the effect of the
loss functions (introduced in Sec. 3.4 of the main paper) as shown in Table 5.
Compared with the complete model, disabling the RGB loss (‘W/o LRGB’) and
gradient loss (‘W/o Lgrad’) degrade performance significantly since inaccurate
conditions mislead transmission recovery. Disabling the numerical loss (‘W/o
Lnum’) also causes performance decline, suggesting the efficacy of the supervision
on images’ mean and variance. Besides, the performance reduction of the variant
‘W/o Lpix’ demonstrates the necessity of conducting supervision on the pseudo
transmission layers T0|t at the pixel level. Note that we do not disable Lldm since
diffusion models can not train without it.
Ablation studies on language descriptions. We conduct ablation studies on
the numbers and the order of input language descriptions to verify the effective-
ness of language guidance. As shown in Fig. 11, abandoning the description of
the reflection layer (W/o neg.) causes a few reflection residuals in the example,
and more reflections remain if directly using an empty description (W/o dsc.). If
exchanging the order of prompts (Ex. dsc.), results will degrade due to different
statistics of transmission and reflection layers [14,16], but the contents of recov-
ered results still conform to the prompt. Similarly, using the wrong description
of the transmission layer (Wrong dsc.) will cause a completely different recov-
ered result. By utilizing both language descriptions of two layers, the proposed
method achieves high-fidelity reflection removal, which indicates the efficacy of
introducing language descriptions.

9 Comparisons of the model size and inference time

In this section, we show the comparisons of the model size and inference time in
Table 6. The image size is 384 × 384, and we run the inference on an NVIDIA
GeForce RTX 3090. Though owning more parameters and more inference time
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Table 6: Comparisons of the model size and inference time. We show both trainable
and total parameters for diffusion-based methods.

Metric Single-image Diffusion-based

CoRRN [57] IBCLN [30] YTMT [20] DSRNet [21] ControlNet [66] Ours

Params 59.5M 21.6M 73.4M 137.6M 364.4M/1.4B 728.8M/1.8B
Time (s) 0.079 0.127 0.206 0.361 11.547 12.685

Mixture

ERRNet IBCLN Dong et al.

Description

Input

Reflection removal results

Ours CoRRN

YTMT DSRNet ControlNet

Zhang et al.

Mixture

ERRNet IBCLN Dong et al.

Input

Reflection removal results

Ours CoRRN

YTMT DSRNet ControlNet

Zhang et al.

Description

Reflection:
Indoor room

Transmission:
White clouds and 

blue sky

Reflection:
White light lamp

Transmission:
Orange and 
gray clouds

Gradient Gradient

Fig. 12: Qualitative comparison of estimated transmission layers on real mixture im-
ages collected from the Internet, compared with several single-image methods [2,9,10,
12,17,23] and a diffusion-based method ControlNet [22]. Please zoom in for details.

than traditional single-image methods, it is worth noting that the proposed
method pioneers in introducing large language-based diffusion models for re-
flection removal to solve the most concerned problems, i.e., relieving the ill-
posedness and tackling low-transmitted or saturated reflections, which facilitates
future research in a new perspective.
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ResultMixture 𝐌𝐌Mixture 𝐌𝐌 ResultDescription

Reflection:
White shadow of

windows and a cross

Transmission:
Grass, mountain, and 

white clouds in 
the blue sky

Description

Reflection:
A man stands next to 
a tree in front of 

a white wall

Transmission:
A white hanger with 

a black coat

Fig. 13: High-resolution real examples with low-transmitted or saturated reflections.
Please zoom in for details.

10 Additional qualitative results

In this section, additional qualitative experiments are conducted on real images
to show the effectiveness of the proposed language-based diffusion model for re-
flection removal. Experimental settings are the same as in Sec. 4.1 of the main
paper, and qualitative results are shown in Fig. 12. As can be observed, single-
image reflection removal methods [2, 9, 10, 12, 17, 21, 23] fail in low-transmitted
reflection regions, and ControlNet [22] generates results with color shifts and
structure distortions. The proposed method thoroughly removes reflections and
recovers clear transmission layers even in low-transmitted and saturated reflec-
tion regions (e.g ., the reflections of white lights in the left and right example
of Fig. 12), which demonstrates the effectiveness of using language descriptions
to provide auxiliary semantic information and the unique advantage of lever-
aging generative priors from diffusion models [13] by employing the proposed
refinement strategy and constraint mechanism for conditions.

We further present two real examples with low-transmitted or saturated re-
flections. By adopting a patch aggregation method [19], we can obtain their
corresponding high-resolution (i.e., 1024×1024) results shown in Fig. 13, which
verifies the robustness of the proposed method.
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