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Abstract. In this paper, we introduce L-DiffER, a language-based dif-
fusion model designed for the ill-posed single image reflection removal
task. Although having shown impressive performance for image gen-
eration, existing language-based diffusion models struggle with precise
control and faithfulness in image restoration. To overcome these lim-
itations, we propose an iterative condition refinement strategy to re-
solve the problem of inaccurate control conditions. A multi-condition
constraint mechanism is employed to ensure the recovery faithfulness of
image color and structure while retaining the generation capability to
handle low-transmitted reflections. We demonstrate the superiority of
the proposed method through extensive experiments, showcasing both
quantitative and qualitative improvements over existing methods.

Keywords: Reflection removal · Language-based diffusion model

1 Introduction

When photographs are taken through transparent mediums like glass windows,
the contaminated mixture image (denoted as M) can be considered as the com-
bination of a transmission layer (denoted as T) and a reflection layer (denoted
as R) [61, 62], which impairs the performance of downstream computer vision
tasks [1, 47, 60]. Consequently, reflection removal, which aims at removing un-
desired reflections and recovering clear transmission layers from contaminated
mixture images, has become an attractive topic in the field of computational pho-
tography [8, 9, 16, 31, 59, 65, 77]. State-of-the-art single-image reflection removal
methods [8, 22, 31, 61] predominantly learn deep priors from a mixed dataset
of synthetic and real data to mitigate reflections. However, due to insufficient
# Equal contributions. ∗ Corresponding author.
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Fig. 1: For mixture images with strong reflections, (a-b) single-image reflection removal
methods [22, 31] fail in distinguishing reflection and transmission layers. (c) Using
language descriptions as guidance and mixture images as conditions, ControlNet [74]
generates results with color shifts and structure distortions, while (d) the proposed
L-DiffER successfully achieves high-fidelity transmission recovery in low-transmitted
reflection regions.

knowledge about transmission and reflection scenes for addressing such a highly
ill-posed problem, they often encounter limitations in scenes with complex or
low-transmitted reflections, as shown in yellow boxes of Fig. 1(a-b). By lever-
aging auxiliary scene information from additional inputs obtained with special-
ized devices [27, 28, 37] or capture settings [34, 35, 43], multi-image reflection
removal methods achieve more robust reflection removal than single-image meth-
ods. However, the specialized requirements for data acquisition, in contrast, limit
their application scopes, especially for mobile devices and images from the Inter-
net. Hence, it is imperative to find a user-friendly auxiliary input that helps to
relieve the ill-posedness of reflection removal while maintaining the applicability
and accessibility of single-image methods.

Fortunately, natural language can exactly serve as the aforementioned auxil-
iary input, since it provides instructive semantic information about images [36,
63, 72], which bridges the gap between human understanding and machine per-
ception. Thanks to the development of vision-language models [48], various vision
tasks (e.g ., image editing [55,56,67,68] and image colorization [3–5,69]) benefit
from the semantic guidance of language descriptions. Zhong et al . [81] make the
first attempt to introduce language descriptions for reflection removal, but due
to the lack of generation capability and generalizability, it encounters difficulties
in addressing scenarios containing low-transmitted reflections.

Recently, by combining semantic information from natural language descrip-
tions and generative priors from pre-trained diffusion models [14, 49], language-
based diffusion models (e.g ., ControlNet [74]) generate visually pleasant results
for image restoration tasks like image colorization [4] and super resolution [54].
For reflection removal, it also shows the potential to provide semantic priors
to relieve the ill-posedness, where the generative priors in pre-trained diffusion
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models can adeptly manage complex scenarios and make it possible to recover
transmission layers under low-transmitted reflections. However, as shown in the
red boxes of Fig. 1(c), directly employing the existing language-based diffusion
model like ControlNet [74] for reflection removal will encounter two primary
challenges: (1) Inaccurate control conditions. When using language-based
diffusion models, other tasks such as image colorization [4] often employ a clear
(not superimposed) image to provide accurate structure control. However, in
the reflection removal task, the image content of the transmission layer in a
mixture image is contaminated by the reflection layer, and thus it is unable
to provide an initially accurate condition for both structure and color control.
Consequently, achieving transmission recovery under such inaccurate conditions
presents a significant challenge. (2) Insufficient recovery faithfulness. Since
diffusion models are principally designed for image generation, simply applying
them for reflection removal may obtain results that are less faithful to conditions
(i.e., results with unwanted image content containing color shifts and structural
distortions compared with mixture images). Therefore, it is essential to develop a
mechanism for constraining the generation capability and improving the recovery
faithfulness of diffusion models to recover transmission layers while preventing
unwanted alterations in image color and structure.

In this paper, we propose L-DiffER, the first Language-based Diffusion
model for single image rEflection Removal, to achieve high-fidelity transmission
recovery with language guidance under the interference of low-transmitted re-
flections, as the results shown in Fig. 1(d). To leverage the language descriptions
of two layers, descriptions of the transmission layer serve as positive prompts,
guiding the model to preserve essential image content, whereas descriptions of
the reflection layer act as negative prompts, aiding in the suppression of un-
wanted reflections. To address the aforementioned challenges, we propose an
iterative condition refinement strategy within the reverse diffusion process to
ensure increasingly accurate representations of color and structure conditions
as the process evolves. Furthermore, we introduce a multi-condition constraint
mechanism designed to safeguard the faithfulness to the specified conditions,
which effectively addresses potential color shifts and structural distortions by
applying constraints that align the recovery output with the desired color and
structure conditions. The proposed method achieves state-of-the-art performance
by making the following contributions:

– We present the first language-based diffusion model for reflection removal,
leveraging the descriptive power of language to distinguish between trans-
mission and reflection layers.

– We propose an iterative condition refinement strategy to provide more accu-
rate control conditions as color and structure guidance for reflection removal.

– We design a multi-condition constraint mechanism to ensure the recovery
faithfulness of image color and structure, which effectively handles low-
transmitted reflections.
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2 Related Work

Reflection removal. Single image reflection removal aims at suppressing re-
flections and recovering transmission layers in a single mixture image. Using
the presumption that reflections tend to blur and exhibit low intensities, non-
learning approaches employ handcrafted priors into their optimization frame-
works [57, 71], such as the gradient sparsity [30], relative smoothness [33], and
ghosting cues [51]. With the development of deep learning, researchers attempt
to address the task by exploring different network architectures [9,21,59,61,65],
loss functions [76], or the iterative recovery strategy [8,31,70,77]. Concurrently,
efforts in data synthesis to meet the data-driven demands is also an attractive
topic in this area [9,22,24,39,66,79,80]. Besides, the exploration of special image
forms like panoramic images [10, 19, 20, 45] helps to diminish content ambiguity
in mixture images. To relieve the ill-posedness of reflection removal, multi-image
methods utilize additional input images to introduce auxiliary clues such as po-
larization information [7,26,28,37,38,44,50], transmission scene information from
active illuminations [2, 17, 18, 27, 29], and motion discrepancy between the two
layers [32,34,35,52], while special data capture requirements limit their practical
applications. Inspired by Zhong et al . [81], we introduce language-based diffusion
models to input auxiliary language descriptions for relieving the ill-posedness of
reflection removal while maintaining the applicability of the method, and to
leverage generative priors for handling low-transmitted reflection regions.
Language-based diffusion models. The advent of diffusion models [14] (DMs)
has marked a significant leap forward, particularly in the realms of image genera-
tion [49]. The emergence of pre-trained vision-language models, notably CLIP [48],
significantly enhances the flexibility and intuitiveness of utilizing language de-
scriptions for vision tasks. Specifically, these pre-trained models have been in-
strumental in enabling multi-condition image editing [42,74,78], image coloriza-
tion [4], and devising sophisticated sampling strategies for tailored generation
outcomes [12]. Despite the strides in image editing and conditional generation,
the specific challenge of single image reflection removal, i.e., recovering clear
transmission layers from the guidance of a superimposed mixture images, still
remains unexplored for language-based diffusion models [49, 74]. In our work,
we seek to address the reflection removal problem by harnessing the generative
prowess and flexibility of language-guided diffusion models, which combines the
semantic information offered by language descriptions with the sophisticated
generative capabilities of DMs while ensuring the recovery fidelity and faithful-
ness with condition refinement and constraints.

3 Methodology

In this paper, we address the problem of language-based reflection removal us-
ing diffusion models. We first provide a brief overview of the framework of our
language-based reflection removal diffusion model L-DiffER in Sec. 3.1. Sec. 3.2
proposes the iterative condition refinement strategy designed for addressing in-
accurate control conditions, and Sec. 3.3 proposes the multi-condition constraint
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Fig. 2: Framework of the proposed language-based reflection removal diffusion model,
which leverages language descriptions with the iterative condition refinement strategy
and the multi-condition constraint mechanism to achieve faithful transmission recovery.

mechanism for improving the recovery faithfulness. Finally, loss functions and
training details are presented in Sec. 3.4 and Sec. 3.5, respectively.

3.1 Overview

Problem formulation. Given the mixture image M ∈ RH×W×3 and the lan-
guage description condition c, we optimize our model to remove reflection con-
tamination and recover transmission layers T̃ ∈ RH×W×3 under the supervision
of the ground truth transmission layers T ∈ RH×W×3. We apply the commonly-
used assumption [21,31,61] as: M = T+R, where the mixture image M can be
considered as the combination of a transmission layer T and a reflection layer
R. We use the intensity and gradient of the mixture image M to initialize the
color condition Is = M and the structure condition Is = ∇M. Then the color
latent yc = Ec(Ic) and structure latent ys = Es(Is) are extracted by a color
and a structure encoder Ec and Es (denoted by the blue blocks in the middle
part of Fig. 2), respectively. Given language descriptions about the content of
transmission layers and reflection layers as positive prompt and negative prompt,
respectively, the positive and negative latents cp and cn are extracted from the
CLIP text encoder [48]. In the proposed method, the transmission layer T̃ is
recovered from all the spatial and language conditioning information encoded in
latents y = [ys, yc] and c = [cp, cn].
Diffusion models. Diffusion models [14, 53] are probabilistic generative mod-
els that have been shown to have powerful data modeling ability for images,
which can provide an effective image prior for the estimation of transmission
layers. To address the challenges of resource consumption in pixel space, Sta-
ble Diffusion (SD) [49] introduces latent diffusion models to improve both the
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training and sampling efficiency of denoising diffusion models without degrading
their quality. Following SD [49], we employ a compression encoder E to encode a
transmission layer into the latent space as z = E(T), and a compression decoder
D to reconstruct the transmission layer from the latent code z as T̃ = D(z).
The diffusion process progressively destructs data by injecting noise, then learns
to reverse this process for image generation. During training, the forward dif-
fusion process starts from the target image z0 = E(T) and generates samples
zt =

√
αtz0 +

√
1− αtϵt, where ϵt ∼ N (0, 1) is the Gaussian noise at timestep t,

and αt represents the noise scheduler introduced in [49]. During inference, the
reverse diffusion process starts from a random noise sample zT ∼ N (0, 1), where
a noise prediction network denoted as ϵθ is optimized to predict the noise ϵ̂t at
each timestep t given the language condition c and the spatial conditions yt

1 as
follows:

Lldm = EE(x),t,ϵ∼N (0,1)

[
∥ϵt − ϵθ(zt, c, yt, t)∥22

]
, (1)

until it converges to the desired photorealistic transmission layer T̃. The overall
framework is shown in Fig. 2.
Condition extraction. During inference, the two conditioning latents start
from the initial color and structure latents, i.e., yc

T = yc and ys
T = ys, re-

spectively, and they are refined by employing the iterative condition refinement
strategy (Sec. 3.2) to provide more accurate conditions. For condition injection,
the proposed framework draws inspiration from ControlNet [74], which learns
a parameter-efficient, parallel branch on top of SD. Specifically, two trainable
copied modules (denoted by the pink blocks in Fig. 2) are utilized to take the
color latent yc

t and the gradient latent ys
t with the latent presentation zt as in-

put to extract color and structure features, respectively. These features are then
added directly to the corresponding scales of the locked module (denoted by the
purple block in Fig. 2), which guides ϵθ in learning the noise distribution.
Language guidance. To explicitly instruct the model to suppress reflections
from the language guidance, classifier-free guidance [15] is used to employ neg-
ative prompts to specify undesired reflection contamination. Specifically, two
noise predictions with positive prompts cp and negative prompts cn are made at
each timestep t. The fusion of these two predictions yields the output ϵ̂t−1:

ϵ̂t−1 = ϵθ(zt, c
p, yt, t) + λcfg × (ϵθ(zt, c

p, yt, t)− ϵθ(zt, c
n, yt, t)), (2)

where λcfg is a hyperparameter. In our task, as reflections are not always recog-
nizable [81], we set negative prompts as the empty string cn = ∅ in the case. For
simplicity, we use ϵθ(zt, c, yt, t) to represent the whole noise prediction process.

3.2 Iterative condition refinement strategy

Although with effective data modeling ability, diffusion models probably generate
results unfaithful to the input image conditions [40,74]. This issue becomes even

1 Note that the spatial conditions are varied with timesteps in the proposed method.
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𝑡𝑡 = 𝑇𝑇 𝑡𝑡 = 1Mixture𝐌𝐌 Gradient ∇𝐌𝐌 Pseudo transmission layers 𝐓𝐓0|t

Fig. 3: Visualization of pseudo transmission layers by using the original mixture image
with its gradient as conditions.

harder for reflection removal, since the desired transmission layers should have a
structure without gradients of reflection contaminations, which is different from
the input mixture images. That is, the mixture images itself cannot provide
an accurate image condition for diffusion-based reflection removal. Therefore,
we turn to the recovered transmission layers in the inference process, which
have the potential to be combined with the mixture images and help obtain a
refined condition. During inference, given a latent noisy sample zt, we can use
the noise prediction network ϵθ to predict noise as ϵ̂t = ϵθ(zt, t, c, yt). Then we
can calculate the estimated latent representation of the transmission layer z0|t
at the current timestep t as follows:

z0|t = (zt −
√
1− αt ∗ ϵ̂t)/

√
αt. (3)

After that, we can obtain the estimated pseudo transmission layer T0|t by using
the compression decoder D to decode z0|t: T0|t = D(z0|t). Then T0|t and its
gradient ∇T0|t can be used as the pseudo-accurate color and structure condition
to obtain conditions at the next timestep.

As pseudo transmission layers shown in Fig. 3, we observe two key phenom-
ena: Firstly, the estimated pseudo transmission layers in the first few sampling
steps exhibit inaccuracies, with neither structure nor color serving effectively
as guiding conditions. However, as the sampling steps progress, the fidelity of
the reconstructed images notably improves. Secondly, although employing the
mixture image and the gradient of the mixture image as conditions persistently
yield inaccurate control, these conditions provide a richer set of usable infor-
mation than the recovered image at the beginning of sampling. Leveraging the
advantages of both observations, we introduce an iterative condition refinement
strategy to address the challenge of inaccurate control conditions. Our control
conditions transitioned from the mixture image and the gradient of the mixture
image to the recovered image and its gradient as the sampling step increases.

Specifically, we introduce predefined time-variant coefficients βt and γt (t ∈
{1, .., T}) to combine pseudo-accurate conditions T0|t with the one initiated from
M, which decrease as timestep t increases2 as follows:

Ict = γt ∗T0|t + (1− γt) ∗M, Ist = βt ∗ ∇T0|t + (1− βt) ∗ ∇M. (4)

2 Details of βt and γt will be explained in the supplementary material.
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Fig. 4: Visualization of the color condition, structure condition, and the pseudo trans-
mission layer by applying the proposed iterative condition refinement strategy.

Fig. 4 shows intermediate conditions and the pseudo transmission layers during
sampling, indicating the effect of the iterative condition refinement strategy.

Meanwhile, we also use the iterative condition refinement strategy with a
few modifications during training. We replace the pseudo-accurate transmission
layers T0|t estimated from sampling with ground truth T to refine conditions
before estimating noises, which is different from the sampling process. Specif-
ically, given the initial mixture image M and its gradient ∇M, we refine the
input conditions at timestep t as follows:

Îct = γt ∗T+ (1− γt) ∗M, Îst = βt ∗ ∇T+ (1− βt) ∗ ∇M, (5)

where βt and γt (t ∈ {1, ..., T}) are the same predefined time-variant coefficients
used in the sampling process.

3.3 Multi-condition constraint mechanism

In order to mitigate the insufficient recovery faithfulness of diffusion models,
we employ a multi-condition mechanism that separately utilizes mixture images
and their gradients to obtain initial latent conditions for controlling the color
and structure of generated results. As the iterative condition refinement strategy
obtains new refined conditions during each timestep, no constraints applying on
conditions may cause the sampling process out of control, which also impacts
the recovery faithfulness. Hence, it is imperative to conduct constraints on re-
fined conditions. Though inaccurate as color conditions, mixture images provide
coarse color information about transmission layers, thus we propose a maximum
value constraint to prevent color shifts. Similarly, the gradient of the mixture
image provides features showing structure information such as edges and tex-
tures. Therefore, we propose a saturation-aware structure constraint to prevent
structure distortions when recovering transmission layers. Details are as follows.
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Maximum value constraint (MVC). According to the assumption defined in
Sec. 3.1, the pixel values of the mixture image should be greater than or equal to
the transmission layer. Therefore, when updating the conditions in the training
and sampling processes, we employ maximum value constraint as a function to
ensure that any given color condition Ict defined in Eq. (4) does not exceed the
mixture image M in terms of pixel values. This constraint should be adhered to
the following:

MVC(Ict) = min(M, Ict). (6)

Saturation-aware structure constraint (SSC). Due to regional overexpo-
sure during photographing, mixture images sometimes contain low-transmitted
reflection regions, which lack enough visible content of transmission layers, caus-
ing the corresponding gradients to have little usable structure information. There-
fore, simply applying the maximum value constraint to edges will force the re-
fined structure condition to abandon generated content in saturated regions,
which may hinder optimization. Therefore, we introduce a saturation-aware mask
to preserve the generative capability of the structural aspects in regions chal-
lenging for recovery. Specifically, we first utilize the mixture image to identify
low-transmitted regions, generating a mask Ms ∈ RH×W as:

Ωs =

{
0, where M > τ

1, otherwise,
(7)

where M is the mixture image, τ is the saturation threshold we empirically set to
0.95. Besides, to ensure that the structure condition does not contain nonexistent
edges in non-saturated regions of the original mixture image, we define a mask
to indicate the valid edge in the gradient of the mixture image as:

Ωv =

{
0, where ∇M < η

1, otherwise,
(8)

where η is the valid edge threshold we empirically set to 0.05. After that, for
a given gradient condition Ist defined in Eq. (4), we define the saturation-aware
structure constraint as follows:

SSC(Ist) = Ωs ⊙ Ist + (1−Ωs)⊙Ωv ⊙ Ist. (9)

To extract the color latent yc
t and the structure latent ys

t at each timestep t,
we apply the maximum value constraint (MVC) and saturation-aware structure
constraint (SSC) on the color condition Ict and structure condition Ist as:

yc
t−1 = Ec(MVC(Ict)), ys

t−1 = Es(SSC(Ist)), (10)

where Es is the structure condition encoder, Ec is the color condition encoder,
and MVC and SSC are applied to the color and structure conditions for ensuring
recovery faithfulness. Finally, we apply the denoising process with the DDIM [53]
sampling scheme to obtain the next noisy sample zt−1. Algorithm 1 outlines the
complete sampling process.
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Algorithm 1 Iterative condition refinement strategy in the sampling process
Require: Noise prediction network ϵθ, Compression decoder D, Color encoder Ec,

Structure encoder Es

Input: Mixture image M, Language condition c = [cp, cn], Initial spatial conditions
[ys = Es(∇M), yc = Ec(M)], Coefficients {αt}Tt=1, {βt}Tt=1, {γt}Tt=1

Output: Recovered latent representation z0
1: zT ∼ N (0, 1)
2: yT = [ys, yc]
3: for each t ∈ [T, 1] do
4: ϵ̂t = ϵθ(zt, c, yt, t)
5: if t > 1 then
6: z0|t = (zt −

√
1− αt ∗ ϵ̂t)/

√
αt ▷ Compute z0|t by Eq. (3)

7: T0|t = D(z0|t)
8: yc

t−1 = Ec(MVC(γt ∗T0|t + (1− γt) ∗M)) ▷ Refine color condition
9: ys

t−1 = Es(SSC(βt ∗ ∇T0|t + (1− βt) ∗ ∇M)) ▷ Refine structure condition
10: yt−1 = [ys

t−1, y
c
t−1] ▷ Update spatial conditions

11: end if
12: zt−1 =

√
αt−1z0|t +

√
1− αt−1ϵ̂t ▷ DDIM

13: end for

3.4 Loss functions

In this section, we introduce the latent diffusion model loss to minimize the
discrepancy between the learned latent space distribution and the target distri-
bution, as well as the pixel losses to prevent color shifts and structure distortions.

We follow the training objective of ControlNet [74] but replace task-specific
conditions with the mixture image and the gradient of the mixture. Thus our
network ϵθ learns to predict the noise added to the noisy latent zt with Lldm
defined in Eq. (1). According to Eq. (3), we can obtain T0|t in pixel space by
decoding z0|t:

T0|t = D(z0|t) = D((zt −
√
1− αt ∗ ϵ̂t)/

√
αt). (11)

Then RGB loss is introduced to constrain the consistency of the reconstructed
transmission T0|t and ground truth T, minimizing their errors as follows:

LRGB = ∥T−T0|t∥22. (12)

For better structure consistency, we use gradient loss to constrain the prediction’s
gradient and its ground truth as below:

Lgrad = ∥∇(T)−∇(T0|t)∥22, (13)

where ∇(·) denotes the computation of image gradients. Furthermore, we also
compute the standard deviation and the mean of the predicted transmission and
its ground truth, and use a ℓ2 loss to minimize the color distortion:

Lnum = ∥µ(T)− µ(T0|t)∥22 + ∥σ(T)− σ(T0|t)∥22, (14)
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where µ(·) and σ(·) denote the computation of mean and standard deviation,
respectively, and i = 1, ..., N denotes the i-th sample in the dataset. Overall, the
pixel loss is formulated as follows:

Lpix = LRGB + Lgrad + Lnum. (15)

Gathering the latent diffusion model loss and pixel losses yields the final
objective as:

Lall := Lldm + λLpix, (16)

where λ is set to 1.0 empirically.

3.5 Implementation details

We implement the proposed method using PyTorch [46]. The model is trained
for 20 epochs with a batch size of 16 on two NVIDIA GeForce RTX 3090 GPUs.
Weights are initialized as in [11] and updated using the Adam optimizer [25].
The learning rate is set to 1 × 10−5. For sampling, we use the DDIM sampling
method [53] with 50 sampling steps.
Dataset. Our training dataset contains both synthetic and real data. For the
synthetic data, following Zhong et al . [81], we generate 50000 triplets of data
using COCO Captions [6] and Flickr30k [73] for network training. For real data,
we use 200 image pairs from Nature dataset [31] and 90 pairs from Zhang et
al . [76] for training and the rest of the real data are used for evaluation. We
further collect 50 mixture images from the Internet for qualitative evaluation.

4 Experiments

4.1 Comparison with state-of-the-arts

For evaluating model performances, experiments are conducted on existing real
reflection datasets [31, 58, 76] and our collected mixture images from the Inter-
net (with manually annotated language descriptions). We compare the proposed
L-DiffER with state-of-the-art single-image reflection removal methods, includ-
ing Zhang et al . [76], CoRRN [61], ERRNet [65], IBCLN [31], Dong et al . [8],
YTMT [21], and DSRNet [22]. To compare with a representative language-based
diffusion model ControlNet [74]3, we make it fit our setting by using mixture
images as conditions, and transmission and reflection descriptions as positive
and negative prompts, respectively. For fair comparisons, we finetune the above
methods on our training data if their training codes are provided.
Quantitative comparison. Quantitative experiments are conducted on three
real datasets for reflection removal, i.e., Nature [31], Real20 [76], and SIR2 [58]
dataset. To evaluate the recovery of transmission layers4, we utilize PSNR [23]
3 Since ControlNet [74] destructs image color and structure in a generative manner as

shown in Fig. 1(c), we only run it for qualitative comparisons.
4 Evaluations on reflection layers are provided in the supplementary material.



12 Y. Hong et al.

Table 1: Comparison of quantitative results on real datasets for evaluating the recovery
of transmission layers, compared with several state-of-the-art single-image reflection
removal methods [8,21,22,31,61,76]. ↑ (↓) indicates larger (smaller) values are better.
Bold numbers indicate the best-performing results.

Dataset
(size) Metric

Method

Zhang et al . CoRRN ERRNet IBCLN Dong et al . YTMT DSRNet Ours

SIR2

(500)

PSNR↑ 22.45 22.96 23.13 23.36 23.09 23.05 24.97 25.18
SSIM↑ 0.872 0.879 0.878 0.881 0.893 0.886 0.907 0.911
LPIPS↓ 0.172 0.161 0.164 0.153 0.131 0.149 0.124 0.121
NIQE↓ 4.911 4.826 4.793 4.501 4.729 4.738 4.624 4.352
FID↓ 78.61 69.58 73.33 60.92 49.39 58.69 46.60 44.66

Real20
(20)

PSNR↑ 22.51 21.17 22.06 21.59 21.73 22.31 23.46 23.77
SSIM↑ 0.806 0.786 0.803 0.771 0.811 0.805 0.806 0.821
LPIPS↓ 0.204 0.202 0.185 0.213 0.170 0.178 0.165 0.153
NIQE↓ 3.819 3.891 3.989 3.895 3.959 3.977 4.065 3.665
FID↓ 113.25 111.25 85.07 120.95 86.20 94.67 77.92 72.64

Nature
(20)

PSNR↑ 20.37 20.54 21.11 23.69 23.61 21.03 21.70 23.95
SSIM↑ 0.772 0.778 0.806 0.828 0.825 0.802 0.820 0.831
LPIPS↓ 0.217 0.205 0.183 0.170 0.157 0.186 0.168 0.145
NIQE↓ 4.413 4.433 4.442 4.345 4.581 4.387 4.373 4.223
FID↓ 109.77 89.12 79.68 75.17 71.55 81.77 74.84 68.57

Average
(540)

PSNR↑ 22.38 22.80 23.02 23.31 23.06 22.95 24.79 25.08
SSIM↑ 0.866 0.872 0.873 0.875 0.887 0.880 0.900 0.905
LPIPS↓ 0.175 0.164 0.165 0.156 0.133 0.151 0.127 0.123
NIQE↓ 4.852 4.777 4.750 4.473 4.695 4.697 4.594 4.322
FID↓ 81.05 71.85 74.00 63.67 51.57 60.88 48.81 46.58

and SSIM [64] as error metrics following reflection removal methods [8, 37]. We
further adopts LPIPS [75], NIQE [41], FID [13] to measure the perceptual quality
of the recovered results. As quantitative results shown in Table 1, the proposed
method achieves the best performance among all competing methods, especially
in metrics for perceptual quality, validating its effectiveness.

Qualitative comparison. Qualitative comparisons with the aforementioned
single-image reflection removal methods [8,21,22,31,61,76] and a language-based
diffusion model ControlNet [74] on recovering transmission layers are shown in
Fig. 5. As can be observed, single-image reflection removal methods encounter
obstacles in dealing with complex reflections due to the lack of auxiliary semantic
information, especially in low-transmitted reflection regions. ControlNet [74] per-
forms significant modifications on the image color and structure in a generative
manner, which deviates significantly from the input mixture image, emphasiz-
ing the pivotal role of accurate conditions in the sampling process. The proposed
method generates visually pleasant reflection removal results with faithful recov-
ery, demonstrating that it capitalizes on the synergy of the auxiliary information
from language descriptions, the iterative condition refinement strategy, and the
multi-condition constraint mechanism.
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Mixture

ERRNet IBCLN Dong et al.

Transmission:
Green trees on a 

green mountain with 
a stone winding path

Description

Input

Reflection removal results

Ours CoRRN

YTMT DSRNet ControlNet

Zhang et al.

Mixture

ERRNet IBCLN Dong et al.

Input

Reflection removal results

Ours CoRRN

YTMT DSRNet ControlNet

Zhang et al.

Description

Reflection:
Black and white 
square stone 
brick aisle

Transmission:
Mummy's sarcophagus 
in a display case

Gradient Gradient

Fig. 5: Qualitative comparison of estimated transmission layers on real mixture images
collected from the Internet, compared with several single-image methods [8, 21, 22, 31,
61,76] and a diffusion-based method ControlNet [74]. Please zoom in for details.

4.2 Ablation study

Ablation on control conditions5. We conduct ablation studies to investigate
the effectiveness of the iterative condition refinement strategy and the multi-
condition constraint mechanism. As shown in Table 2 and Fig. 6, most reflection
contaminations are retained when missing iterative condition refinement (W/o
rfn.), and disabling the refinement on color (W/o clr. rfn.) or structure (W/o
str. rfn.) will cause inaccurate recovery, which exists color shift or retains the
reflection content. In addition, as shown in Table 2 and Fig. 7, due to the gen-
erative prior of the diffusion model, the absence of the max value constraint
(W/o MVC) or the saturation-aware structure constraint (W/o SSC), or both
(W/o cnst.) leads to obvious color shifts, structure distortion, and uncontrolled
recovery. Therefore, the degradation observed in the above ablations indicates
the necessity of the refinement and constraints on conditions.

5 More ablation studies are provided in the supplementary material.
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Table 2: Ablation studies on the iterative condition refinement strategy and the multi-
condition constraint mechanism. ↑ (↓) indicates larger (smaller) values are better. Bold
numbers indicate the best-performing results.

Metric
Abl. on iterative condition refinement Abl. on multi-condition constraint

W/o clr. rfn. W/o str. rfn. W/o rfn. W/o MVC W/o SSC W/o cnst. Ours

PSNR↑ 24.42 24.68 24.39 24.73 24.16 23.35 25.08
SSIM↑ 0.898 0.896 0.891 0.897 0.887 0.879 0.905
LPIPS↓ 0.132 0.136 0.139 0.129 0.143 0.154 0.123
NIQE↓ 4.501 4.645 4.868 4.553 4.709 4.561 4.322
FID↓ 49.13 53.71 60.12 51.06 56.46 63.68 46.58

Gradient ∇𝐌𝐌Mixture 𝐌𝐌

Transmission:
A yellow star 

toy on a 
wooden desk

Description Ours W/o clr. rfn. W/o str. rfn. W/o rfn.

Fig. 6: The effect of the iterative condition refinement strategy. For each result, we
place the corresponding final color and structure condition at its lower left and lower
right. Please zoom in for details, respectively.

Gradient ∇𝐌𝐌Mixture 𝐌𝐌

Transmission:
A bush with 

red flowers in 
front of a 

gray building

Description Ours W/o MVC W/o SSC W/o cnst.

Fig. 7: The effect of the color and structure constraints in the multi-condition con-
straint mechanism. For each result, we place the corresponding final color and structure
condition at its lower left and lower right, respectively. Please zoom in for details.

5 Conclusion

This paper introduces the first language-based diffusion model for single image
reflection removal, which exploits auxiliary semantic information from language
descriptions and generative priors from diffusion models to recover transmission
layers from mixture images with low-transmitted reflection regions. An iterative
condition refinement strategy is proposed to address the problem of inaccurate
control conditions, and a multi-condition constraint mechanism is introduced to
ensure recovery faithfulness. Experiments on real data demonstrate the effec-
tiveness of the proposed method.
Limitations. The proposed method may incorrectly identify transmission and
reflection layers if they exhibit similar image content. For such cases, more accu-
rate spatial guidance from users such as annotated edges or region masks could
help to relieve the ambiguity, which is left as our future work.
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