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Abstract. Existing 3D semantic occupancy prediction methods typi-
cally treat the task as a one-shot 3D voxel-wise segmentation problem, fo-
cusing on a single-step mapping between the inputs and occupancy maps,
which limits their ability to refine and complete local regions gradually.
In this paper, we introduce OccGen, a simple yet powerful generative
perception model for 3D semantic occupancy prediction. OccGen adopts
a “noise-to-occupancy” generative paradigm, progressively inferring and
refining the occupancy map by predicting and eliminating noise orig-
inating from a random Gaussian distribution. OccGen consists of two
main components: a conditional encoder that is capable of processing
multi-modal inputs, and a progressive refinement decoder that applies
diffusion denoising using the multi-modal features as conditions. A key
insight of this generative pipeline is that the diffusion denoising process is
naturally able to model the coarse-to-fine refinement of the dense 3D oc-
cupancy map, therefore producing more detailed predictions. Extensive
experiments on several occupancy benchmarks demonstrate the effective-
ness of the proposed method compared to the state-of-the-art methods.
For instance, OccGen relatively enhances the mIoU by 9.5%, 6.3%, and
13.3% on nuScenes-Occupancy dataset under the muli-modal, LiDAR-
only, and camera-only settings, respectively. Moreover, as a generative
perception model, OccGen exhibits desirable properties that discrimi-
native models cannot achieve, such as providing uncertainty estimates
alongside its multiple-step predictions.
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1 Introduction

The precise 3D perception of the surrounding environment constitutes the cor-
nerstone of modern autonomous driving systems, as it directly affects down-
stream tasks such as planning and vehicle control [15, 20]. In recent years, ad-
vancements in 3D object detection and segmentation [16,23,26–28,31,33,34,49,
⋆ Corresponding author.
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(a) Generative diagram for perception tasks.
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Fig. 1: (a) The generative diagram of semantic segmentation (seg.), object detection
(det.), and 3D semantic occupancy prediction (occ.). (b) Compared to previous discrim-
inative methods with a single forward evaluation scheme, our OccGen is a generative
model that can generate occupancy maps in a coarse-to-fine manner.

50,57,59,60] have propelled the field of 3D perception. However, these methods
require either rigid bounding boxes, which oversimplify the object shapes, or
Bird’s-Eye View (BEV) predictions that involve compromises in projecting 3D
scenes onto 2D ground planes. Such methods can significantly impede the ability
to accurately perceive structural information along the vertical axis, particularly
when dealing with irregular objects.

To address this limitation, 3D semantic occupancy prediction [17,45,47,48,52]
has been proposed to assign semantic labels to every spatially occupied region
within the perceptive range. Most previous methods for 3D semantic occupancy
prediction can be roughly divided into three categories: LiDAR-based [8, 24, 37,
55], vision-based [5, 17, 25, 46, 58], and multi-modal based [51] methods. These
methods typically formulate the 3D occupancy prediction as a one-shot voxel-
wise segmentation problem with a single forward evaluation scheme. While these
works achieve promising results, this perception pipeline faces two critical issues:
1) Discriminative methods primarily focus on learning the mapping between the
input-output pairs in a single forward step and neglect the modeling of the
underlying occupancy map distribution. 2) Inferring only once is not enough
for the model to complete the fine-grained scene well, just like humans need
continuous observation to perceive the entire scene fully.

On the other hand, the diffusion model [14,44] has demonstrated its powerful
generation capability and has also led to the successful application in numerous
discriminative tasks, such as depth estimation [19,41], object detection [6], and
segmentation [1, 53, 54]. We observe that the diffusion denoising process is nat-
urally able to model the coarse-to-fine refinement of the dense 3D occupancy
map, therefore producing more detailed predictions. Motivated by this, we pro-
pose OccGen, a simple yet powerful generative perception model for 3D semantic
occupancy. As shown in Fig. 1, OccGen adopts a “noise-to-occupancy” genera-
tive paradigm, progressively inferring and eliminating noise originating from a
random 3D Gaussian distribution. The proposed OccGen consists of two main
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components: a conditional encoder and a progressive refinement decoder. The
conditional encoder only needs to run once, while the decoder runs multiple
times to fulfill progressive refinement. Since the encoder only runs once dur-
ing the entire inference process, running the decoder step-by-step for diffusion
denoising does not introduce significant computational overhead, thereby achiev-
ing comparable latency to single forward methods. During the training phase,
we obtain a 3D noise map by gradually adding Gaussian noise to the ground
truth occupancy. Subsequently, this noise map is fed into the progressive refine-
ment decoder, which utilizes the multi-scale fusion features from the conditional
encoder as conditions to generate noise-free predictions. In the inference phase,
OccGen progressively generates the occupancy in a coarse-to-fine refinement
manner, which is implemented by gradually denoising a 3D Gaussian noise map
given the multi-modal condition inputs.

As a generative perception model, OccGen exhibits desirable properties that
are not achievable by discriminative models: (1) progressive inference supports
trading compute for prediction quality; (2) uncertainty estimation can be readily
made alongside the predictions. We evaluate the effectiveness of OccGen on
several benchmarks and show promising results compared with the state-of-the-
art methods. Notably, OccGen has exhibited performance gains of 9.5%, 6.3%,
and 13.3% on mIoU compared with the state-of-the-art method under the muli-
modal, LiDAR-only, and camera-only settings on nuScenes-Occupancy.

Our contributions are summarized as follows:

– We introduce OccGen, a simple yet powerful generative framework following
the “noise-to-occupancy” paradigm.

– OccGen adopts an efficient design that the encoder only runs once during the
entire inference process, and the decoder runs step-by-step for progressive
refinement, achieving a comparable latency to single forward methods.

– We extensively validate the proposed OccGen on multiple occupancy bench-
marks, demonstrating its remarkable performance and desirable properties
compared to previous discriminative methods.

2 Related Work

2.1 3D Semantic Occupancy Prediction

BEV-based methods [16,26–28,31] typically project the 3D scene onto the ground
plane, leading to the potential loss of information in the vertical dimension.
Compared with BEV representation, 3D semantic occupancy provides a more
detailed representation of the environment by explicitly modeling the occupancy
status of each voxel in a 3D grid. SSCNet [45] has first introduced the task of se-
mantic scene completion, integrating both geometry and semantics. Subsequent
works [8, 24, 37, 55] commonly utilized geometric inputs with explicit depth in-
formation. Recently, vision-based occupancy prediction methods [5, 17, 25, 58]
have been widely studied due to the cost-effectiveness of cameras. Furthermore,
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many concurrent works are dedicated to proposing surrounding-view and multi-
modal benchmarks for 3D semantic occupancy prediction, contributing to the
flourishing of the occupancy community [47, 48, 51, 52]. In this paper, we pro-
pose OccGen, a simple yet powerful generative perception framework for 3D
multi-modal semantic occupancy that can progressively refine the occupancy in
a coarse-to-fine manner.

2.2 Diffusion Model

Diffusion models [14,43] have been extensively researched due to their powerful
generation capability. DDPM [14] proposed a diffusion model where the for-
ward and reverse processes exhibit the Markovian property. DDIM [44] acceler-
ated DDPM [14] by replacing the original diffusion process with non-Markovian
chains to enhance sampling speed. On the other hand, conditional diffusion mod-
els have also been actively studied. Text-to-image generation models [38] and
image-to-image translation models [40] achieved surprising results. Recently, dif-
fusion models for visual perception have attracted widespread attention. Several
pioneering works [1, 7, 42, 53, 54] attempted to apply the diffusion model to vi-
sual perception tasks, e.g. image segmentation or depth estimation tasks. For
all the diffusion models listed above, one or two parameter-heavy convolutional
U-Nets [39] are adopted, leading to low efficiency, slow convergence, and sub-
optimal performance. DiffusionDet [6] proposed a denoising diffusion process
from noisy boxes to object boxes. DDP [19] followed the “noise-to-map” gen-
erative paradigm for prediction by progressively removing noise from a random
Gaussian distribution, guided by the image. In this work, as illustrated in Fig. 2,
we extend the generative diffusion process into the occupancy perception pipeline
while maintaining accuracy and efficiency.

3 Method

In this section, we first introduce the preliminaries on 3D semantic occupancy
perception and conditional diffusion model. Then, we present the pipeline of the
“noise-to-occupancy” and the overall architecture of OccGen. Finally, we show
the details of the training and inference process.

3.1 Preliminaries

3D Semantic Occupancy Perception. The objective of 3D semantic oc-
cupancy perception is to predict a complete 3D representation of volumetric
occupancy and semantic labels for a scene in the surround-view driving scenar-
ios given inputs, such as images and LiDAR points. We utilize LiDAR point
cloud Xp ∈ RNL×(3+d) and multi-view camera images Xc ∈ RNC×HC×WC×3 as
multi-modal inputs, denoted by X = {Xp, Xc}. Subsequently, we train a neu-
ral network fθ to generate an occupancy voxel map Y ∈ {c0, c1, ..., cN}H×W×Z ,
where each voxel is assigned either an empty label c0 or occupied by a specific
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Fig. 2: The overview of the proposed OccGen framework. It has an encoder-decoder
structure. The conditional encoder extracts the features from the inputs as the condi-
tion. The progressive refinement decoder consists of a stack of refinement layers and an
occupancy head, which takes the 3D noise map, sampling step, and conditional multi-
scale fusion features as inputs and progressively generates the occupancy prediction.

semantic class from {c1, c2, ..., cN}. Here, N represents the total number of in-
terested classes, and {H,W,D} indicates the volumetric dimensions of the entire
scene.
Diffusion Model. The diffusion model is a type of generative model that
demonstrates greater potential in the generative domain compared to Gener-
ative Adversarial Network (GAN) [11]. It can be divided into two categories:
unconditional diffusion models learn an explicit approximation of the data dis-
tribution P (z), while conditional diffusion models learn the distribution given a
certain condition k, denoted as p(z|k). In the conditional diffusion model, the
data distribution is learned by recovering a data sample from Gaussian noise
through an iterative denoising process. The forward diffusion process gradually
adds noise to the data sample z0, denoted as:

zt =
√
αtz0 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)

which transforms the z0 to a latent noisy sample zt for t ∈ {0, 1, . . . , T}. The
constant αt =

∏t
i=1(1 − βi) and βs represents the noise schedule. In the train-

ing process, the conditional diffusion model fθ (zt, t| k) is trained to predict z0
from zt under the guidance of condition k by minimizing the training objective
function (i.e., l2 loss). In the inference process, the predicted sample z0 is re-
constructed from a random noise zT with the model fθ and conditional input k
following the denoising process of DDPM [14] or DDIM [44].

3.2 OccGen Framework

We first depict the proposed “noise-to-occupancy” generative paradigm and then
introduce the overall architecture. As shown in Fig. 2, OccGen consists of a
conditional encoder and a progressive refinement decoder.
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(a) The architecture of multi-modal encoder. (b) The architecture of refinement layer.

Fig. 3: The detailed architectures of (a) multi-modal encoder in conditional encoder
and (b) refinement layer in progressive refinement decoder. The multi-modal encoder is
a two-stream structure, comprising LiDAR and camera streams. The refinement layer
consists of three main components, i.e., 3D deformable cross-attention, self-attention,
and time diffusion modules.

Noise-to-Occupancy Generative Paradigm. We regard the 3D semantic
occupancy prediction as a generative process, which progressively generates the
surrounding 3D environment with detailed geometry and semantics from single
or multi-modal inputs. The goal of noise-to-occupancy is to learn an occupancy
perception model fθ which can model the coarse-to-fine refinement of the dense
3D occupancy map through a total of T diffusion steps:

YT
fθ−→ YT−1

fθ−→ . . .
fθ→ Y0, (2)

where the diffusion step T → 0 represents the coarse-to-fine refinement process
from a 3D Gaussian voxel map to the refined occupancy. Thus, the generative
occupancy prediction paradigm can be formulated as:

∆Yt = fθ (x, t, Yt+1) , Yt = Yt+1 ⊕∆Yt, (3)

where the model fθ refines the current prediction occupancy by giving the dif-
fusion step index t and the previous-step prediction occupancy Yt+1, and ⊕ is
element-wise summation.
Conditional Encoder. The conditional encoder has three main components:
a multi-modal encoder, a fusion module, and an occupancy backbone. As shown
in Fig. 3(a), the multi-modal encoder is a two-stream structure, comprising of
LiDAR and camera streams. For the LiDAR stream, we follow VoxelNet [59]
and 3D sparse convolutions [56] to transform raw LiDAR points to LiDAR voxel
features. In the camera stream, we utilize the pre-trained 2D backbones [9,13,30]
and Feature Pyramid Network (FPN) [29] to extract multi-view image features
given multi-view images. We obtain the vanilla camera voxel features through
the 2D-to-3D view transformation.

Different from the previous 2D-to-3D view transformation [26, 28, 31, 36]
methods that estimate the probabilistic of a set of discrete depths, OccGen pro-
poses a hard 2D-to-3D view transformation to guarantee more accurate depth.
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We opt for predicting a one-hot vector for depth, as opposed to utilizing softmax
on discrete depth values when lifting each image individually into a frustum of
features for each camera. However, obtaining one-hot encoding directly through
argmax operation is non-differentiable. To address this issue, we utilize Gumbel-
Softmax [18] to convert the predicted depth into one-hot encoding.

The previous multi-modal methods for 3D occupancy prediction do not pay
much attention to the interaction between multi-modal features. Therefore, we
propose a straightforward solution to exploit the geometry-aware correspondence
between camera and LiDAR modalities fully. We directly generate a geometry
mask by leveraging LiDAR voxel features and then applying it to the vanilla
camera voxel features to get the camera voxel features. This feature aggregation
strategy effectively bridges the gap between the camera voxel features and the
true spatial distribution in the real-world scene. We follow [51] and fuse the
camera and LiDAR voxel features using the adaptive fusion module:

W = GC ([GC (Fp) ,GC (Fc)]) ,

Fm = σ(W )⊙ Fp + (1− σ(W ))⊙ Fc,
(4)

where GC is the 3D convolution, [·, ·] is the concatenation along feature channel.
σ and ⊙ denote the Sigmoid function and element-wise product, respectively.
Finally, we fed the multi-modal voxel features Fm into the occupancy backbone
to get the multi-scale fusion features for the following progressive refinement
decoder. Additional design details and ablations of hard 2D-to-3D view trans-
formation and geometry mask are presented in the supplementary materials.

Progressive Refinement Decoder. The progressive refinement decoder of
OccGen consists of a stack of refinement layers and an occupancy head. As
illustrated in Fig. 3(b), the refinement layer takes as input the random noise map
or the predicted noise map Yt+1 from the last step, the current sampling step
t, and the multi-scale fusion features Fm. The refinement layer utilizes efficient
3D deformable cross-attention and self-attention to refine the 3D Gaussian noise
map. Compared with traditional deformable attention [61] in 2D vision, 3D
deformable attention samples the interest points around the reference point in
the 3D pixel coordinate system to compute the attention results. Mathematically,
3D deformable attention can be represented by the following general equation:

DA3D(q, p, F ) =

N∑
k=1

AkWkF (p+∆pk), (5)

where q and p denote the 3D query and 3D reference point, F represents the
flattened 3D voxel features, and k indexes the sampled point from a total of
N points around the reference point p. Wk represents the learnable weights for
value generation, while Ak corresponds to the learnable attention weight. ∆pk
denotes the predicted offset to the reference point p, and F (p + ∆pk) signifies
the feature at the location p+∆pk extracted through bilinear interpolation. For
brevity, we present the formulation for single-head attention only.
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Directly operating on the original 3D Gaussian noise map Yt with high reso-
lution is computationally intensive. Therefore, we first downsample it to obtain
smaller multi-scale noise maps Y i

t ∈ R
D

2i
× H

2i
×W

2i
×Ci(i = 1, 2, 3). Then, we re-

shape these downsampled multi-scale noise maps to obtain initial queries. For
each initial query q in the multi-scale noise maps Y i

t , we get the corresponding
reference points p on conditional inputs based on their corresponding spatial and
level positions. We get the updated queries using 3D deformable cross-attention
(DCA3D) by

DCA3D

(
Y i
t , Fm

)
=

∑
n∈Fm

DA3D (q, proj(q, n), Fm) , (6)

where n denotes the hit multi-scale features. For each query q, we use proj
operation to obtain the reference point on multi-scale fusion features.

After one round of 3D deformable cross-attention, the initial queries gather
knowledge from the condition inputs. To further enhance self-completion capa-
bility, we utilize the 3D deformable self-attention to update the queries,

DSA3D

(
Y i
t , Y

i
t

)
=

∑
n∈Y i

t

DA3D

(
q, p,Yi

t

)
. (7)

Then, we split the learned queries into the down-sampled voxel sizes. We further
apply a diffusion denoising step on the down-sampled multi-scale noise maps by

Y i
t := Diff(Y i

t ,ToEmbed(t)), (8)

where ToEmbed(·) denotes the embedding network that transforms a step index
t from scalar into a feature vector. Diff(·) represents the diffusion module that
applies the scale and shift operation along the time embedding. Furthermore, we
upsample and project the downsampled voxels to the original 3D noise map and
obtain the refined voxel features. Finally, we obtain the 3D semantic occupancy
by feeding the refined voxel features to the occupancy head. This process can be
performed multiple times to progressively infer and refine the occupancy map
by predicting and eliminating noise from a random Gaussian distribution.

3.3 Training

During training, we first construct a denoising diffusion process from the ground
truth Y0 to the 3D Gaussian noise map YT and then train the progressive re-
finement decoder to reverse this process. Detailed information on the training
procedure for OccGen is available in the supplementary materials.

Occupancy Corruption. We add Gaussian noise to corrupt the encoded ground
truth, obtaining the 3D Gaussian noise map. As shown in Eq. 1, the intensity
of corruption noise is controlled by αt, which follows a monotonically decreasing
schedule across different time steps t ∈ [0, 1]. Different noise scheduling strate-
gies, including cosine schedule [35] and linear schedule [14], are compared and
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discussed in the supplementary materials. We found that the cosine schedule
generally yields the best results in 3D semantic occupancy prediction.
Loss Function. The cross-entropy loss Lce and lovasz-softmax loss Lls [3] are
widely used to optimize the networks for semantic segmentation tasks. Following
[5,51], we also utilize affinity loss Lgeo

scal and Lsem
scal to optimize the scene-wise and

class-wise metrics (i.e., geometric IoU and semantic mIoU). Additionally, the
depth loss Ld [26] is used to optimize the predicted depth. Therefore, the overall
loss function can be derived as:

Ltotal = Lce + Lls + Lgeo
scal + Lsem

scal + Ld. (9)

3.4 Inference

Given multi-scale fusion features as conditional inputs, OccGen samples a ran-
dom noise map from a 3D Gaussian distribution and produces the occupancy
in a coarse-to-fine manner. The inference procedure for OccGen is provided in
supplementary materials.
Sampling Rule. Following [19], we choose the DDIM strategy [44] for the sam-
pling. In each sampling step, the random noise map or predicted noise map
from the last step and the conditional multi-scale fusion features are sent to the
progressive refinement decoder for occupancy prediction. After obtaining the
predicted result of the current step, we compute the refined noise map for the
next step using the reparameterization trick. Following [6,19], we use the asym-
metric time intervals (controlled by a hyper-parameter td) during the inference
stage. We empirically set td = 1 in our method.
Progressively Inference. According to the feature that the diffusion model
can generate the distribution step by step, we can perform progressive inference
to get fine-grained occupancy in a coarse-to-fine manner. Moreover, OccGen has
a natural awareness of the prediction uncertainty. As a comparison, previous
one-shot approaches for 3D semantic occupancy [25, 51, 52, 58] can only output
a certain occupancy during the inference stage, and are unable to assess the
reliability and uncertainty of model predictions.

4 Experiments

4.1 Experimental Setup

Dataset and Metrics. We evaluate our proposed OccGen on two benchmarks,
i.e., nuScenes-Occupancy [51] and SemanticKITTI [2]. The nuScenes-Occupancy
extends the nuScenes [4] to provide dense annotations on keyframes for 3D multi-
modal semantic occupancy prediction. It covers 700 and 150 driving scenes in
the training and validation sets of nuScenes. SemanticKITTI [2] contains 22
sequences including monocular images, LiDAR points, point cloud segmentation
labels, and semantic scene completion annotations. We follow previous works [25,
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Table 1: Semantic occupancy prediction results on nuScenes-Occupancy validation
set. The C,D,L,M denotes camera, depth, LiDAR and multi-modal. For Sur-
round=✓, the method directly predicts surrounding semantic occupancy with 360-
degree inputs. Otherwise, the method produces the results of each camera view and
then concatenates them as surrounding outputs. Best camera-only, LiDAR-only, and
multi-modal results are marked as red, blue, and black, respectively.
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MonoScene [5] C ✗ 18.4 6.9 7.1 3.9 9.3 7.2 5.6 3.0 5.9 4.4 4.9 4.2 14.9 6.3 7.9 7.4 10.0 7.6
TPVFormer [17] C ✓ 15.3 7.8 9.3 4.1 11.3 10.1 5.2 4.3 5.9 5.3 6.8 6.5 13.6 9.0 8.3 8.0 9.2 8.2
3DSketch [8] C&D ✗ 25.6 10.7 12.0 5.1 10.7 12.4 6.5 4.0 5.0 6.3 8.0 7.2 21.8 14.8 13.0 11.8 12.0 21.2
AICNet [24] C&D ✗ 23.8 10.6 11.5 4.0 11.8 12.3 5.1 3.8 6.2 6.0 8.2 7.5 24.1 13.0 12.8 11.5 11.6 20.2
LMSCNet [37] L ✓ 27.3 11.5 12.4 4.2 12.8 12.1 6.2 4.7 6.2 6.3 8.8 7.2 24.2 12.3 16.6 14.1 13.9 22.2
JS3C-Net [55] L ✓ 30.2 12.5 14.2 3.4 13.6 12.0 7.2 4.3 7.3 6.8 9.2 9.1 27.9 15.3 14.9 16.2 14.0 24.9

C-OpenOccupancy [51] C ✓ 19.3 10.3 9.9 6.8 11.2 11.5 6.3 8.4 8.6 4.3 4.2 9.9 22.0 15.8 14.1 13.5 7.3 10.2
L-OpenOccupancy [51] L ✓ 30.8 11.7 12.2 4.2 11.0 12.2 8.3 4.4 8.7 4.0 8.4 10.3 23.5 16.0 14.9 15.7 15.0 17.9
OpenOccupancy [51] M ✓ 29.1 15.1 14.3 12.0 15.2 14.9 13.7 15.0 13.1 9.0 10.0 14.5 23.2 17.5 16.1 17.2 15.3 19.5

C-CONet [51] C ✓ 20.1 12.8 13.2 8.1 15.4 17.2 6.3 11.2 10.0 8.3 4.7 12.1 31.4 18.8 18.7 16.3 4.8 8.2
L-CONet [51] L ✓ 30.9 15.8 17.5 5.2 13.3 18.1 7.8 5.4 9.6 5.6 13.2 13.6 34.9 21.5 22.4 21.7 19.2 23.5
CONet [51] M ✓ 29.5 20.1 23.3 13.3 21.2 24.3 15.3 15.9 18.0 13.3 15.3 20.7 33.2 21.0 22.5 21.5 19.6 23.2

C-OccGen C ✓ 23.4 14.5 15.5 9.1 15.3 19.2 7.3 11.3 11.8 8.9 5.9 13.7 34.8 22.0 21.8 19.5 6.0 9.9
L-OccGen L ✓ 31.6 16.8 18.8 5.1 14.8 19.6 7.0 7.7 11.5 6.7 13.9 14.6 36.4 22.1 22.8 22.3 20.6 24.5
OccGen M ✓ 30.3 22.0 24.9 16.4 22.5 26.1 14.0 20.1 21.6 14.6 17.4 21.9 35.8 24.5 24.7 24.0 20.5 23.5

51,58] to report the Intersection of Union (IoU) as the geometric metric and the
mean Intersection over Union (mIoU) of each class as the semantic metric.
Implementation Details. We follow the same experiment settings of [51,
58] to make a fair comparison with previous methods [5, 25, 51, 58] on both
nuScenes-Occupancy and SemanticKITTI. We stack six refinement layers with
3D deformable attention for the progressive refinement decoder. For training, we
leverage the AdamW [22] optimizer with a weight decay of 0.01 and an initial
learning rate of 2e− 4. We adopt the cosine learning rate scheduler with linear
warming up in the first 500 iterations, and a similar augmentation strategy as
BEVDet [16]. The models are trained for 24 epochs with a batch size of 8 on 8
V100 GPUs. More implementation details are listed in supplementary materials.

4.2 Comparison with the state-of-the-art

Results on nuScenes-Occupancy. As shown in Tab. 1, we report the quan-
titative comparison of existing LiDAR-based, camera-based, and multi-modal
methods on nuScenes-Occupancy. Compared with the current SOTA method
CONet [51], OccGen achieves a remarkable boost of 1.7%, 1.0%, and 1.9%
mIoU for camera-only, LiDAR-only, and multi-modal settings, respectively. This
demonstrates the effectiveness of OccGen for semantic occupancy prediction. We
also note that OccGen consistently delivers the best IoU results across almost
all categories, which indicates that our method can better complete the scenes
due to our coarse-to-fine generation property. It is also worth noting that Occ-
Gen with multi-modal inputs can improve camera-only and LiDAR-only by 7.5%
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Table 2: Semantic Scene Completion results on SemanticKITTI [2] valida-
tion set. † denotes the results provided by MonoScene [5].
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LMSCNet† [37] 28.61 6.70 40.68 18.22 4.38 0.00 10.31 18.33 0.00 0.00 0.00 0.00 13.66 0.02 20.54 0.00 0.00 0.00 1.21 0.00 0.00
AICNet† [24] 29.59 8.31 43.55 20.55 11.97 0.07 12.94 14.71 4.53 0.00 0.00 0.00 15.37 2.90 28.71 0.00 0.00 0.00 2.52 0.06 0.00
JS3C-Net† [55] 38.98 10.31 50.49 23.74 11.94 0.07 15.03 24.65 4.41 0.00 0.00 6.15 18.11 4.33 26.86 0.67 0.27 0.00 3.94 3.77 1.45
MonoScene [5] 37.12 11.50 57.47 27.05 15.72 0.87 14.24 23.55 7.83 0.20 0.77 3.59 18.12 2.57 30.76 1.79 1.03 0.00 6.39 4.11 2.48
TPVFormer [17] 35.61 11.36 56.50 25.87 20.60 0.85 13.88 23.81 8.08 0.36 0.05 4.35 16.92 2.26 30.38 0.51 0.89 0.00 5.94 3.14 1.52
VoxFormer [25] 44.02 12.35 54.76 26.35 15.50 0.70 17.65 25.79 5.63 0.59 0.51 3.77 24.39 5.08 29.96 1.78 3.32 0.00 7.64 7.11 4.18
OccFormer [58] 36.50 13.46 58.85 26.88 19.61 0.31 14.40 25.09 25.53 0.81 1.19 8.52 19.63 3.93 32.62 2.78 2.82 0.00 5.61 4.26 2.86
Symphonize [21] 41.44 13.44 55.78 26.77 14.57 0.19 18.76 27.23 15.99 1.44 2.28 9.52 24.50 4.32 28.49 3.19 8.09 0.00 6.18 8.99 5.39
OccGen (ours) 36.87 13.74 61.28 28.30 20.42 0.43 14.49 26.83 15.49 1.60 2.53 12.83 20.04 3.94 32.44 3.20 3.37 0.00 6.94 4.11 2.77

and 5.2% mIoU, which demonstrates the effectiveness of the camera modality in
capturing small objects (e.g., bicycle, pedestrian, motorcycle, traffic cone) and
LiDAR modality on large objects structured regions (e.g., drivable surface, side-
walk, vegetation). This lays a solid foundation for us to further explore how to
improve the role of images during fusion.

Results on SemanticKITTI. We also compare OccGen with the state-of-the-
art vision-based works [21,25,58] on SemanticKITTI. For a fair comparison under
the camera-only setting, we removed the LiDAR stream and fusion module from
the conditional encoder. As shown in Tab. 2, we can see that OccGen achieves the
highest mIoU compared with all existing competitors. Compared with the state-
of-the-art OccFormer [58], our proposed method has an improvement of 0.3%
mIoU, demonstrating the effectiveness of OccGen for semantic scene completion.
We also notice that the transformer-based methods [10,21,25,58] achieve higher
performance than other previous methods. This reveals the superior capability
of transformer-based structure in representation learning.

4.3 Ablation Study

Overall Architecture. The ablation results on the conditional encoder and
progressive refinement decoder are shown in Tab. 3. Both the conditional encoder
and progressive refinement decoder can achieve performance improvement. We
also notice that “with proposed decoder” has a higher performance than “with
proposed encoder”, demonstrating the effectiveness of our generative pipeline.

Conditional Encoder. We also conduct the ablations on the detailed compo-
nents of the conditional encoder. From Tab. 4, We also observe that the two
solutions in the conditional encoder have both achieved promising performance.
The reason is that the accurate depth estimation and geometry guidance can keep
the fine-grained spatial structures. This effectively limits the impact of disruptive
information from the images, leading to notable performance enhancements.
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Table 3: Ablations on the conditional
encoder and progressive refinement de-
coder on nuScenes-Occupancy under
multi-modal setting. (a), (b) and (c)
denote our baseline, baseline “with en-
coder” and “with decoder”, respectively.

Encoder Decoder IoU mIoU

(a) - - 28.1 20.4
(b) ✓ - 28.6 20.7
(c) - ✓ 30.1 21.6
(d) ✓ ✓ 30.3 22.0

Table 4: Ablations on the multi-modal
encoder on nuScenes-Occupancy under
multi-modal setting.‘Hard LSS” and
“Geo. Mask” denotes the hard 2D-to-
3D view transformation and geometry
mask modules in multi-modal encoder.

Hard LSS Geo. Mask IoU mIoU

- - 29.8 21.4
✓ - 30.2 21.5
- ✓ 30.3 21.6
✓ ✓ 30.3 22.0

Progressive Refinement Decoder. We conduct the ablations on the detailed
components of the progressive refinement decoder. From Tab. 5 (a) and (b), it is
evident that both 3D deformable cross- and self-attention lead to noticeable im-
provements in results. Compared to self-attention, cross-attention has a greater
impact on performance, which is intuitive: learning knowledge from conditional
inputs is always more comprehensive. Additionally, we also observed that the or-
der of DCA and DSA in the decoder has a certain impact on the results. We also
see that removing the temporal diffusion process leads to a decrease in results
from Tab. 5(c).

4.4 Further Discussion

The desirable properties of OccGen compared with the previous discriminative
occupancy methods in a single-forward process are shown in Fig. 4 and Fig. 6.
OccGen provides the flexibility to balance computational cost against prediction
quality in a coarse-to-fine manner. Additionally, the stochastic sampling process
enables the computation of voxel-wise uncertainty in the prediction.
Progressive Refinement. We evaluate OccGen with one, three, and six re-
finement layers by increasing their sampling steps from one to ten. The results
are presented in Fig 5. It can be seen that OccGen can continuously improve
its performance by using more sampling steps. For instance, OccGen with six
refinement layers shows an increase from 21.7% mIoU (first step) to 22.0% mIoU
(third step), and we visualize the inference results of different steps in Fig. 4.
In comparison to the previous single-step discriminative method, OccGen has
the flexibility to balance computational cost against accuracy. This means our
method can be adapted to different trade-offs between speed and accuracy under
various scenarios without the need to retrain the network.
Efficiency vs. Accuracy. We report the results of IoU and mIoU to represent
the accuracy of different methods and latency(ms) to represent the efficiency
of the models. The results are shown in Tab. 6. Compared with the representa-
tive discriminative methods, OccGen achieves better results than state-of-the-art
CONet [51] when using only one sampling step, with comparable latency on the
camera-only, and multi-modal settings. When adopting two sampling steps, the
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Multi-camera images Ground Truth CONet OccGen (step1) OccGen (step2)

Fig. 4: Qualitative results of occupancy predictions on nuScenes-Occupancy. The left-
most column shows the input surrounding images, and the following four columns
visualize the 3D semantic occupancy results from the ground truth, CONet [51], Occ-
Gen(first step), and OccGen(second step). The regions highlighted by rectangles indi-
cate that these areas have obvious differences (better viewed when zoomed in).

Table 5: Ablations on the designed
components of progressive refinement
decoder on nuScenes-Occupancy un-
der multi-modal setting.

Method IoU mIoU

(a)
w/o DSA 30.1 21.4
w/o DCA 29.7 21.2

w/o DCA and DSA 29.1 20.7

(b) DSA + DCA 29.4 21.6
DCA + DSA 30.3 22.0

(c) w/o Diffusion 29.3 21.7
OccGen 30.3 22.0

Table 6: The latency (ms) and performance
(%) of baselines and OccGen on nuScenes-
Occupancy under camera-only and multi-
modal settings.

Models Latency(ms) IoU mIoU

C-Baseline [51] 172.4 19.3 10.3
C-CONet [51] 285.7 20.1 12.8

C-OccGen(step1) 294.1 23.0 14.2
C-OccGen(step2) 312.5 23.3 14.4

Baseline [51] 243.9 29.1 15.1
CONet [51] 344.8 29.5 20.1

OccGen(step1) 357.1 29.3 21.7
OccGen(step2) 400.0 29.7 21.8

performance is further boosted to 21.8% and 14.4% on the multi-modal and
camera-only benchmarks, at a loss of 20 ∼ 50 ms. These results show that
OccGen can progressively refine the output occupancy multiple times with rea-
sonable time cost.

Uncertainty Awareness. In addition to the performance gains, the proposed
OccGen can naturally provide uncertainty estimates. In the multi-step sampling
process, we can simply count the voxels where the predicted result of each step
differs from the result of the previous step, thereby obtaining an uncertainty
occupancy result. We can see from Fig. 6 that the areas with high uncertainty
in the uncertainty map often align with those in the error map, which indicates
incorrect prediction regions. In comparison, OccGen offers a straightforward and
inherently capable approach, whereas previous methods [12, 32] require compli-
cated modeling such as Bayesian networks.
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Fig. 5: The results of multiple inferences
on nuScenese-Occupancy under the multi-
modal setting.

Ground Truth Uncertainty Map Error Map

Fig. 6: The visualization of uncertainty
map and error map on nuScenese-
Occupancy under the multi-modal setting.

4.5 Qualitative Results

In Fig. 4, we visualize the predicted results of 3D semantic occupancy on nuScenes-
Occupancy from CONet [51] and our proposed OccGen. Compared with CONet,
our method can better understand the scene-level semantic layout and perform
local region completion. It is obvious that the regions of “drivable surface” and
“sidewalk” predicted by our OccGen have higher continuity and integrity, and
can effectively reduce a large number of hole areas compared with CONet. One
more interesting observation is that due to the ground truth being initially con-
structed based on sparse LiDAR data, the shape of voxels in space is not very
well-defined, especially in the drivable area. However, both CONet [51] and Oc-
cGen yields smoother predictions for these occupancy results.

5 Conclusion

We propose OccGen, a simple yet powerful generative perception model for 3D
semantic occupancy prediction. OccGen adopts a “noise-to-occupancy” genera-
tive paradigm, progressively inferring and refining the occupancy map from a
random Gaussian distribution. OccGen consists of two main components: a con-
ditional encoder that processes the multi-modal inputs and a progressive refine-
ment decoder that produces fine-grained occupancy in a coarse-to-fine manner.
OccGen has achieved state-of-the-art performance on several occupancy bench-
marks and shown desirable properties that discriminative models cannot achieve,
such as progressive inference and uncertainty estimates. Currently, the latency of
our OccGen is comparable to the previous state-of-the-art methods and has not
achieved a significant speed advantage. Next, we will explore a more lightweight
generative architecture for 3D semantic occupancy prediction.
Acknowledgements. This work was supported by NSFC (62322113, 62376156),
Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102),
and the Fundamental Research Funds for the Central Universities.
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